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Application of convolutional 
neural networks for prediction 
of disinfection by‑products
Nicolás M. Peleato

Fluorescence spectroscopy can provide high‑level chemical characterization and quantification 
that is suitable for use in online process monitoring and control. However, the high‑dimensionality 
of excitation–emission matrices and superposition of underlying signals is a major challenge 
to implementation. Herein the use of Convolutional Neural Networks (CNNs) is investigated to 
interpret fluorescence spectra and predict the formation of disinfection by‑products during drinking 
water treatment. Using deep CNNs, mean absolute prediction error on a test set of data for total 
trihalomethanes, total haloacetic acids, and the major individual species were all < 6 µg/L and 
represent a significant difference improved by 39–62% compared to multi‑layer perceptron type 
networks. Heat maps that identify spectral areas of importance for prediction showed unique humic‑
like and protein‑like regions for individual disinfection by‑product species that can be used to validate 
models and provide insight into precursor characteristics. The use of fluorescence spectroscopy 
coupled with deep CNNs shows promise to be used for rapid estimation of DBP formation potentials 
without the need for extensive data pre‑processing or dimensionality reduction. Knowledge of DBP 
formation potentials in near real‑time can enable tighter treatment controls and management efforts 
to minimize the exposure of the public to DBPs.

The use of fluorescence spectra for improved water quality  monitoring1 and as a process analytical technology 
for bioprocesses, food, and pharmaceutical production, has become increasingly  popular2,3. Fluorescence sig-
natures are highly dependent on molecular structure, size, and environmental conditions, and therefore can be 
used to provide insight into chemical composition and  properties4. The sensitivity and specificity of fluorescence 
analysis, coupled with the potential real-time monitoring capabilities, fluorescence has applicability to a wide 
variety of process control  applications5.

One promising application is the improved prediction and control of disinfection by-product (DBP) forma-
tion from drinking water treatment with chlorine. Chlorination is the most common disinfectant used worldwide. 
However, when chlorine reacts with natural organic matter (NOM), present in all natural water sources, various 
by-products of health concern are  formed6. Although many unique DBP species can be formed with varying 
public health risk, only specific groupings are commonly monitored and regulated in drinking water, including 
trihalomethanes (THMs) and haloacetic acids (HAAs). The monitoring frequency of regulated DBPs is generally 
low, with sampling only required once every 3 months for water systems in the United States and  Canada7. Low 
frequency sampling is due to the current reliance on external laboratories to carry out DBP analysis implying 
significant cost and time  delays8.

The cost and time-delays involved in DBP analysis severely limit the ability of utilities to control the water 
treatment process for minimizing DBP formation, and has spurred efforts to develop models that can predict 
DBP formation potential on a more frequent  basis9–13. Since DBPs are formed from the reaction of chlorine 
and NOM, models must incorporate a measure of NOM. However, NOM is a chemically diverse grouping of 
organic molecules whose characteristics are dependent on the surrounding environment. As such, the breadth 
of potential NOM characteristics and the spatial and temporal variability results in significant challenges in 
identifying an optimal measure that can capture this complexity and reactivity with  chlorine14. Fluorescence 
spectroscopy has considerable potential for the prediction and monitoring of DBP precursor material. Many 
NOM compounds fluoresce and fluorescence measures can capture some chemical characteristics of  NOM15. 
Previously, fluorescence has been used with success to predict or identify correlations with regulated  DBPs16–18, 
as well as unregulated or by-products of emerging concern such as chloral  hydrate19 and  haloacetonitriles20,21.
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A common challenge to implementing fluorescence as a monitoring tool is the high-dimensionality and 
superposition of the resulting emissions. When utilizing fluorescence spectra collected at iterated excitation/
emission wavelengths, a dimensionality reduction approach is often used to simplify excitation–emission matrices 
(EEMs)15. By identifying a few underlying components that explain most of the variance in the data, the hypoth-
esis is that noise is reduced, and subsequent modelling using a reduced dimensionality improves prediction. A 
basic simplification or dimensionality reduction approach would be to select peaks or regions in the fluorescence 
spectra where regional integration or peak fluorescence can be determined. While this type of expert guided 
approach has been used extensively in the past, discarding the majority of collected data neglects the richness 
of information contained. For complex systems such as those that include identifying natural organic matter 
(NOM) in water, organic fluorophores with similar chemical structures are not easily distinguished in the spectra. 
The use of principal component analysis (PCA) or parallel factors analysis (PARAFAC) has revealed underly-
ing signals resembling fluorophores, which can be tied to spectral regions from which chemical properties can 
be  inferred15,22,23. These analysis approaches are often limited to linear dimensionality reduction, so non-linear 
features such as Rayleigh or Raman scattering need to be removed from the  spectra24. Furthermore, potential 
impacts of environmental conditions such as pH or  temperature4, or possible charge-transfer  interactions25 may 
invalidate the assumption of a linear relationship between fluorophore concentrations and fluorescence intensity. 
Inner filter effects are also prevalent, where incident excitation light and emitted fluorescence is quenched by 
other chromophores present in the sample, result in a non-linear intensity  response26. Constraints imposed by the 
method can be helpful when derived from prior knowledge of the system, such as non-negativity of fluorescence 
emissions, reducing bias and possibly resulting in a more accurate depiction of underlying structures. However, 
these same constraints may limit the overall accuracy of reconstruction based on the condensed  representation27.

It may be advantageous to directly use all data collected in fluorescence EEMs to limit potential errors intro-
duced from dimensionality reduction. However, for water quality analysis, there have been limited studies that 
explore the use of full fluorescence EEMs without dimensionality reduction. Non-linear regression using high-
dimensional inputs can be accomplished using neural networks. More recent work with Convolutional Neural 
Networks (CNNs or ConvNets) has shown this type of network structure is well suited to interpreting images or 
other tasks datasets with local groups of values that are highly  correlated28. Instead of training weighted connec-
tions between every individual node, CNNs train spatial filters or kernels to identify small recurring features in 
the input space. The use of filters allows for parameter sharing, where trained weights are used throughout the 
input space and are not tied to specific input nodes, giving rise to spatial invariance of  features29. Furthermore, 
CNNs typically employ pooling layers where outputs in specific locations are merged with nearby outputs, creat-
ing invariance to small distortions in the input and reducing the dimensionality of the  representation28,29. CNNs 
have been successfully applied in chemometric applications such as interpreting Raman and mid-infrared spectra 
for identifying Escherichia coli and  meats30, pharmaceuticals in tablets with near infrared  spectra31, categorizing 
wines using infrared  spectra32, and classification of manganese  valence33. However, there has been no use of 
CNNs for interpreting 2D fluorescence spectra, and previous implementations have focused on 1D infrared or 
Raman spectra. Furthermore, the use of CNNs for fluorescence analysis of water quality has not been explored. 
It is hypothesized that the strengths of CNNs for processing and interpreting spatially dependent data will be 
well suited for 2D fluorescence spectra where local groups of values are highly correlated.

This paper investigates the use of deep NNs and CNNs to interpret fluorescence spectra for the prediction of 
DBP formation potential. The two major groups of regulated DBPs are assessed, THMs and HAAs including the 
individual species that made up these groups in the samples analysed (trichloromethane, bromodichloromethane, 
trichloroacetic acid, and dichloroacetic acid). A method to interpret the CNN results is also used to identify 
fluorescence regions that are most likely associated with high DBP formation potentials.

Results
A dataset of DBP formation potentials and associated fluorescence EEM measurements were used to assess the 
capabilities of deep NNs and CNNs for water quality analysis. Water samples analyzed were from a pilot-scale 
treatment plant receiving river water. Samples were taken throughout a treatment train consisting of several 
unit processes including coagulation, flocculation, sedimentation, ozonation, advanced oxidation (peroxide 
and ozone), and filtration through anthracite or activated carbon. As such, the samples analyzed had a wide 
range of NOM concentrations and characteristics. Dissolved organic carbon varied from 2.6 to 6.3 mg  L−1, and 
specific ultraviolet absorbance varied from 0.75 to 2.53 L  mg−1  m−1 over all samples. DBP formation potentials 
were determined by maintaining a free chlorine residual of 1.5 mg/L for 24 h. Although all four chlorinated 
or brominated THM and nine HAA species could be detected, only trichloromethane (TCM), bromodichlo-
romethane (BDCM), trichloroacetic acid (TCAA), and dichloroacetic acid (DCAA) were consistently identified 
at concentrations above detection limits.

Multi‑layer perceptron. An iterative optimization approach was used to understand the impact of NN 
structure on overall performance. While many aspects of network structure can be optimized, the focus in this 
work was on the number of hidden layers (i.e. depth). A multi-layer perceptron (MLP) network was trained with 
an increasing number of layers to identify the degree to which network depth can improve prediction accuracy. 
Figure 1 shows the total THM and HAA predictions results given the number of layers in a MLP. The error bars 
in Fig. 1 represent the standard deviation of 8 repeated random initializations of the network. A network with 
0 hidden layers is simply the input values (dimensions = 5632) connected to 1 output node. When the number 
of layers was increased, each layer’s nodes were set to half of the previous layer. For example, with two hidden 
layers, hidden layer 1 would have 2816 nodes, and layer 2 would have 1408 nodes.
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As observed in Fig. 1, MLPs with greater than 1 hidden layer did not improve network performance in pre-
dicting both total THMs and HAAs. Total THM mean absolute error was at a minimum with one hidden layer 
(MAE: 12.26 ± 0.34 µg/L; p < 0.02 compared to all other number of hidden layers) and total HAA error was also at 
a minimum with one hidden layer (MAE: 10.04 ± 0.33 µg/L, p < 0.03), although no significant difference between 
HAA performance with 1, 7, or 8 layers was found (p > 0.05). Similar results were observed for individual spe-
cies (Table 1). Adding additional layers also came at the cost of increased variability between random network 
initializations. For example, the coefficient of variation (CV) increased from 3.3% for a one-layer MLP to predict 
total HAAs to 8.4% for 6 layers. Increased variability in performance could be due to the increased number of 
learnable parameters and the relatively small sample size used in this study. The structure chosen resulted in 
15,870,977 trainable parameters with one hidden layer. Decreasing the number of nodes in 1 hidden layer, to 
effectively reduce the number of trainable parameters, demonstrated that reducing the number of nodes below 
500 resulted in a decrease in performance and optimal performance for THMs was with 500 or 5000 nodes 
(p < 0.01 for all other comparisons) or 2500 for total HAAs (p < 0.01) (Fig. 1b). The lack of improvement of MLPs 
beyond one hidden layer is expected given the small data size and demonstrates that deep MLPs are unlikely to 
provide advantages in modelling small water quality datasets.

Convolutional networks. In contrast to MLPs, prediction accuracy was minimized with increasing CNN 
network depth (Fig. 2). Network depth was investigated by increasing the number of convolutional layers and 
the number of layer sets (convolution followed by max pooling). Convolutional layers provide learned filters or 
kernels that identify small features in the spectrum, while max pooling layers decrease dimensionality and pool 
redundant  features28,29. Including 4–6 hidden convolutional layers without pooling layers was found to optimize 
prediction accuracy compared to 0–3 layers (p < 0.03 for all comparisons) for THMs and 5–6 layers was optimal 
for HAAs (p < 0.01) (Fig. 2a). The performance of models with 4–6 layers were not found to be significantly dif-
ferent for THMs (p > 0.13) or 5–6 layers for HAAs (p > 0.80). Increasing the number of layer sets also improved 
performance compared for THMs (Fig. 2b). A further decrease in error of 15.1% for total THMs was significant 
when both the number of convolutional and max pooling layers were increased (p < 0.01), but the more marginal 
increase in HAA performance (5.3%) was not significant (p = 0.07) (Fig. 2c; Table 1).
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Figure 1.  Mean absolute error (MAE) of prediction for a test set (n = 28) of THM concentrations and HAA 
concentrations using a MLP. (a) The effect of number of layers on performance, (b) the effect of number of 
nodes in 1 hidden layer on performance. Error bars represent 95% confidence intervals based on 8 random 
initializations of the network weights.

Table 1.  Mean absolute error (MAE) of predictions on tests set for several model types. Range or error (±) is 
calculated as the 95% confidence interval, where applicable. Bolded numbers represent the optimal model for 
each species as determined by t tests at 95% confidence levels.

Disinfection 
by-product species

Range of DBP 
concentrations 
(μg  L−1)

Mean absolute error (μg  L−1)

MLP (1 layer) CNN (1 layer)

CNN (4 pooling 
layers, 1 
convolutional layer)

CNN (4 pooling 
layers, 4–5 
convolutional layers) PARAFAC-MLP PCA-MLP 3-way PLS

Total THMs 26.5–208.2 12.3 ± 0.2 6.6 ± 0.1 6.1 ± 0.2 5.6 ± 0.1 18.7 ± 0.6 15.4 ± 0.5 15.9

Trichloromethane 24.0–174.3 8.8 ± 0.2 7.0 ± 0.6 4.9 ± 0.4 3.4 ± 0.1 16.6 ± 0.9 13.8 ± 0.5 12.6

Bromodichlorometh-
ane 13.6–62.6 6.3 ± 0.4 4.7 ± 0.2 4.1 ± 0.2 3.9 ± 0.0 6.5 ± 0.3 7.4 ± 1.2 6.4

Total HAAs 28.1–139.5 10.0 ± 0.2 4.5 ± 0.2 4.2 ± 0.3 4.4 ± 0.1 12.5 ± 0.2 12.4 ± 0.3 11.1

Dichloroacetic acid 17.7–85.8 7.8 ± 0.3 6.1 ± 0.7 4.8 ± 0.2 4.2 ± 0.1 6.1 ± 0.3 8.0 ± 0.3 8.9

Trichloroacetic acid 10.4–81.4 8.4 ± 0.2 5.9 ± 0.6 4.6 ± 0.1 4.2 ± 0.1 7.0 ± 0.3 6.8 ± 1.2 5.3
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It was also of interest to investigate the role of the size of receptive fields for each filter and the number of 
filters included in each convolutional layer. The receptive field size identifies the number of adjacent data points 
to be considered by each filter. Previous work in chemometrics has shown relatively large receptive fields to 
work  well32 and could identify features that span over large areas of the spectra, however, expanding the filter 
size increases the number of trainable parameters. Alternatively, by including convolutional layers in sequence, 
the receptive field’s effective size is expanded, minimizing the number of trainable parameters and including 
additional layers of non-linearity34. As such, the results suggest that larger receptive fields could improve CNN 
performance. However, increasing the receptive field size beyond (3, 3) for individual layers did not improve 
performance (p > 0.06 for sizes (3, 3), (5, 5), and (7, 7) for both THMs and HAAs) (Fig. 2e), and expanding 
receptive fields may be best accomplished by stacking convolutional layers in sequence. It is also of note that 
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Figure 2.  Impact of CNN structure and depth on MAE of test set predictions. (a) Varies the number of 
convolutional layers without any max pooling layers, (b) varies the number of layer sets with 1 convolutional 
layer followed by max pooling, (c) varies the number of convolutional layers between max pooling layers (4 
max pooling layers in total), (d) varies the number of convolutional filters for 1 convolutional layer without 
max pooling, (e) varies the size of the receptive field for 1 convolutional layer without max pooling. Red boxes 
delineate areas of optimal performance, where all models within the box performed similarly based on t tests at 
95% confidence levels.
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increasing the number of trained filters improved performance up to 24–36, after which no further changes were 
observed (p > 0.34) (Fig. 2d).

An example of the learned filters are shown in Fig. 3. CNNs create hierarchical representations of data show-
ing how specific irrelevant spectral features are discarded and specific areas of the spectra needed to predict 
DBP concentrations are  magnified30. The initial filter layer identifies large and smooth and broad features in 
the spectra. After pooling, feature maps become more coarse and more distinct patterns between filters can be 
discerned, highlighting specific areas of the spectra. In the last layer of feature maps, many filters highlight one 
constant emission level over several excitation bands (left to right).

The comparison of MLP and CNN structures shows a marked performance improvement using a convolu-
tional approach (Fig. 2 and Table 1). Compared to the optimized MLP, a network with one single convolutional 
layer improved prediction accuracy by 54.6% for total THMs (p < 0.01; MAE reduced by 6.69 µg/L) and 55.9% 
for total HAAs (p < 0.01; MAE reduced by 5.61 µg/L) (Table 1). Improvements were also significant for individual 
species (39.1–61.5% reduction in MAE). In general, the most significant decrease in error was observed using 
CNNs, followed by adding several pooling layers. While adding multiple convolutional layers between pooling 
layers did further reduce error, the gains were more minor (MAE difference 0.25–1.48 µg/L) but statistically 
significant (p < 0.02). However, adding stacked convolutional layers resulted in a slight increase in error for total 
HAA prediction (− 0.23 µg/L). As such, the pooling of features and reduction of dimensions is likely key to best 
interpreting EEMs. It is hypothesized that the success of using pooling layers is due to building in dimensionality 
reduction and reducing the number of nodes in the final fully-connected layer.

Model explanations. The objective of identifying model explanations was to confirm that that model pre-
dicts high or low concentrations of DBPs based on fluorescence features that are known or possibly associated 
with DBP precursors. There are scattering signals (i.e. not from organic material) or other potential artifacts from 
the sample analysis process that would bias the model to “know” concentrations of DBPs for incorrect reasons. 
The second objective was to identify fluorescence regions most highly associated with specific DBP formation 
potentials. This information could be used to further understanding of the characteristics of DBP precursors 
and potentially optimize treatment processes that preferentially remove compounds with those characteristics.

Figure 3.  Feature maps of convolutional filters (24) from 4 convolutional layers chosen between max pooling 
layers. (a) First convolutional layer, (b) after the first max pooling, (c) after the second max pooling, (d) after the 
third max pooling. All max pooling was carried out over a (2, 2) window.



6

Vol:.(1234567890)

Scientific Reports |          (2022) 12:612  | https://doi.org/10.1038/s41598-021-03881-w

www.nature.com/scientificreports/

An occlusion method was applied to identify spectral areas that most significantly influence prediction 
accuracy. The occlusion method identifies spectral regions most relevant to a prediction by randomly occluding 
or setting a segment of all inputs in a specified region to 0. The error incurred due to this occlusion indicates 
how relatively important that specific area is to accurate predictions. The error was calculated as the difference 
between non-occluded and occluded predictions, and the direction or sign of the error was preserved. As such, 
positive values indicate that the model underestimated DBP formation with a specific patch occluded, and nega-
tive values indicate overestimated DBP formation. A total of 20,000 iterations of random patches per model were 
chosen to build the heat maps. A random approach to selecting the patch was taken to reduce any bias from 
neighbouring values since the variables included in each patch would change between iterations. Figure 4 shows 
the average heat maps identified from training deep CNNs on total DBPs and individual species. Likewise, Fig. 5 
shows heat maps based on MLPs.

From occlusion heat maps of variable or spectra area importance (Fig. 4), it was observed that fluorescence in 
the area of approximately ex: 225–260 nm and em: 370–500 nm was most impactful of prediction accuracy for all 
DBPs (both total and individual species). A second common area of importance at ex > 300 nm and em > 400 nm 
was also observed. Fluorescence in these two regions is generally considered to be humic-like and fulvic-like 
 material35. Several heat maps also show areas of importance in protein-like fluorescence regions (excitation: 

Figure 4.  Heat maps from random occlusion of variable importance for CNN prediction of (a) total THMs, (b) 
trichloromethane, (c) bromodichloromethane, (d) total HAAs, (e) trichloroacetic acid, (f) dichloroacetic acid.

Figure 5.  Heat maps from random occlusion of variable importance for MLP prediction of (a) total THMs, (b) 
trichloromethane, (c) bromodichloromethane, (d) total HAAs, (e) trichloroacetic acid, (f) dichloroacetic acid.
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230–250 nm, emission: 300–360 nm) associated with tryptophan-like or tyrosine-like  fluorescence35. Spectral 
importance in these regions conforms well to expectations of DBP precursor type material that can fluoresce, 
generally thought to be aromatic humic-like or fulvic-like  material35. The heatmaps provide evidence that the 
NNs are utilizing signals from regions that are reasonable for DBP prediction. Previous DBP prediction methods 
based on fluorescence data have utilized the same spectral  regions16,17,36.

Compared to MLPs, CNN heat maps show broader areas of importance with more gradual changes (Figs. 4 
and 5). Gradual changes conform with the expectation of fluorescence signals from fluorophores, and sharp 
changes are not typically associated with fluorescence from natural organic  matter15. Furthermore, CNN 
heat maps emphasize higher excitation bands. Particularly for prediction of trihalomethanes, peaks at excita-
tion > 300 nm were important for positive predictions, while MLP heat maps placed less importance on these 
areas. Several CNN heat maps show signals that have several excitation peaks, with limited changes in emission. 
For example, the BDCM heat map shows peaks at approximately 250 nm and 330 nm, with emissions constant 
at 450 nm. Multiple excitation peaks at one singular emission conform well with expectations of fluorescence 
from individual fluorophores, where multiple wavelengths can cause excitation, however, the emission is always 
from the lowest singlet state and therefore only at one  wavelength37. The identification of areas of importance 
at several emission bands suggests several distinct fluorophores contributing to DBP formation potential rather 
than individual components.

It can also be observed that there is greater continuity of areas of importance with individual DBP species 
and the total levels. Since the individual species should sum to total concentrations, total THM and total HAA 
heat maps would be expected to show similar characteristics to the individual species. Ex/em 350 nm/380 nm 
is observed in CNN heat maps for total THMs (Fig. 3a) and TCM (Fig. 3b). The secondary peak for total THMs 
at approximately ex/em 325 nm/450 nm is mirrored in the BDCM heat map (Fig. 3c). Similar conformance was 
not observed with MLP heat maps, for example, the areas of highest importance for BDCM (Fig. 4c) was not 
present in the total THM heat map (Fig. 4a). However, while some overlap is present between CNN heat maps 
of species and the total DBP levels, it should be noted that not all peaks are mirrored (e.g. BDCM peak at ex/em 
250 nm/450 nm not seen in total THM map).

Individual species of DBPs showed differences between CNN heat maps. BDCM areas of importance were 
shifted to higher excitation and emission areas compared to TCM. A similar pattern can be seen between DCAA 
and TCAA. Identified differences in spectral areas between individual species were expected since preferential 
yields of specific by-products from pure model compounds have pointed to certain molecular structures resulting 
in the preferential formation of individual DBP  species38,39. A shift to the greater importance of fluorophores at 
emissions > 450 nm could indicate BDCM and DCAA formation resulting from humic-like material with greater 
oxygen/carbon ratios and lower hydrogen/carbon ratios, implying an oxidation state ≥  040.

A second notable difference is the increased importance of protein-like material (ex/em 
230–250 nm/300–350 nm) for HAA predictions. This peak location is typically associated with aromatic amino 
acids such as tryptophan and  tyrosine35. Previous studies show that aromatic amino  acids41 and protein-like 
fluorescence signals strongly correlate with HAA formation  potentials20,42,43. In particular, the protein-like peak 
was observed to be most prominent for the prediction of TCAA. This observation conforms well to previous 
results that show higher TCAA formation than DCAA from aromatic amino acids that would contribute to the 
observed fluorescence  signal41. From the MLP heat map of TCAA, regions surrounding the expected aromatic 
amino acid peak are positive. However, there is a strong negative relationship in the specific location of trypto-
phan fluorescence (ex/em 230 nm/340 nm).

Discussion
This study investigated the use of deep CNNs to interpret fluorescence spectra and predict the formation of regu-
lated chlorination DBPs from a drinking water treatment plant. The observed results indicate that deep CNNs 
are well suited to the task of interpreting fluorescence excitation–emission matrices and prediction of DBPs 
for several reasons: (1) overall prediction accuracy for all DBP groups and species were significantly reduced 
compared to MLP and previous modelling approaches using dimensionality reduction, (2) results from random 
initializations were less variable using deep CNNs compared to MLP and shallow CNNs, (3) deep CNN heat 
maps show trained networks utilize data from spectral regions that are well known to be associated with DBP 
formation potentials, and (4) compared to MLPs, CNNs show heat maps with characteristics more conformant 
with expectations of fluorescence from organic precursor material.

Compared to previous work that utilized dimensionality reduction prior to regression, the use of CNNs 
significantly improved the accuracy of prediction. Two commonly used dimensionality reduction methods, 
PARAFAC, PCA were applied for comparison as well as a factor regression using 3-way partial least squares 
(PLS) (Table 1). The components identified by these methods are discussed in more detail in a previous article 
using the same  dataset18. In all cases, significant reduction of prediction accuracy was achieved using CNN 
architectures, particularly for HAA prediction. It is not straightforward to compare results to other studies given 
the variation in number of samples, methods for formation potential determination, range of concentrations 
in the training/test sets, and performance metrics. However, results found in this study also represent improve-
ments over HAA and THM formation predictions previously reported using similar performance metrics (e.g. 
total THM MAE 13.5 µg/L and total HAA MAE 7.7 µg/L)16. Furthermore, the previous approaches to utilize 
fluorescence data for DBP predictions that have relied heavily on dimensionality reduction to identify relevant 
fluorescence features add complexity to the analysis process. In contrast, deep CNNs present an opportunity to 
utilize full fluorescence spectra without the need for manual or highly supervised feature selection through peak-
picking, regional integrations, or PARAFAC analysis. It is thought that deep CNNs provide an opportunity for 
complex behaviours to be represented by several simpler representations. Observation of feature maps produced 
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by convolutional layers show a hierarchy of feature representations, with general and smooth representations 
in high layers and progressively coarser and more specific highlighted spectral areas as increasing numbers of 
convolution and pooling layers are applied.

Neural networks are often discussed as black-box type algorithms, where the internal reasoning is unknown 
or difficult to illustrate. However, it is imperative that the logic of prediction algorithms used in applied tasks, 
such as prediction of potentially toxic disinfection by-products, is discernible. There is also an opportunity to 
use these powerful data-driven approaches to help identify important variables or characteristics of the system. 
The use of heat maps generated from an occlusion approach to identifying spectral areas that highly influence 
predictions gives insight into the decision-making process and helps confirm that trained networks are relying 
on data from spectral regions associated with DBP precursors. Furthermore, heat maps can help direct future 
more detailed studies investigating the characteristics of precursor material.

As such, the use of fluorescence spectroscopy coupled with machine learning techniques, such as deep CNNs, 
show promise to be used for rapid estimation of DBP formation potentials. In the context of typical regulatory 
thresholds for water treatment (total THMs < 80 µg/L, total HAAs < 60 µg/L) the presented methodology pro-
duced error levels (MAE 3.39–5.53 µg/L) that would be appropriate for rapidly informing operations and manage-
ment regarding conformance with regulatory thresholds. Knowledge of DBP formation potentials in near real-
time can enable tighter treatment controls and management efforts to minimize the public’s exposure to DBPs.

Methods
Water samples. Water samples were obtained from parallel pilot treatment trains that were fed Otonabee 
River water (Peterborough, Ontario, Canada). Samples were obtained throughout the treatment train for fluo-
rescence analysis and for determining DBP formation potentials. Processes applied included coagulation, floc-
culation, sedimentation, ozonation, advanced oxidation (peroxide and ozone), and filtration through anthracite 
or activated carbon. Further information on the pilot-scale set-up and water samples can be found in Peleato 
et al.44.

Fluorescence. A total of 140 fluorescence spectra were collected using an Agilent Cary Eclipse fluores-
cence spectrophotometer (Mississauga, Canada). Excitation and emission wavelength ranges were 225–380 nm 
(5 nm increments), and 250–600 nm (2 nm increments), respectively. This resulted in fluorescence spectra with 
dimensions of 32 by 176, or 5632 total excitation/emission pairs. The fluorescence spectra were blank subtracted 
using Milli-Q® water. The spectrum for Milli-Q® water was also used to apply Raman corrections at an excitation 
wavelength of 350 nm and bandwidth of 5 nm to allow fluorescence intensities to be reported in Raman Units 
(RU)45. Absorbance values collected over the excitation–emission range were used to correct for inner-filter 
effects. Rayleigh scattering lines were removed by setting all values above 2nd order Rayleigh or below 1st order 
Rayleigh to 0. The absorbance corrected spectra were then scaled between 0 and 1 for each excitation/emission 
pair for input into MLPs or CNNs.

Dimensionality reduction. PCA and PARAFAC were applied to identify a lower dimensional representa-
tion of fluorescence spectra. The two methods and resulting components are described further in Peleato et al.18. 
Briefly, PCA was carried out using R (V 3.2.5) on fluorescence spectra that were vectorized, mean centered 
and scaled to unit variance with respect to excitation/emission pairs. PARAFAC was applied using the drEEM 
toolbox for MATLAB and following the methodology described by Murphy et al.24. The PARAFAC model was 
validated using split-half validation where model consistency was checked between randomized dataset halves. 
The number of components for a valid PARAFAC model was found to be 5 and this number of components was 
also used to decide on the number of principal components used in regression. The loading plots of both PCA 
and PARAFAC are described and visualized in Peleato et al.18. The scores of each of the 5 components from PCA 
and PARAFAC were used as inputs into a MLP with 1 hidden layer and 100 nodes for regression.

3-way PLS was carried out using the PLS toolbox for MATLAB (Eigenvector Research). The normalized 
spectra used for both PARAFAC and PCA were utilized and the number of components was set to 5 for consist-
ency with the dimensionality reduction models.

Neural networks. All NNs were trained in Python 3.6 using the Keras library (v2.3.1; TensorFlow v1.15.0 
backend). Hardware used was a  Intel®  Xeon® E2286G CPU and a NVIDIA GeForce RTX 2080. Training of each 
iteration of all models took less than 20 min.

Two general types of NNs were investigated: MLPs where there is a weighted connection between every 
node in subsequent layers, and CNNs. The number of nodes in each hidden layer of a MLP was defined as half 
of the previous layer. For example, with two hidden layers, hidden layer 1 would have 2816 nodes and layer 2 
would have 1408.

A general schematic of the CNN structure is shown in Fig. 6. Convolutional layers involved training a set of 
2D filters or kernels, which are weighting functions multiplied with input values in a specific spatial window. 
2D kernels were chosen to capture the 2D structure of the fluorescence excitation–emission spectra. Filters are 
smaller than the input dimensions and are slid across the entire input to produce feature mapping of the input. 
Since one filter or weighting function is used for the whole input space, fewer trainable parameters are needed 
than MLPs. It also gives rise to feature invariance since the trained filter can identify a feature in any position 
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of the input space. Max pooling layers look for the maximum value within a spatial window and then uses that 
maximum value to represent the output over that spatial window, effectively reducing dimensionality. For more 
details on the mathematics of CNNs and the training process, see LeCun et al.46 and Goodfellow et al.29. CNN 
layers were considered as a set of convolutional layers followed by max pooling. Max pooling layers reduce the 
dimensionality of the features and provide an effective way to create hierarchies of detailed to general features. 
Several convolutional layers were set in series for some models, as this has been shown to provide an effective 
receptive field, which may provide advantages in chemometric  applications32, while minimizing the number of 
trainable  parameters34. Following convolutional layers, the structure was flattened, where pooled feature maps 
are vectorized into a dense hidden layer followed by a single output node. A varied number of structures were 
investigated to identify changes in performance based on depth (number of layers), size of convolutional filters 
(spatial window), number of max pooling layers, and number of convolutional filters. A summary of these 
structures is presented in Table 2.

Common between all structures and types of NNs was the use of batch normalization to speed up  training47, 
followed by activation using an exponential linear unit (ELU) activation function (Eq. 1). The ELU function 
was chosen based on reports of greater learning rate and generalization for deep  networks48. ELUs also avoiding 
issues with ‘dead’ nodes common with activations such as rectified linear units (ReLU) that have zero gradients 
below inputs of 0.

All networks were trained with a mean squared error loss function coupled with L2 regularization to prevent 
overfitting (Eq. 2). The Adam optimization algorithm was used for all training.

where, yi is the network output for sample i (prediction), ŷi is the true value for sample i, N is the total number 
of samples, � is a hyperparameter to control L2 regularization (set to 0.01), w are all the network weights.

Prediction accuracy was determined on a test set (20% of all data, n = 28) that was not used for training the 
network. The metric used to assess predictive performance was mean absolute error (MAE), primarily since it 
provides a metric in the same units used in analysis and is more easily interpreted. Statistical significance was 
determined using paired t tests comparing mean and standard deviation of MAEs with a confidence level of 95%.

Occlusion method. An occlusion approach was used to generate heat maps of spectral areas that most 
influence prediction accuracy. After training a network, test data was modified by iteratively setting a spectral 
area or patch equal to 0. These occluded or corrupted training samples are then fed through the network to pro-
duce a prediction of DBP concentration (Table 3).

The difference between initial predictions and occluded predictions provided an estimate of the importance 
of the occluded patch. If initial predictions and occluded predictions are identical or close, the trained network 
is not relying on that spectral area to estimate DBPs. On the other hand, if the error is high, the occluded region 
is influential on the accurate prediction of DBP levels.

(1)ELU : f (x) =

{
x, x > 0

ex − 1, x ≤ 0

(2)Loss =
1

N

N∑

i=1

(
yi − ŷi

)2
+ �

∥∥w2
∥∥

Figure 6.  General schematic of convolutional neural network structure. The number of convolutional layers as 
well as the number of layers (convolution + max pooling) can be varied.
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