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Abstract

The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what
possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that
this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons
and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic
dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first
signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more
accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena,
proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the
predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches
with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The
combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific
scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical
phenomenon observed in the neural experiments. Thus the model is a candidate for a minimal model of a self-organized
critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for
models that may include more biological details, yet share the same universality class characteristic of the homeostasis of
activity in the brain.
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Introduction

Information processing by a network of dynamical elements is a

delicate matter: Avalanches of activity can die out if the network is

not connected enough or if the elements are not sensitive enough;

on the other hand, activity avalanches can grow and spread over

the entire network and override information processing, as e.g.

observed in epilepsy. Therefore, it has long been argued that

neural networks have to establish and maintain a certain

intermediate level of activity in order to keep away from, both,

the regimes of chaos and silence [1,3–5]. Similar ideas were also

formulated in the context of genetic networks where Kauffman

postulated that information processing in these evolved biochem-

ical networks would be optimal near the ‘‘edge of chaos’’, or the

critical regime of the dynamical percolation transition of such

networks [6].

In the wake of the discovery of self-organized criticality (SOC) it

was asked if also neural systems were self-organized to some form

of criticality [7]. An early example of a SOC model that had been

adapted to be applicable to neural networks is the model by Eurich

et al. [8]. Their model is a variant of the random neighbor Olami-

Feder-Christensen model for earthquakes and exhibits, subject to

one critical coupling parameter, distributions of avalanche sizes

and durations which they postulate could also occur in neural

systems.

Another early example is a spin model for self-organized critical

neural networks [1,9] that draws on the alternative approach of

self-organized critical adaptive networks [10]. Here networks are

able to self-regulate towards and maintain a critical system state,

via simple local rewiring rules which are plausible in the biological

context.

Only after these first hypothetical models, experimental

evidence for criticality in neural systems has been found in terms

of spatio-temporal activity avalanches, first in the seminal work of

Beggs and Plenz [2]. Much further experimental evidence has

been collected since, which we will briefly review below. Only

recently, however, experimental data has reached the resolution to

discuss the hypothesis of dynamical criticality in neural tissue in

the context of measurements. A major finding is that these new

data match well with scaling theory of non-equilibrium critical

phenomena, providing us with a solid evidence for criticality in

cortex tissue dynamics [22]. As a result this sheds new light on the

early spin models of self-organized critical adaptive neural

networks, where now their predictions can actually be tested

against the new observations. This is the purpose of this paper.

The outline of this paper is as follows. We will first briefly review

the further experiments on neural activity avalanches. Then we

will give an overview of models that have been motivated by these

observations. We will then revisit the earliest spin model for self-

organized critical adaptive neural networks [1] and test its
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applicability in the light of experimental data. We redefine the

model for a natural representation of activity avalanches [11],

study the avalanche dynamics of the model, and discuss its relation

to criticality in the context of the scaling theory of non-equilibrium

critical phenomena.

Avalanche dynamics in neuronal systems
Let us first briefly review the experimental studies on neuronal

avalanche dynamics. In 2003, Beggs and Plenz published their

findings about a novel mode of activity in neocortical neuron

circuits [2]. During in-vitro experiments with cortex slice cultures of

the rat, they found evidence of spontaneous bursts and avalanche-

like propagation of activity followed by silent periods of various

lengths. The observed power-law distribution of event sizes

indicates that the neuronal network is maintained in a critical

state. Also, the spatio-temporal patterns of the avalanches are

stable and precise over many hours and robust against external

perturbations [12], which indicates that they might play a central

role for brain functions as, for example, information storage and

processing. Neuronal avalanches have also been found during

developmental stages of in-vitro cortex slice cultures from newborn

rats [13], as well as in cultures of dissociated neurons in different

kinds of networks, as rat hippocampal neurons and leech ganglia

[14], or rat embryos [15].

Aside from these in-vitro experiments, extensive studies in-vivo

have since been conducted. The emergence of spontaneous

neuronal avalanches has been shown in anaesthesized rats during

cortical development [16] as well as in awake rhesus monkeys

during ongoing cortical synchronization [17].

The biological relevance of the avalanche-like propagation of

activity in conjunction with a critical state of the neuronal network

has been emphasized in several works recently. Such network

activity has proven to be optimal for maximum dynamical range

[18,19], maximal information capacity and transmission capability

[20], as well as for a maximal variability of phase synchronization

[21]. Most recently, experimental evidence for universality of

critical dynamics has been found in neuronal avalanche data [22–

24] and formally linked to universal scaling theory [25]. This can

be considered as providing a solid evidence for dynamical

criticality in neuronal systems.

Models for neural criticality
These experimental studies with their rich phenomenology

sparked a large number of theoretical studies and models for

criticality and self-organization in neural networks, ranging from

simple toy models to detailed representations of biological

functions.

A variety of models have been constructed that are careful to

include biological details at the neuron level as a basis for possible

self-organization. Such mechanisms include threshold firing

dynamics and activity-dependent plasticity of synaptic couplings

as the basis for self-organization. While some models feature

synaptic facilitation following a firing event [26–28], others use

synaptic depression as the main driving force towards criticality

[29,30]. It has been shown that anti-Hebbian evolution is

generally capable of creating a dynamically critical network when

the anti-Hebbian rule affects only symmetric components of the

connectivity matrix, while the anti-symmetric component remains

as an independent degree of freedom utilizable for e.g. learning

tasks [31]. Also, synaptic plasticity on two different timescales has

been discussed [32].

On the other hand, the biological plausibility of activity-

dependent synaptic plasticity for adaptive self-organized critical

networks has been emphasized [33]. Recently, correlations of

subsequent firing events again came into focus as a synaptic

facilitation criterion [34]. The biological relevance of the critical

state in neural networks for a brain function as learning has further

been underlined [35]. Most recently, the temporal organization of

neuronal avalanches in real cortical networks has been linked to

the existence of alternating states of high vs. low activity in the

network as well as to a balance of excitation and inhibition in a

critical network [36].

While the proposed organizational mechanisms strongly differ

between the individual models, there are signs that the resulting

evolved critical networks may be part of the same fundamental

universality class. Many of the models exhibit at least some of the

avalanche statistics seen in the experimental data, as e.g. a power-

law distribution with exponent around {3=2 for the distribution

of avalanche sizes. With the recent, more detailed models in mind,

we are especially interested in the underlying universality of self-

organization.

Revisiting the spin model of self-organized critical neural
networks

Let us now revisit the earliest spin models of self-organized

critical neural networks [1,10] in a formulation that allows for

studying its avalanche dynamics in time and space. Two main

aspects have to be addressed.

First, the spin-type description of the dynamical variables, due

to its symmetrized nature, does not allow to sample avalanche

statistics at the critical point. We therefore translate the model into

a version with Boolean state nodes and redefine its activation

threshold function and its network rewiring mechanism accord-

ingly. As a result, activity avalanches intrinsically occur in the

network, whereas spin networks typically exhibit continuous

fluctuations with no avalanches directly visible. The further

advantages of this transformation in the context of biological

networks have been discussed in a previous paper [11].

The second aspect to be reviewed is the topology the algorithm

operates on. While the original correlation-based rewiring

mechanism of network self-organization [1] has been defined to

simply operate on neighboring nodes on a lattice, we would like to

study the model here as an arbitrary self-organizing network,

without specifying any underlying topology. However, while on a

lattice the number of possible neighbors of a node is strictly

limited, on a large random network near critical connectivity there

are far more unconnected pairs of nodes than there are connected

pairs. Thus, randomly selecting pairs of nodes for rewiring would

introduce a strong bias towards connecting nodes which were

previously unconnected. This bias would result in a strong increase

of connectivity, far above any self-organized critical regime.

Consequently, we will adapt the rewiring mechanism below to

include arbitrary topologies without such a bias.

The philosophy of the model is its capability of self-regulation

towards a critical state despite being simplified to the most

minimal model possible. Its rewiring mechanism is based on a

simple rewiring rule, which only uses information accessible to

individual nodes locally, which here means pre- and post-synaptic

activities of the particular node, as well as correlations of these

activities.

Methods

Adaptive network evolution
We will now first define the dynamics on the network and will

then proceed with the rewiring dynamics, i.e. the dynamics of the

network.

Self-Organized Critical Neural Networks

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e93090



Consider a randomly connected network of N nodes of Boolean

states si [f0,1g which can be linked by asymmetric directed

couplings cij~+1. Node pairs which are not linked have their

coupling set to cij~0. Links may exist between any two nodes, so

there is no underlying spatial topology in this model. Let K denote

the average connectivity of the network, i.e. the number of in-links

averaged over all N nodes.

All nodes are updated synchronously in discrete time steps via a

simple threshold function of their input signals with a small

thermal noise introduced by the inverse temperature b in the same

way as in the original version of the model [1]. However, now an

input shift of {0:5 adds to the Glauber update, representing the

modified update function in the course of the transition from spins

to Boolean node values [11]:

Prob½si(tz1)~1�~gb(fi(t))

Prob½si(tz1)~0�~1{gb(fi(t))
ð1Þ

with

fi(t)~
XN

j~1

cijsj(t){Hi ð2Þ

and

gb(fi(t))~
1

1zexp({2b(fi(t){0:5))
: ð3Þ

For simplicity, we assume that all nodes have an identical

activation threshold of Hi~0, unless stated otherwise.

Rewiring algorithm
The correlation-based rewiring mechanism of the original

model [1] has to be carefully revised as well, when changing from

spin variables to Boolean variables, as inactive nodes are now

represented by a value of 0 instead of 21 which affects the

calculation of correlations.

The adaptation algorithm operates as follows. After initializing

the network with random links at a given initial connectivity Kini

and initial states set to 0, all nodes are synchronously updated in

parallel according to eq. (1). All activity then observed in this

model originates from small perturbations by thermal noise,

leading to activity avalanches of various sizes. In the following we

set the inverse temperature to b~5. On a larger time scale, here

after t~100 updates, a rewiring is introduced at one randomly

chosen, single node. The new element in our revised model is to

test whether the addition or removal of one random in-link at the

selected node will increase the average dynamical correlation to all

existing inputs of that node. By selecting only one single node for

this procedure, we effectively diminish the bias of selecting mostly

unconnected node pairs – but retain the biologically inspired idea

for a Hebbian, correlation-based rewiring mechanism on the basis

of locally available information, only.

Now, we have to define what is meant by dynamical correlation in

this case. We here use the Pearson correlation coefficient to first

determine the correlation between a node i and one of its inputs j

over the preceding t time steps:

Cij~
Ssi(tz1)sj(t)T{Ssi(tz1)TSsj(t)T

Si
:Sj

ð4Þ

where Si and Sj in the denominator denote the standard

deviations of the states of nodes i and j respectively. In case one

or both of the nodes remain frozen in their state (i.e. yield a

standard deviation of 0), we will assume a correlation of Cij~0, as

otherwise the Pearson correlation coefficient would not be well

defined.

Note that we always use the state of node i at one time step later

than node j, thereby taking into account the signal transmission

time of one time step from one node to the next one. Finally, we

define the average input correlation C
avg
i of node i as

C
avg
i ~

1

ki

XN

j~0

Dcij DCij ð5Þ

where ki is the in-degree of node i. The factor Dcij D ensures that

correlations are only measured where links are present between

the nodes. For nodes without any in-links (ki~0) we define

C
avg
i : ~0.

In detail, the adaptive rewiring is now performed in the

following steps:

1. Select a random node i at which the next rewiring will take

place.

2. Run network updates for t~100 simulation time steps and

measure the average input correlation C
avg
i of node i.

3. With equal probability, either

(a) insert an additional in-link of random weight cix~+1 at

node i from a random, previously unlinked node x, or

(b) remove one of the existing in-links at node i.

4. Again run t~100 network updates and measure the new C
avg
i

of node i after the local rewiring at this node.

5. If C
avg
i has increased after the insertion or removal of the in-

link, the rewiring from step 3 is retained; otherwise, it is

reverted.

6. Run t~100 network updates to allow for a transient period

prior to the next rewiring process. Iterate from step 1.

Note that the exact choice of t is not critical, but is chosen as

t~100 here to ensure time scale separation of at least two orders

of magnitude between node dynamics (fast) and rewiring changes

(slow).

It is also worth noting that this updated model version – in the

same way as the original model [1] – is solely based on locally

available information at synapse level and takes into account both

pre- and post-synaptic activity. This is a fundamental difference to

approaches discussed e.g. in [26], [27] or [29], where only pre-

synaptic activity determines changes to the coupling weights.

In order to obtain an indication of the current dynamical

regime of the network (i.e. whether the network is sub- or super-

critical, or close to the critical point), we continuously measure a

branching parameter based on potential damage spreading in the

network. This is realized by counting, for each individual node i,

the number of descendant nodes which would possibly change

their states at time step tz1 if the state of node i was changed at

the present time t. Here, both, the present states (on or off) of node

i and its descendants, as well as the nature of their respective links

(activating or inhibiting) are taken into account. The obtained

number of descendant nodes prone to damage spreading (and thus

also to signal propagation) is then averaged over the entire

network, resulting in the branching parameter l. This allows to

estimate (based on the current network configuration) whether the

Self-Organized Critical Neural Networks
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network is sub-critical (lv1) or super-critical (lw1). For the

analysis of avalanche statistics in the evolved critical networks we

export snapshots of the network structure whenever the branching

parameter is close to one (here when Dl{1Dƒ0:01).

Avalanche analysis
For a detailed analysis of avalanche statistics, we use the

snapshots of near-critical (per branching parameter estimation)

network structures from the adaptation runs as outlined above.

Key observables are the avalanche size S, i.e. the total number of

nodes which become active at least once during one avalanche,

and the avalanche duration T , i.e. the number of simulation time

steps from the start (first node active) to the termination (no more

nodes active) of an avalanche. To obtain those, the network is now

run in a deterministic mode with b??. The update function

from (1) then simplifies to

si(tz1)~H0(fi(t)) ð6Þ

with a redefined threshold function (nodes only become active with

activating, non-zero input)

H0(x)~
1, xw0

0, xƒ0

�
ð7Þ

and the usual input function

fi(t)~
XN

j~1

cijsj(t){hi ð8Þ

where activation thresholds hi are set to 0 for now. With parallel

updates, any network activity would eventually end up in either a

fixed point or limit cycle attractor, but not necessarily at the fixed

point ‘‘all nodes off’’, terminating an avalanche. Therefore, we

introduce an exhaust time parameter V which can be biologically

interpreted as an effect of depleting neuro-transmitters at active

synapses. In each time step, every node will increase its individual

activation threshold hi to 1 with a probability corresponding to its

own average activity over the last V time steps (i.e. number of time

steps where si~1 divided by the total number of time steps V).

This turns out to be sufficient to eventually step out of a periodic

attractor and terminate the avalanche. Whenever one avalanche is

terminated (all nodes off), we will start a new one by randomly

activating one single node and continue with the parallel updates.

We constantly keep track of cumulative avalanche size and

duration distributions, fcml(S) and fcml(T), as well the average size

SST(T) of avalanches that have a certain duration T . From

universal scaling theory [25] we expect the following power-law

scaling relations in case of critical networks:

fcml(S)*S{tcml ð9Þ

fcml(T)*T{acml ð10Þ

SST(T)*T1=snz ð11Þ

where the exponents fulfill

acml

tcml

~
1

snz
: ð12Þ

Results

Adaptive network evolution
In the following, we will have a look at different observables

during numerical simulations of network evolution in the model.

Key figures include the average connectivity K and the branching

parameter l. Both are closely linked to, and influenced by, the

ratio of activating links p which is simply the fraction of positive

couplings cij~z1 between all existing (non-zero) links.

The upper part in Figure 1 shows a typical run of the topology

evolution algorithm, where we start with completely isolated nodes

without any links. Trivially, the ‘‘network’’ is subcritical at this

stage, which can be seen from the branching parameter which is

far below 1. As soon as rewiring takes place, the network starts to

insert new links, obviously because these links enable the nodes to

pass signals and subsequently act in a correlated way. With

increasing connectivity, also the branching parameter rises,

indicating that perturbations start to spread from their origin to

other nodes. When the branching parameter approaches 1,

indicating that the network reaches a critical state, the insertion

of new links is cut back. The processes of insertion and depletion of

links tend to be balanced against each other, regulating the

network close to criticality.

On the other hand, if we start with a randomly interconnected

network at a higher connectivity as, for example, Kini~4 (see

lower part of Figure 1), we find the network in the supercritical

regime (lw1) at the beginning. When above the critical threshold,

many nodes will show chaotic activity with low average correlation

to their respective inputs. The rewiring algorithm reacts by

deleting links from the network, until the branching parameter

approaches 1.

In both examples above, the evolution of the ratio of activating

links p (which tends towards 1) shows, that the rewiring algorithm

in general favors the insertion of activating links and vice versa the

deletion of inhibitory couplings. Indeed, this appears quite

plausible when we remind ourselves that the rewiring mechanism

optimizes the inputs of a node towards high correlation on

average. Also, nodes will only switch to active state si~1 if they

get an overall positive input. As we had replaced spins by Boolean

state nodes, this can only happen via activating links – and that is

why correlations mainly originate from positive couplings in our

model. As a result, we observe the connectivity evolving towards

one in-link per node, with the ratio of positive links also

approaching one.

For a richer pattern complexity, we might later want to

introduce a second mechanism which balances out positive and

negative links, and with a first approach we can already test how

the rewiring strategy would fit to that situation: if, after each

rewiring step, we change the sign of single random links as

necessary to obtain a ratio of e.g. 80% activating links (i.e. p~0:8),

keeping the large majority of present links unchanged, the

branching parameter will again stabilize close to the critical

transition, while the connectivity is maintained at a higher value.

Figure 2 shows that the self-organization behavior is again

independent from the initial conditions. This result does not

depend on the exact choice of the activating links ratio p; similar

plots can easily be obtained for a large range starting at p~0:5,

where the connectivity will subsequently evolve towards a value
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slightly below K~2, which is the critical connectivity for a

randomly wired network with balanced link ratio according to the

calculations made for the basic network model [11].

Avalanche properties
In addition to the branching parameter measurement, let us

now take a look at some dynamical properties of the evolved

networks to further characterize their criticality. Figure 3 shows

the distributions of avalanche size and duration, as well as further

scaling properties. (A): The avalanche size S exhibits a power-law

scaling fcml(S)*S{tcml almost up to network size with an

exponent tcml~0:5+0:05 in the cumulative distribution, corre-

sponding to a probability density exponent of t~1:5+0:05. (B):

Similarly, avalanche durations T are power-law distributed as well

up to a duration of approximately 70 time steps, according to

fcml(T)*T{acml with an exponent of acml~0:9+0:05, i.e.

a~1:9+0:05. As discussed above, plain power-law distributions

can originate from several mechanisms and cannot be considered

alone as clear evidence of criticality. To obtain a third exponent,

we have also measured the average avalanche sizes SST(T) as a

function of avalanche duration T . It becomes clear from (C) that

for durations of approximately 70 time steps and more, the

avalanches begin to span most of the system size, which explains

the cutoff position in the avalanche duration scaling (B). Up to that

point, we find a power-law scaling SST(T)*T1=snz with an

exponent of
1

snz
~1:8+0:05. These exponents are both in line

with experimental results [22] and fulfill the exponent relation
acml

tcml

~
a{1

t{1
~

1

snz
as predicted for a critical system by the scaling

theory of non-equilibrium critical phenomena [25]. (D): Finally,

we find that avalanche profiles (i.e. average scaled size as a

function of scaled avalanche duration) of avalanches of different

durations T approximately collapse onto a universal shape,

another feature of criticality also seen in the neural experiments

[22].

Variations in activation thresholds and response to
external perturbation

In the above simulations, the activation thresholds of all nodes

were strictly set to Hi~0 for maximum model simplicity.

However, a neuron might as well need higher input to become

active. Figure 4 demonstrates that the proposed adaptation

Figure 1. Typical run of the network self-organization algo-
rithm. Regardless of initial connectivity and dynamical regime, the
network evolves to a critical configuration. Top: when starting with
completely isolated nodes the ‘‘network’’ is obviously subcritical and
links will be inserted. Thus, both the connectivity (red) and the
branching parameter (blue) as an indicator of network criticality
increase. The network approaches a critical state where the branching
parameter stabilizes close to one. Bottom: with higher initial
connectivity, the network is supercritical at first. Links are removed
from the network while the branching parameter approaches the
critical value of one. As the self-organization algorithm is constructed to
maximize activity correlations between linked nodes, the ratio of
activating links (green) slowly increases in both cases.
doi:10.1371/journal.pone.0093090.g001

Figure 2. Typical run with fixed ratio of activating links. If the
ratio of activating links (green) is kept fixed (here: p~0:8; i.e. 80%
activating links) in order to keep some inhibiting links within the
network, the connectivity (red) evolves to a higher value. Still, the
branching parameter (green) is maintained close to the critical value of
one. Top: starting with isolated nodes (subcritical). Bottom: starting at
supercritical connectivity.
doi:10.1371/journal.pone.0093090.g002
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algorithm similarly works well on networks of nodes with a non-

zero activation threshold of e.g. Hi~1. According to the update

rule (1), now at least two positive inputs are necessary to activate a

single node. As the rewiring algorithm is based on propagation of

thermal noise signals, the inverse temperature b needs to be

selected at a lower value than before. (As a general rule, b should

be selected in a range where thermal activation of nodes occurs at

a low rate, such that avalanches can be triggered, but are not

dominated by noise.) The simulation is now started at an average

connectivity of K~7 which is still sub-critical in this case

(branching parameter low). In a similar way as shown above, the

network adapts by inserting new links and increasing K , thereby

also increasing the average branching parameter. While the system

does not approach to a phase transition as nicely as shown above

for activation thresholds of zero (in fact the branching fluctuates

much more around the target value of one), the general tendency

remains: the rewiring mechanism reacts properly before the

network drifts too far off from criticality. The connectivity also

fluctuates more, but stabilizes on a level around K~9.

In their in-vitro experiments, Beggs and Plenz further demon-

strate that cortical networks can self-regulate in response to

external influences, retaining their functionality while avalanche-

like dynamics persist – for example after neuronal excitability has

been increased by adding stimulant substances to the cultures.

To reproduce such behavior in our model, we can include

variations in the activation thresholds Hi of the individual nodes.

Assume we start our network evolution algorithm with a

moderately connected, but subcritical network, where all nodes

have an activation threshold of Hi~1. Figure 5 shows that the

network first behaves in the same way as demonstrated in Figure 4

for activation thresholds Hi~1. At one time step in the center of

Figure 5, we at once reset all nodes to an activation threshold of

Figure 3. Critical exponents and collapse of avalanche profiles. Results measured from 105 avalanches on 10 different evolved sample
networks of N~1024 nodes, with an exhaust time parameter V~1000. Similar results were gained with V~100 or V~10000, this choice has no
significant effect on the scaling exponents. A: Cumulative distribution of avalanche sizes shows a power-law scaling fcml(S)*S{tcml with exponent
tcml&0:5. B: Cumulative distribution of avalanche sizes shows a power-law scaling fcml(T)*T{acml with exponent acml&0:9. C: Average size SST of

avalanches of duration T shows a power-law increase corresponding to SST(T)*T1=snz with an exponent of
1

snz
&1:8. Note that the exponents tcml ,

acml ,
1

snz
fulfill the relation

acml

tcml

~
1

snz
which is expected for a critical system. D: Profiles of avalanches, i.e. average scaled size as a function of scaled

avalanche duration, of different durations (shown here for T~13,26,39,52) approximately collapse onto a universal shape.
doi:10.1371/journal.pone.0093090.g003
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Hi~0, simulating the addition of a stimulant. As we can expect,

this immediately puts the network into a supercritical, chaotic

state. This is reflected by the branching parameter, which now

constantly stays above one and does not fluctuate below anymore.

It is clearly visible that the rewiring mechanism promptly reacts

and drives back the connectivity, until the branching parameter

slowly converges towards one again. A similar behavior is also

found if thresholds Hi are not changed all at once, but gradually

during network evolution.

Summary and Discussion

To conclude, we have demonstrated that a very minimalistic

binary neural network model is capable of self-organized critical

behavior that matches the experimentally observed criticality in

neural systems.

We revisited the earliest spin model for self-organized critical

neural networks and transformed it to networks of nodes with

Boolean node states and with arbitrary topology. The adaptive

dynamics of the network is a simple, locally realizable rewiring

mechanism which uses activity correlation as its regulation

criterion, thus retaining the biologically inspired rewiring basis

from the spin version of the original model. As a result the

dynamical network exhibits emerging activity avalanches with

spatio-temporal properties comparable to those observed in real

neuronal systems.

What the model does not provide are hypotheses about possible

details of implementations on the biological level. We did not

make particular efforts to implement a fully local version, although

such local, continuously running versions of the algorithm are

straightforward. Instead we kept the stepwise procedure of

separate correlation measurements at two different times for

clarity. A biological implementation, in one form or another, has

to sense the time derivative of the correlation for which there are

numerous possibilities. Apart from that central detail it is obvious

that on the local level there are far more details possible in a

biological realization – some of which are contained in other

existing models reviewed above – which we do not further discuss

here. However, the central properties of criticality will be

independent of these details. For future work, it might be fruitful

to study particular biological realizations of the correlation based

adaptation which we here studied in a bare bones algorithmic

version. Further, it will be interesting to compare our algorithm

with certain other models for neural adaptation with particular

attention to the scaling properties at criticality.

Figure 4. Typical run with higher activation thresholds Hi~1.
When activation thresholds are increased, a node needs more than one
excitatory input to become active itself. Thus, higher overall connec-
tivity is needed to allow signal propagation on a critical level. The
adaptation process responds accordingly and maintains a connectivity
around K~9 while the branching parameter shows larger fluctuations
between sub- and supercritical states, but in general is kept on a
moderate level and does not diverge with increasing connectivity.
doi:10.1371/journal.pone.0093090.g004

Figure 5. Rewiring response to a sudden decrease of activation thresholds. If we first set all node activation thresholds to Hi~1, the
connectivity (red) must first evolve to a higher value to allow propagation of activity within the network. When all activation thresholds are suddenly
reduced (to mimic an external influence of neuronal excitability by stimulant substances) at the same time step, the network properly responds to the
new situation and reduces connectivity to decrease excitability back to a critical level.
doi:10.1371/journal.pone.0093090.g005
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In summary we find that the earliest spin model of neural

criticality exhibits avalanche statistics that compare well with

experimental data without the need for parameter tuning. The

model represents a fundamental organization mechanism leading

to a critical system that may serve as the simplest representative of

a ‘‘neural SOC universality class’’, matching the observed

characteristics of self-organized criticality in biological cortical

tissue. In particular, the model exhibits a scaling of avalanche size

and duration distributions, as well as a universal scaling of the

temporal avalanche profiles, altogether constituting the specific

characteristics of neuronal avalanches near criticality.
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