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Many human diseases are associated with aberrant reg-
ulation of phosphoprotein signaling networks. Src homol-
ogy 2 (SH2) domains represent the major class of protein
domains in metazoans that interact with proteins phos-
phorylated on the amino acid residue tyrosine. Although
current SH2 domain prediction algorithms perform well at
predicting the sequences of phosphorylated peptides that
are likely to result in the highest possible interaction affinity
in the context of random peptide library screens, these
algorithms do poorly at predicting the interaction potential
of SH2 domains with physiologically derived protein se-
quences. We employed a high throughput interaction assay
system to empirically determine the affinity between 93
human SH2 domains and phosphopeptides abstracted from
several receptor tyrosine kinases and signaling proteins.
The resulting interaction experiments revealed over 1000
novel peptide-protein interactions and provided a glimpse
into the common and specific interaction potentials of c-
Met, c-Kit, GAB1, and the human androgen receptor. We
used these data to build a permutation-based logistic re-
gression classifier that performed considerably better than
existing algorithms for predicting the interaction potential
of several SH2 domains. Molecular & Cellular Proteomics
13: 10.1074/mcp.M113.034876, 1705–1723, 2014.

Src homology 2 protein domains (SH2)1 are modular self-
folding entities of about 100 amino acids that bind to tyrosine-

phosphorylated peptide sequences contained within target
proteins. The SH2 domain (1–3) was originally described
nearly 20 years ago as an N-terminal region of the FES protein
kinase that was not required for kinase activity but was im-
portant for its regulation. More recent studies have demon-
strated that SH2 domains exist in many signaling molecules,
including PLC�1, Ras GAP, c-Src, and PI3KR. SH2 domains
have been shown to enable the interaction of these signaling
proteins with growth factor receptors such as FGFR1, EGFR,
c-Met, and PDGFR in a phosphospecific manner (4–9). Sub-
sequently, random peptide library screening approaches were
used to define sequence motifs that resulted in the highest
affinity interactions within particular SH2 domain classes (10,
11). For example, peptide sequences containing the pYEEI,
pYXN, and pYMXM motifs were described to result in the
highest affinity interactions with the SH2 domains from c-Src,
Grb2, and the PI3KR SH2 domains, respectively. Data from
such experiments have been used to generate predictions
regarding the likelihood that any particular peptide sequence
will interact with any particular SH2 domain (12–14).

Unfortunately, the predictive performance of these algo-
rithms has not been thoroughly empirically tested or opti-
mized for biologically derived peptide sequences. We and
others reported the first comprehensive cloning, expression,
and functional analysis of human genome-encoded SH2 do-
mains using a protein microarray-based interaction analysis
approach (15–17). Similarly, peptide arrays have been used to
query the interaction potential of SH2 domains with biologi-
cally derived peptide sequences in a semi-quantitative man-
ner (18). These studies demonstrated that most biologically
derived peptide sequences contained within RTKs and sig-
naling proteins do not represent best fit sequence motifs and
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interact at a much lower affinity than with the optimal se-
quence motifs identified previously from random peptide li-
braries. Studies with biologically derived peptides indicated
that context nonpermissive amino acids often contribute as
much predictive information regarding interaction selectivity
as positively contributing amino acids (19). Taken together,
these results suggest that the collection of large quantitative
protein interaction datasets between SH2 domains and bio-
logically derived peptide sequences might be informative for
building better algorithms that predict bona fide SH2 domain
interaction sites within human protein sequences.

Although protein microarrays enabled the first systems-
level glimpse at SH2 domain selectivity (15, 17), they had
several limitations that resulted in reduced ability to identify
low affinity interactions in comparison with solution phase
methods (20). We therefore designed a high throughput fluo-
rescence polarization approach that allowed for lower affinity
interactions to be defined between SH2 domains and phos-
phopeptides of the ErbB family of receptor tyrosine kinases
(RTKs) than was possible with protein microarrays (20).

RTKs are vital mediators of signal transduction in multicel-
lular organisms. RTKs typically function as transmembrane
receptors that contain a tyrosine kinase and other motifs that
enable interaction with other intracellular proteins. Human
cells often express many different RTK proteins from the set
of 57 RTK genes encoded by the human genome (21). These
RTKs may be activated in different combinations to transduce
common and specific downstream signals (22). For a recent
review of the complexity of RTK signaling networks, see Ref.
23. Following activation, RTKs are phosphorylated on several
intracellular tyrosine residues that serve as recruitment sites
for SH2 domains (15–18, 20). Activation of RTK signaling
networks may cause changes in cellular motility, proliferation,
survival, and cytoskeletal arrangement. Definition of their sig-
naling capacity represents an important and unsolved prob-
lem in cell biology. Although most studies to date have fo-
cused on the role of singular RTKs in cancer progression,
co-activation of RTKs derived from several unique RTK genes
has recently emerged as an important driver of cancer pro-
gression (24–27). Co-activation of modules of RTKs may pro-
vide robustness against therapies designed to inhibit a single
RTK (25).

Herein, we profiled the interaction potential of two RTKs
and two signaling proteins and compared them with the re-
cruitment potential of the ErbB family that we have previously
profiled (28). The ErbB family, c-Met, and c-Kit RTKs have
been shown to drive the progression of many cancer types,
including breast, head and neck, lung (29), gastrointestinal,
and stomach cancers (30). Downstream adaptor proteins of-
ten augment the signaling potential of RTKs by acting as
scaffolds for recruitment of many additional proteins (31–33).
Therefore, we also included peptides in our study derived
from the Gab1 adaptor protein, which is critical for mediating

signaling networks downstream of c-Met and potentially other
RTKs (34).

Finally, alternative oncogenic signaling networks may have
points of cross-talk with tyrosine kinase signaling networks.
Steroid hormone receptors such as the androgen receptor
(AR) have been shown to associate with RTKs such as EGFR
(35), to be substrates of tyrosine kinases (36, 37), and to drive
the progression of prostate cancer (36). We therefore queried
the interaction potential of phosphopeptides derived from AR
with a set of 93 of the 120 SH2 domains encoded in the
human genome. We subsequently used this interaction data-
set to develop a permutation-based logistic regression clas-
sifier (PEBL) for predicting the interaction potential of SH2
domains and biologically derived phosphotyrosine-containing
peptides.

MATERIALS AND METHODS

Reagents were produced and purified for use in automated
high throughput fluorescence polarization assay as described
previously (28).

SH2 and PTB Domain Proteins—The cloning of 109 SH2 and 44
PTB domains in the human genome is described previously (15). In
this study, 93 SH2 and 2 PTB domain-containing constructs (supple-
mental Fig. S1 and supplemental Table S1) were selected that met
each of the following criteria: 1) fraction of monomeric protein ob-
served in a previous study following expression and purification
�50% by size exclusion chromatography; 2) previous evidence of
functionality by PM as evidenced by interaction with one or more
phosphopeptides with an apparent midpoint binding constant KD �1
�M. Where multiple SH2 domains were contained in a single gene, the
tandem protein was included in our analysis with all internal amino
acid residues linking the domains even if the percentage of mono-
meric tandem SH2 domains was less than 50%.

Peptide Synthesis and Purification—Peptides were synthesized
and purified as described previously (28).

Fluorescence Polarization (FP) Saturation Binding Assay—The FP
saturation binding assay was performed as described previously (see
Fig. 1A) (28). Experimental values were output as millipolarization
units and imported into MATLAB (The MathWorks, Inc., Natick, MA) in
which Equation 1 was used to determine dissociation constants (KD)
for each protein/peptide pairing by least squares linear regression.

Pobs �
Pmax � �Protein�

KD � �Protein�
(Eq. 1)

Protein and Gene Ontology Enrichment Analyses—The total num-
ber of phosphotyrosine (Tyr(P)) sites on each receptor or adaptor to
which each SH2 domain-containing protein or gene ontology class
bound was first determined. We then performed 10,000 permutations
of the Tyr(P) sites to build a reference distribution of the null hypoth-
esis of each receptor binding to a given protein or class of proteins at
a random number of sites given the number of sites queried. We
defined statistically significant enrichment and depletion of binding
sites by identifying instances where the observed number of binding
sites was unlikely to occur by chance given the number of sites bound
across all receptors (p � 0.05).

Establishing Amino Acid Residue Location Importance in Predicting
SH2 Domain Recruitment—The R package “randomForest” (65) was
used to implement the random forest algorithm using 10,000 trees per
run with two variables randomly sampled at each tree split. We
examined the ability for all residue positions to predict binary binding
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events for each SH2 domain. Variable selection was performed using
the “varSelRF” package in R using 10,000 trees for the first forest, 300
trees for all additional forests, and excluding 20% of variables at each
iteration.

PEBL Classifier—For each SH2 domain p, we randomly sampled q
peptide sequences 100 times from the full set of 178 peptides used in
our study, where q was the number of peptides that were determined
to bind SH2 domain p by FP. From these permutations, for each
amino acid residue at each site, we determined the relative statistical
enrichment and depletion of that amino acid residue for each SH2
domain by comparing the observed amino acid frequencies to the
permuted amino acid counts. We then log10-transformed these p
values and inverted the depletion p values (such that �2 corresponds
to depletion with p � 0.01) for enrichment heat maps.

We then built a PEBL to predict to which SH2 domains a given
peptide would bind. For each peptide, we summed the transformed p
values for each amino acid residue in the peptide for each SH2
domain (with depleted residues yielding negative values and enriched
residues yielding positive values) to derive a prediction score for the
likelihood that peptide would interact with an SH2 domain given its
sequence. Accuracy, sensitivity, and specificity as a function of the
PEBL score cutoff were calculated using the ROCR package in R (72).

Evaluating PEBL on Consensus Motifs and an External Data-
set—We first assembled a set of 62 consensus motifs from previous
literature (13, 60, 61, 68, 69). SMALI and PEBL scores were calculated
based on the highest scoring SMALI residues at each position relative
to phosphotyrosine. We then acquired 1532 SPOT array measure-
ments from 160 peptides from 14 different SH2 domains from Liu et
al. (18). We then calculated SMALI and PEBL scores for each inter-
action based on the SH2 domain and the peptide queried. To calcu-
late positive predictive values (the proportion of true positives over all
positives called by the algorithm), we defined SMALI scores �1.0 and
PEBL scores �4.5 as “interactions.”

RESULTS

We previously assessed the comprehensive SH2 domain
recruitment profile for phosphopeptides derived from ErbB1/
EGFR, ErbB2, ErbB3, and ErbB4 RTKs using a high through-
put fluorescence polarization (FP) interaction analysis assay
(supplemental Fig. S1) (28). This approach has previously
been shown to yield a false-positive rate of 18.4% and a
false-negative rate of 4% based on validation of a subset of
random interactions by surface plasmon resonance (20). We
determined that peptides containing 4 residues N-terminal
and 8 residues C-terminal to the phosphotyrosine residue
generated maximal polarization changes upon SH2 domain
binding while retaining maximal binding selectivity. Therefore,
we synthesized 13-mer phosphopeptides corresponding to
85 of 89 cytosolic tyrosine sites from the c-Met and c-Kit
RTKs, the Gab1 adaptor protein, and the AR protein. We then
tested these peptides for interaction with 93 SH2 domains
and 2 phosphotyrosine binding (PTB) domains (Fig. 1 and
supplemental Table S1) using high throughput FP.

c-MET and Gab1—We synthesized phosphopeptides rep-
resenting 15 of 16 intracellular tyrosine motifs on the onco-
genic RTK c-Met and 19 of 20 tyrosines on the downstream
adaptor protein GAB1 for interaction analysis via the FP assay
(supplemental Table S2). The set of 15 c-Met phosphopep-
tides analyzed here represents a 2-fold increase in the num-

ber peptides queried for interaction versus previous PM-
based interaction studies of c-Met recruitment with SH2
domains and thus offered the potential for novel insight (16).
From 3115 unique queries, we identified 174 peptide-protein
interaction pairs with c-Met and 310 interactions with GAB1
(Fig. 1).

We also compared our assay results to previously pub-
lished PM data similarly to our prior ErbB study (Fig. 2) (16,
20). c-Met was the only available protein microarray interac-
tion dataset orthogonal to the receptors examined in this
study. Of the 176 FP-derived and 116 PM-derived interac-
tions, 54 interactions were detected by both methodologies.
As described previously, the FP method can identify a wider
range of interaction affinities, whereas PMs are confined to
only the strongest interactions (20). Based on previous esti-
mates of the false-positive rate of PMs to be as high as 59%
because of technical artifacts related to surface immobiliza-
tion of proteins, disulfide bonding of SH2 domains, and in-
complete peptide solubility (20), we conclude that many of the
62 missed interactions originally identified by PMs but missed
by FP are likely false positives. Although peptides derived
from c-Met Tyr-1313 and Tyr-1365 resulted in the majority of
interactions, we detected 122 additional interactions that
were either not previously queried or detected by protein
microarrays (16). By contrast to the focused recruitment of
SH2 domains to a small number of phosphosites within c-
Met, SH2 domains were recruited to many phosphosites
within GAB1.

Previous studies have demonstrated that c-Met Tyr(P)-
1307/Tyr(P)-1313 can interact with SH2 domains from PIK3R
proteins (38); we observed moderate recruitment of select
PIK3R-derived SH2 domains by c-Met Tyr(P)-1307 but strong
(KD �1 �M) recruitment of most PIK3R-derived SH2 domains
at Tyr(P)-1313. The Tyr(P)-1349/Tyr(P)-1356 dual phosphory-
lation site has been previously shown to be important for
recruitment of Grb2. Because we were unable to synthesize
the peptide corresponding to Tyr(P)-1356, we were unable to
empirically assess its recruitment potential. However, Tyr(P)-
1356 contains the sequence pYVN and is therefore predicted
based on previous studies and this study to recruit the GRB2
SH2 domain (10). We observed that Tyr(P)-1349 was able to
recruit primarily SH2 domains from PLCG1 and SH2D1B with
moderate affinity. c-Met Tyr(P)-1365 has been shown to be
important for full enzymatic activity of the receptor and has
been suggested to recruit downstream signaling mediators
(40). We identified interactions with SH2 domains from several
c-Src family kinases, tensin family, PLCG1, RASA1, SH2D1A,
and SH2D1B proteins (Fig. 1), with this site. Although Tyr(P)-
1313 had the ability to recruit most SH2 domains, it notably
lacked the ability of Tyr(P)-1295, Tyr(P)-1307, and Tyr(P)-1365
to recruit the Shp2/PTPN11 SH2 domain.

GAB1 had six predicted recruitment sites for SH2 domains
from CRK and CRKL based on SH2 domain interaction pre-
diction algorithms: Tyr(P)-242, Tyr(P)-259, Tyr(P)-307, Tyr(P)-

Assaying and Predicting SH2 Domain Recruitment

Molecular & Cellular Proteomics 13.7 1707

http://www.mcponline.org/cgi/content/full/M113.034876/DC1
http://www.mcponline.org/cgi/content/full/M113.034876/DC1
http://www.mcponline.org/cgi/content/full/M113.034876/DC1


Assaying and Predicting SH2 Domain Recruitment

1708 Molecular & Cellular Proteomics 13.7



373, and Tyr(P)-406 (41, 42). However, we identified no CRK
SH2 domain interactions with these predicted recruitment
sites (Fig. 1). We did observe CRK SH2 domain recruitment
with peptides derived from Tyr(P)-24 and Tyr(P)-95 from
GAB1. We also observed CRKL SH2 domain interactions with
peptides derived from Tyr(P)-259 and Tyr(P)-406 but not with
peptides derived from the other four previously suggested
interaction sites. Based on prior interaction predictions,
Tyr(P)-162 was suggested as an interaction site for the SHC1
SH2 domain (43), but we were unable to detect this interaction
(Fig. 1). SHC1 SH2 domain interactions were identified with
peptides derived from Tyr(P)-83, Tyr(P)-95, Tyr(P)-183, Tyr(P)-
373, Tyr(P)-627, and Tyr(P)-689. SHC1 PTB domain interac-

tions were observed with peptides derived from Tyr(P)-24,
Tyr(P)-83, and Tyr(P)-183, none of which represent the canon-
ical NPXpY motif. Peptides derived from Tyr(P)-307 and
Tyr(P)-317 were predicted to bind to SH2 domains from
RASA1 (44) based on previous algorithms, and this prediction
was confirmed by our analysis. FP analysis also confirmed the
PLCG1 interactions that have been reported with Tyr(P)-307,
Tyr(P)-373, and Tyr(P)-406 (45). Finally, Tyr(P)-447, Tyr(P)-
472, and Tyr(P)-627 were previously demonstrated by muta-
tional analysis to recruit PIK3R1, whereas Tyr(P)-657 and
Tyr(P)-689 were shown to recruit PTPN11 (46). Our interaction
analysis confirmed the three PIK3R1-binding sites and also
found that these sites also recruited PIK3R2 and PIK3R3 with

FIG. 2. Comparison of recruitment profiles for MET as determined by protein microarrays versus fluorescence polarization.
Color-coded heat maps represent KD values for FP interactions between SH2 and PTB domains and phosphopeptides representing all
potential phosphotyrosine sites for which a peptide could be successfully synthesized in previously published protein microarray studies as
well as this study. Black boxes indicate interactions that are too weak to be detected by the assay. Sequences of peptides used are indicated
for each receptor site, where d denotes the pre-charged aspartic acid residue on the peptide synthesis resin and not a naturally occurring Asp.
NS refers to peptides that were unable to be synthesized or, in the case of the protein microarray study, not queried at all. NI refers to
synthesized peptides that produced no positive hits in the respective studies; therefore, we cannot confirm nor deny interactions at these sites
with either assay. Rows of the heat maps for these peptides are grayed out to indicate that the protein microarray assay or our FP assay could
neither confirm nor deny positive or negative interactions from these peptides.

Fig. 1. Recruitment profiles for GAB1, MET, KIT, and AR. Comprehensive SH2 domain recruitment potential of the adaptor protein GAB1,
the MET and KIT receptor tyrosine kinases, and the human AR as determined by high throughput fluorescence polarization. Color-coded heat
maps represent KD values for FP interactions between SH2 and PTB domains and phosphopeptides representing all potential phosphotyrosine
sites for which a peptide could be successfully synthesized. Black boxes indicate interactions that are too weak to be detected by the assay.
Sequences of peptides used are indicated for each receptor site, where d denotes the pre-charged Asp residue on the peptide synthesis resin
and not a naturally occurring Asp. NS refers to peptides that were unable to be synthesized. NI refers to synthesized peptides that produced
no positive hits in the study; therefore, we cannot confirm nor deny interactions at these sites with our assay. Rows of the heat maps for these
peptides are grayed out to indicate that our FP assay could neither confirm nor deny positive or negative interactions from these peptides.
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high affinity. However, by contrast to previous reports, our
analysis suggested that Tyr(P)-689 was unable to recruit
PTPN11 but was able to recruit SH2 domains from PIK3R,
PLCG1, SHC1, SH2D1B, and c-Src family tyrosine kinase
family members.

We also identified previously unreported interaction sites
between GAB1 phosphopeptides and SH2 domains derived
from tensin family proteins, Vav family proteins, SH2D1B, and
a subset of the SOCS proteins (47). Although SH2 domains
from Vav and tensin family proteins interacted selectively with
only a few phosphosites within GAB1, SH2 domains from
SH2D1B, SOCS3, and SOCS6 displayed a recruitment pat-
tern characterized by multiple redundant interaction sites,
similarly as we observed between c-Met phosphopeptides
and SH2 domains from PLCG1, PIK3R, and PTPN11.

c-Kit—c-Kit is an RTK with oncogenic potential in the
PDGFR family (21, 30, 49). We successfully synthesized phos-
phopeptides representing all 22 potential intracellular tyrosine
motifs (supplemental Table S2) of this receptor. From 2017
unique peptide-protein queries, we detected 307 interaction
pairs (Fig. 1). We detected most literature-reported interac-
tions between c-Kit and our SH2 domain set (49) and were
able to infer the predicted respective binding sites because of
c-Kit’s homology with the PDGFR (50–52). Importantly, the
peptide derived from Tyr(P)-721 (which represents the homol-
ogous PIK3R recruitment site shared by all PDGFR family
members) was the only c-Kit peptide able to recruit all PIK3R
SH2 domains with sub-micromolar midpoint dissociation
constants. Peptides derived from Tyr(P)-703 and Tyr(P)-936
were the predicted GRB2/GRAP2-binding sites based on mo-
tif prediction software (10), and phosphopeptides derived
from these sequences were the only two peptides that de-
tectably recruited these domains. As expected from previous
functional and interaction studies, peptides derived from
Tyr(P)-568 and Tyr(P)-570 recruited several c-Src family ki-
nase SH2 domains (49).

Although the peptide derived from Tyr(P)-721 displayed the
highest affinity for PIK3R SH2 domains, we observed that
many other c-Kit peptides not containing canonical PI3KR
sequence motifs were also able to interact with these do-
mains. These additional interaction sites in the PDGF receptor
might allow for increased interaction avidity with PI3KR pro-
teins because each PI3KR regulatory subunity has two SH2
domains. Similarly, we observed that domains from PTPN11,
PLGC1, RASA1, and SOCS6 were recruited to many sites
throughout c-Kit. Other protein families were recruited at a
more limited number of c-Kit receptor phosphosites. For ex-
ample, CRK was only recruited by peptides derived from
Tyr(P)-672, Tyr(P)-675, and Tyr(P)-855. Domains from the ten-
sin family proteins were recruited primarily by peptides de-
rived from Tyr(P)-855 and Tyr(P)-936. In addition to interacting
with peptides derived from Tyr(P)-568/Tyr(P)-570 sites, SH2
domains from the c-Src family tyrosine kinases were also
recruited to peptides derived from Tyr(P)-672/Tyr(P)-675,

Tyr(P)-900, and Tyr(P)-936. As a hematopoietic RTK, it was
noteworthy that several residues on c-Kit recruited the SH2
domain of SH2D1B, a signaling lymphocyte activation mole-
cule member (53); peptides derived from Tyr(P)-568 and
Tyr(P)-936 recruited SH2D1B with the highest affinity (KD �1
�M).

Androgen Receptor—The human AR is a type of nuclear
receptor that is activated by the binding of testosterone or
dihydrotestosterone (54). AR has 31 tyrosine residues, a sub-
set of which has been shown by mass spectrometry studies to
be phosphorylated by c-Src and other tyrosine kinases (36,
37, 55). AR has also been shown to associate with RTKs such
as EGFR (35) and is an important therapeutic target in pros-
tate cancer (56–58). AR activity may also be modulated by
phosphorylation and other forms of post-translational modifi-
cation. The Ack1 kinase has been shown to phosphorylate AR
at Tyr-267 and Tyr-363 (36), whereas Tyr-534 has been shown
to be a substrate for c-Src (37). The phosphorylation of AR is
elevated in some forms of hormone refractory prostate cancer
relative to hormone-sensitive cancer (37). The modulation of
AR activity by tyrosine phosphorylation is thought to occur, in
part, through conformational changes in protein structure.
However, AR tyrosine phosphorylation may also modulate its
ability to interact with the SH2 domains of cell signaling
molecules.

To test the ability of AR to recruit downstream signaling
proteins, we synthesized 13-mer phosphopeptides corre-
sponding to 29 of the 31 AR tyrosine motifs (supplemental
Table S2). From 2708 unique peptide-protein queries, we
identified 215 unique interaction pairs (Fig. 1). The majority of
the interactions had relatively low affinities (KD �10 �M) in
comparison with receptor tyrosine kinase-mediated interac-
tions. Our assay detected multiple interactions with the pep-
tide derived from Tyr(P)-267, including a relatively high affinity
interaction with the SRC SH2 domain (KD � 1.85 �M) and
weaker interactions with SH2 domains from other c-Src family
kinase members, including YES1 and LCK. However, the
peptide derived from Tyr(P)-363 interacted primarily with
SH2D3C (KD � 2.28 �M). The peptide derived from Tyr(P)-534,
a known c-Src kinase substrate, did not recruit SH2 domains
from c-Src family kinases but did recruit PIK3R3 (C-terminal
domain) and PLCG1 (NC tandem domain). Tyr-362 has been
shown to be phosphorylated independently and in tandem
with Tyr-363 (37). The peptide derived from Tyr(P)-362 inter-
acted with SH2 domains from SRC, RASA1, PLCG1, and the
PI3KR phosphatidylinositol kinase regulatory subunits. Al-
though the peptide derived from Tyr(P)-534 interacted with
few SH2 domains, the peptide derived from Tyr(P)-531 re-
cruited 29 domains, including several from the c-Src family
kinases. AR recruited SH2 domains from PI3KR domains with
relatively high affinity at several tyrosines, including peptides
derived from Tyr(P)-107, Tyr(P)-362, Tyr(P)-531, Tyr(P)-553,
and Tyr(P)-740. Similarly, recruitment sites for domains from
the phospholipases PLCG1 and PLCG2 were distributed
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throughout the length of the protein, including peptides de-
rived from Tyr(P)-107, Tyr(P)-362, Tyr(P)-551, Tyr(P)-553, and
Tyr(P)-915. The peptide derived from Tyr(P)-107 was the only
peptide able to recruit VAV family SH2 domains with detect-
able affinities (KD �2–8 �M). Peptides derived from Tyr(P)-
307, Tyr(P)-531, Tyr(P)-740, and Tyr(P)-774 recruited the
PTPN11 protein-tyrosine phosphatase SH2 domain (KD �2–8
�M). The ability of AR-derived peptides to recruit PIK3R and
PLCG1 domains is of particular interest because of the roles
of these proteins in tumor processes such as cell survival, cell
proliferation, and metastasis.

Comparison of Overall SH2 Domain Recruitment Capacity
of Signaling Proteins—We compared the overall SH2 domain
recruitment potential of GAB1, c-Met, c-Kit, and AR with the
ErbB interaction dataset that we previously described (sup-
plemental Fig. S2) (28). We observed that every receptor had
the potential to recruit most SH2 domains. However, they did
so with different overall binding energies (Fig. 3A). We found
that AR was enriched for SH2 domain-containing adaptor
protein E-binding sites relative to the other receptors (p �

0.0377) but was depleted for sites that recruited most other
domains (Fig. 3B). ErbB1, ErbB2, and ErbB3 were significantly
enriched in phosphosites that recruited multiple domains and
displayed no significant depletion for phosphosites that re-
cruited any domain. ErbB4 had no significant enrichment for
phosphosites recruiting any SH2 domains but was signifi-
cantly depleted for phosphosites recruiting SOCS6, PTPN11,
and PIK3R3 (p � 0.05). GAB1 was significantly enriched for
PLCG1- and PIK3R1-binding sites but was depleted for
ZAP70, SH2D3C, and the SHC2-PTB domain binding sites.
c-Kit was significantly enriched for SOCS2-, SOCS6-, and
PTPN11-binding sites. Notably, PTPN11 was one of the first
SH2 domain-containing proteins found to be recruited to c-Kit
(59). c-Met was significantly enriched for SHB-binding sites,
but despite containing a few high affinity binding sites for

PIK3R1, PIK3R3, and PLCG1, it was depleted in total binding
sites for these SH2 domains versus the other proteins that we
examined. Also of note was that GAB1 was enriched in bind-
ing sites for which c-Met was depleted, underscoring the
likely importance of GAB1 in complementing c-Met’s recruit-
ment ability.

Recruitment of Molecular Functions—We clustered the
SH2/PTB domains used in our FP assay into groups based on
functional ontologies (supplemental Table S3) such as phos-
pholipase, phosphatidylinositol kinase, scaffolds, etc., and we
compared the relative ability of each RTK and signaling pro-
tein to recruit them (Fig. 4A, supplemental Fig. S3, and
supplemental Table S4) (28).

c-Met had the lowest binding free energy for recruitment of
SH2 domains from most ontological classes. ErbB3 was the
most efficient at recruitment of the phosphatidylinositol kinase
ontology, followed by the GAB1 adaptor protein. GAB1 was
nearly twice as efficient at recruitment of phospholipases
compared with the other receptors. c-Met typically signals in
tandem with GAB1, and the GAB1/c-Met module would dis-
play a binding free energy for phosphatidylinositol kinases
similar to ErbB3. This GAB1/c-Met module would also display
twice the binding free energy for SH2 domains from the
adaptor ontology as every other RTK, and it would have
similar binding free energies as the other RTKs for all other
ontologies.

Surprisingly, AR also recruited SH2 domains from the phos-
pholipase ontology at a similar overall binding free energy as
ErbB1 and with a higher free energy than the other RTKs.
Whereas AR lacked efficient recruitment potential for the
adaptor ontology, c-Kit lacked recruitment potential for SH2
domains from the phosphatidylinositol phosphatase and Rho
GEF ontologies.

We then tested for enrichment of binding sites that each
receptor displayed for SH2 domains from each ontological

FIG. 3. Relative binding energy and site enrichment for SH2 and PTB domains by signaling proteins. A, relative binding free energies
of interactions described by FP were summed across each receptor or adaptor protein. B, each receptor or adaptor was assessed for
enrichment or depletion of binding sites for a given SH2 or PTB domain and is depicted by Z-score transformation of raw data.
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class (Fig. 4B and supplemental Table S5). AR was signifi-
cantly depleted for binding sites for SH2 domains from most
ontologies. ErbB1 and ErbB2 were enriched for binding sites
for phospholipase, Ras GTPase, and scaffold ontologies.
ErbB2 and ErbB3 were enriched for binding sites of SH2
domains from the kinase and phosphatidylinositol kinase on-
tologies. ErbB3 also displayed enrichment in binding sites for
the cytoskeletal regulation and signal regulation ontologies.
ErbB4 was depleted of binding sites for phosphatase and
phosphatidylinositol kinase ontologies. c-Kit was enriched for
binding sites to the phosphatase ontology but was depleted
for binding sites to the Rho GEF ontology. GAB1 was enriched
for binding sites for the phospholipase and phosphatidylino-
sitol kinase ontology (Fig. 4B). Although c-Met was depleted
in binding sites for SH2 domains of those ontologies, it was
enriched for binding sites to SH2 domains from the cytoskel-
etal regulation ontology.

The FP-derived interaction matrix revealed that many SH2
domains were able to be recruited in a redundant manner by
peptides derived from many phosphotyrosine sites within
each protein. Therefore, we next asked how the overall onto-
logical recruitment capacity of the RTKs, adaptor and AR
protein, was distributed across each protein. For this purpose,
we examined the ontological recruitment within each protein
as a percentage of overall recruitment capacity for all phos-
phopeptides contained within each protein (Fig. 5 and

supplemental Table S6). Although domains from most onto-
logical classes were recruited in a relatively even manner
across each protein, a subset was recruited to a relatively
small number of phosphosites. For example, our results sug-
gested that a Tyr to Phe mutation of AR Tyr-363 would result
in a substantial reduction in its ability to recruit the Ras GEF
ontology without a substantial reduction in its ability to recruit
domains from other ontologies. Similarly, a Tyr to Phe muta-
tion of AR Tyr-107 would be predicted to result in a significant
reduction in the ability of AR to recruit SH2 domains from the
Rho GEF ontology but would be expected to have minimal
effects on the recruitment of domains from other ontologies.
The c-Kit receptor contained many redundant recruitment
sites for a diverse set of SH2 domains, but a Tyr to Phe
mutation of Tyr-855 would likely result in a complete loss in its
ability to recruit SH2 domains from the Rho GEF ontology.
c-Met contained no phosphosites that were exclusively re-
sponsible for the recruitment of domains from a particular
ontology. However, a Tyr to Phe mutation of c-Met Tyr-1365
would be expected to result in a major reduction in its ability
to recruit SH2 domains from the phosphatidylinositol phos-
phatase ontology, whereas mutation of c-Met Tyr-1295 would
be expected to result in a major reduction in its ability to
recruit SH2 domains from the Rho GEF ontology. GAB1
Tyr-24 was noteworthy in that its mutation would be expected
to result in a nearly complete loss in recruitment of SH2

FIG. 4. Comparison of the recruitment of proteins representing different molecular function categories. A, relative binding free
energies of interactions described by FP for the ErbB family, GAB1, MET, KIT, and AR were summed across all domains in each listed ontology
and then divided by the number of domains in that ontology to determine an average recruitment potential for a particular molecular function
group. B, each receptor or adaptor was assessed for enrichment or depletion of binding sites for a given ontology. Data are depicted by
Z-score transforming the observed number of binding sites each receptor/adaptor had for a particular ontology relative to the average number
of sites that bound the ontology across all receptors/adaptors assessed in our FP assay.
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domains from proteins in the chromatin remodeling and Ras
GEF ontologies.

SH2 Domain Binding Motif Analysis Based on FP-derived
Data—Previously defined consensus binding motifs for SH2
domains are based on competitive assays between SH2 do-
mains and oriented degenerate peptide arrays and/or random
peptide libraries (10, 13, 60). Studies have also been per-
formed to infer domain binding preferences using structural
information (62). A recent study has built upon these analyses
by using biologically derived peptide sequences from insulin
receptor (IR), insulin-like growth factor receptor (IGF1R), and
fibroblast growth factor receptor (FGFR) to generate biologi-
cally derived consensus binding motifs (18). We asked
whether we could improve upon prior studies using the inter-
action data derived from our FP study, which is noncompet-
itive in nature and seeks to quantify interaction affinities rather
than to identify a sequence representing a “perfect motif.”

We first determined the relative statistical enrichment and
depletion of each residue at each position from �4 to 	7
relative to phosphotyrosine for each SH2 domain. For each
protein (representing one SH2 domain) p, we randomly sam-
pled q peptide sequences 100 times from the full set of 178
peptides, where q was the number of peptides originally
bound by each SH2 domain protein p. From these permuta-
tions, we compared the observed residue counts to the per-
muted residue counts for all peptides that bound to each SH2
domain protein p. For instance, if out of 100 permutations we
did not observe an instance where the permuted proportion of
peptides with prolines at site 	1 exceeded the observed
number of interacting amino acid residues at site 	1 with an
SH2 protein, we would conclude that a statistical enrichment
existed for proline at site 	1 at p � 0.01 (1/the total number
of permutations). We then log10-transformed these p values
and inverted the depletion p values (such that �2 corre-
sponds to depletion with p � 0.01) (see results for all SH2
domains in supplemental Fig. S4). We next compared the
motifs identified in our analysis with those previously defined
for the subsets of SH2 domains previously examined by the
SMALI and Scansite prediction algorithms.

Derived consensus motifs for only 10 of the 95 SH2 do-
mains in our assay shared two or more residues of homology
with consensus motifs previously described in the literature
(supplemental Table S7). For example, the previous consen-
sus motif for GRB2 and GRAP2 based on the SMALI predic-

Fig. 5. Phosphosite contribution on GAB1, MET, KIT, and AR for
the recruitment of molecular function groups. Relative binding free
energies were calculated for each phosphosite and individual protein
domain and then summed according to the classification of the
domain in each molecular functional ontology group. The binding
energy for the ontology at each site was subsequently divided by the
total binding energy summed across the entire receptor or adaptor
protein and presented as a percentage of total binding activity of that
receptor or adaptor.
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tion algorithm and random peptide library data were
VXpYVNM and PPpYVNEL respectively, where pY represents
the location of the phosphorylated tyrosine as a point of
reference and X represents no enrichment or depletion for that
amino acid residue. Similarly to the previous predictions, our
analysis determined the following consensus motifs from our
FP-derived data for GRB2 and GRAP2, respectively: PXpYXN
and PXpYXNXXWT. However, the consensus motifs for most
SH2 domains determined from our quantitative FP-derived
interaction data were different from those previously deter-
mined from data derived from highest affinity interactions (Fig.
6A, supplemental Fig. S4, and supplemental Table S7). For
example, in comparison with the previous consensus motif
from SMALI for SRC SH2 of PIpYELID, our analysis sug-
gested that the SRC SH2 domain was enriched for binding
peptides with Asp at (�4, �2, and 	4), Val and Asn at 	2 but
was depleted for binding peptides with Arg at 	1. In compar-
ison with the pYENL consensus ascribed to the SH2 domain
of FGR using oriented peptide array libraries (13, 14), our

analysis confirmed an enrichment for Asp at 	4 and also
identified significant novel enrichments for Gly at �1, Val at
	2, Pro at 	3, and Leu at 	7, implicating these amino acids
as positive contributors to FGR SH2 affinity.

We subsequently built a PEBL regression classifier to pre-
dict the likelihood that a particular peptide sequence would
result in an interaction with a particular SH2 domain. For each
peptide, we summed the log10-transformed p values of en-
richment (positive values) or depletion (negative values) for
each residue in the peptide to derive an interaction prediction
score for each SH2. To assess how well our logistic regres-
sion classifier categorized interactions from noninteractions in
our experimental FP-determined data, we constructed a re-
ceiver operating characteristic (ROC) curve to examine the re-
lationship between true-positive rate and false-positive rate as a
function of the prediction score (Fig. 6B). Our classifier was
highly accurate, with an ROC area under the curve (64) of 0.94.
We achieved a maximum accuracy of 94% when defining in-
teractions with a prediction score �4.50 as “interactions” and

FIG. 6. Residue enrichment at positions relative to tyrosine that contribute to the recruitment of SH2 domains. A, representative plots
depict log10 transforms of the p values of each residue at each position relative to 100 permutations. The number of peptides that interacted
with each domain is indicated at the top of each plot. B, ROC curve obtained by plotting the false-positive rate (1 � Specificity, x axis) by the
true-positive rate (Sensitivity, y axis) for PEBL predictions of our FP interaction data. C, histogram depicting the number of SH2 domains for
which each position relative to phosphotyrosine was selected as an important variable for binary interaction classification by random forests.
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�4.50 as “noninteractions” (supplemental Fig. S5). At this bi-
nary classifier threshold, although our model only achieved a
sensitivity of 67.5%, it achieved a specificity of 97.8%.

To examine which residue positions relative to phosphoty-
rosine contributed the most in determining the probability of
binding to each SH2 domain, we implemented the random
forests (RF) algorithm to construct a predictive classifier and
assess the proportion of variance explained by each site in the
sequence for each SH2 domain (65). The random forests
algorithm is a machine-learning technique that utilizes an
ensemble of independent decision trees to perform classifi-
cation or regression by building trees from sampling random
subsets of all available variables (66). Our model had a median
prediction accuracy of 91.0%, a median specificity of 97.8%,
and a median sensitivity of 22.0% (supplemental Table S8)
across all SH2 domains examined. Notably, many SH2 do-
mains within our sample set contained few binders for which
to inform our classifier. The RF model was better at predicting
negative interactions than positive ones, except for peptides
with higher prediction scores. However, the model had high
sensitivity for many SH2 domains, such as PIK3R3.NC
(100%), PLCG1.NC (98.9%), and RASA1.N (98.8%). Consis-
tent with what has previously been shown, the �1, 	1, 	2,
	4, and 	5 amino acid residues were the most informative
variables for RF classification over all of the SH2 domains
examined (Fig. 5C).

We compared the PEBL score domain interaction predic-
tions to SMALI and Scansite score predictions for several SH2
domains (12, 13). We first identified peptide sequences rep-
resenting the highest scoring residues at each position rela-
tive to phosphotyrosine (13, 14, 60, 68, 69) based on SMALI
(supplemental Table S7). We then used this peptide set to
calculate Scansite, SMALI, and PEBL scores for each SH2
domain. Among the 64 SH2 domains for which SMALI con-
sensus motifs were available, 51 consensus sequences re-
sulted in a positive PEBL score as compared with only 9 being
predicted as a positive interaction by the Scansite algorithm.
We observed a suggestive but not significant correlation be-
tween PEBL and SMALI scores (supplemental Fig. S6).

The PEBL analysis suggested that the probability of peptide
interaction with RASA1-N would be increased if an aspartic or
glutamic acid residue existed at the �1 position and if an
isoleucine existed at the 	2 position (Table I). The proline at
the �1 position was well represented in our FP assay but was
associated with peptides that were unable to bind RASA1-N.
Although both Scansite and SMALI provide scoring metrics
indicative of positive contributions of sequences to interaction
probability, neither provides an assessment of the negative
contributions of amino acids to probabilities of domain inter-
action. PEBL was able to circumvent this limitation by output-
ting scores that incorporated both positive and negative con-
tributions by amino acid residues to determine whether a
peptide would bind or not bind to a specific SH2 domain. The
only significantly negative PEBL score obtained from peptide

sequences representing perfect SMALI consensus motifs was
with the RASA1 N-terminal SH2 domain. The consensus motif
suggested by SMALI (XXPpYTEMM) had a PEBL score of
�4.41. A major source of this discrepancy stems from the
observation that proline at the �1, threonine at the 	1, and
glutamic acid at the 	2 positions are suggested by PEBL to
greatly reduce the probability of interaction with the RASA1-N
SH2 domain (Table II).

We next sought to externally validate PEBL’s performance
and compare it with SMALI for predicting interaction events
between SH2 domains and biologically derived peptides from
an independent dataset that utilized a SPOT-array approach
(supplemental Table S9) (18). In this dataset, 192 phospho-
peptides were synthesized directly onto a support membrane
and tested for interaction with 50 SH2 domains. The 11-mer
peptides consisted of four N-terminal and six C-terminal res-
idues to phosphotyrosine, which is within the parameters of
PEBL based on the 13-mer peptides that we assayed via FP.
The intensities of positive binders on the SPOT array were
better correlated for PEBL scores than for SMALI scores
(supplemental Fig. S7), although PEBL and SMALI scores
were also significantly correlated (� � 0.17, p � 0.001) in the
predictions for this particular peptide by SH2 domain set. In
total, the SPOT array dataset and our FP dataset had 46 over-
lapping SH2 domains. The 160 peptides that produced detect-
able SPOT intensities were derived from 13 proteins known to
participate in insulin receptor, IGF1R, and FGFR signaling net-
works. 1275 interactions were detected, reflecting a signal in-
tensity above the mean on the SPOT array (18). However, when
we examined these interactions with SMALI, only 132 of the
1275 interactions (10.4%) had a score above the 1.00 SMALI
cutoff. Therefore, 1143 of the SPOT array interactions were not
predicted as positives from the SMALI analysis, indicating that
SMALI had a sensitivity of only 10.4%.

When we analyzed the SPOT array peptides for interaction
via PEBL analysis, we observed that 781 of the interactions
identified by the SPOT arrays (61.3%) had a PEBL score
greater than 0. These results were suggestive that PEBL was
nearly six times more sensitive than SMALI in predicting in-
teractions from an independent SPOT array dataset compris-
ing biologically derived phosphopeptide sequences.

Validation of in Vivo Relevance of FP Interactions and PEBL
Predictions by Phosphopeptide Pulldowns—To assess the
ability of PEBL to accurately predict interactions identified in
cells, we leveraged previously published data that examined
the ability of synthetic phosphopeptides to pull down SH2
domain-containing proteins from HeLa cell extracts (supple-
mental Table S10) (70). From the 27 overlapping SH2 domain
interactions identified in cells, 13 interactions (48%) were
ranked highly by artificial neural network predictors (Z score
�2) (70), 18 interactions (67%) had SMALI scores �1, and 21
interactions had PEBL scores �0 (78%). Taken together,
these results indicate that the PEBL algorithm trained with
quantitative binding data outperformed the position weight
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matrix and artificial neural network-based algorithms in pre-
dicting peptide-SH2 domain interactions from cells.

DISCUSSION

In this study, we used an automated high throughput fluo-
rescence polarization assay to measure the interaction poten-

tials of 93 of the 120 SH2 domains in the human genome (71)
with phosphopeptides derived from several RTKs, the GAB1
adaptor protein, and the androgen receptor. The FP-derived
interaction data (28) uncovered interactions that have been
previously identified in biological systems and a wealth of
novel ones. The data allowed us to determine not just that

TABLE I
Amino acid residues that were statistically enriched at each position for each SH2 domain based on permutations (p � 0.05)
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an interaction had occurred but also the strength of that
interaction. We present these findings as a resource of
interaction potentials that can be used to guide future bio-
logical inquiry.

We included the oncogenic receptor tyrosine kinases c-Met
(73, 74) and c-Kit (30), the androgen receptor (57), and the
adaptor protein Gab1, which functions downstream of many
RTKs, including Egfr, c-Met, and c-Kit (34, 46, 49), in this
interaction study to expand upon the recent analysis that we
undertook regarding ErbB RTK interactions with SH2 domains
(28). This dataset represents, to our knowledge, the largest
existing interaction dataset comprising quantitative mid-
point dissociation constants of SH2 domains with phospho-
peptides. As reported previously for the ErbB receptors (28),
many interaction affinities were relatively weak (KD �2 �M).
These low affinity interactions may represent transient sig-
naling events that would not have been easily observed
using traditional in-cell interaction methodologies (75) and
are likely of biological relevance (76). The protein interac-
tions from this publication have been submitted to the IMEx
consortium through IntAct (77) and assigned the identifier
IM-22269.

By organizing our sets of domains into gene ontology
groups, we assessed the relative degree that each signaling
protein contributed to the recruitment of several cellular func-
tions. As expected, ErbB3 and Gab1 were the most efficient at

recruitment of domains from phosphatidylinositol kinase reg-
ulatory subunits. Given the dependence of c-MET on Gab1 for
signaling, it was not surprising to observe that c-Met dis-
played the least overall efficiency among the RTKs for recruit-
ment of most ontologies. AR is commonly known as a tran-
scriptional activator, but recent studies have identified sites of
tyrosine phosphorylation that may influence its function (36,
37, 55). We expected few significant binding partners for AR
based on its function as a steroid hormone receptor and were
surprised that many domains were recruited to AR phospho-
tyrosine sites, including phospholipases and RASA1. These
results are particularly notable given the reported association
between AR and EGFR (35).

We observed that the signaling proteins recruited molecular
functions at different efficiencies, both at the level of total
binding affinities and numbers of recruitment sites. For exam-
ple, although every receptor or adaptor recruited phospha-
tases, c-Kit and Gab1 recruited this ontology with twice the
relative binding free energy as any other receptor, potentially
resulting in more rapid dephosphorylation and down-regula-
tion of tyrosine-phosphorylated signaling molecules. These
analyses allowed us to discern the unique abilities of each
receptor or adaptor to modulate signaling networks and, by
extension, why different cell or tumor types may display dis-
parate phenotypes despite employing the same core sets of
cell-signaling proteins.
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Amino acid residues that were statistically depleted at each position for each SH2 domain based on permutations (p � 0.05)
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The PEBL algorithm complements the “best fit” interaction
predictions of Scansite and SMALI. We hypothesize that the
incorporation of quantitative binding data from interactions
across a wide spectrum of affinities represents a more realistic
depiction of binding potentials than focusing on the sequence
motifs of highest affinity binders. PEBL makes predictions
based on permissive and nonpermissive amino acid residues
and allowed us to improve upon the accuracy of existing algo-
rithms. PEBL predictions outperformed SMALI in calling inter-
actions from external SPOT array datasets and in cell phospho-
peptide pulldown assays. We will continue to further develop
and refine this model and will make it available as an on-line
application for fellow researchers to assist with the rapid iden-
tification of novel and potentially biologically relevant
interactions.

Further interaction experiments with larger and more di-
verse peptide libraries should enable more accurate interac-
tion predictions for SH2 domains that resulted in too few
interactions in this study. The current dataset provides many
testable hypotheses regarding the interface of SH2 domains
with RTK and AR signaling networks.
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