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Abstract: In recent years, adipose tissue has attracted a lot of attention. It is not only an energy
reservoir but also plays important immune, paracrine and endocrine roles. BMAT (bone marrow
adipose tissue) is a heterogeneous tissue, found mostly in the medullary canal of the long bones
(tibia, femur and humerus), in the vertebrae and iliac crest. Adipogenesis in bone marrow cavities
is a consequence of ageing or may accompany pathologies like diabetes mellitus type 1 (T1DM),
T2DM, anorexia nervosa, oestrogen and growth hormone deficiencies or impaired haematopoiesis
and osteoporosis. This paper focuses on studies concerning BMAT and its physiology in dietary
interventions, like obesity in humans and high fat diet in rodent studies; and opposite: anorexia
nervosa and calorie restriction in animal models.

Keywords: bone marrow adipose tissue; marrow fat; obesity; calorie restriction; dietary interventions;
animal models

1. Introduction

In recent years, adipose tissue has attracted a lot of attention. It is not only an
energy reservoir but also plays important immune, paracrine and endocrine roles [1,2].
Moreover, the rising incidence of worldwide obesity has increased the pace of research.
Basically, adipose tissue has been classified into three types: white, brown (WAT and BAT,
respectively) and beige adipose tissue. Since the mid-1990s, a third important adipose tissue
has received increasing attention—the marrow fat (bone marrow adipose tissue—BMAT).
Previously, this fattissue was considered a space filler of the bone marrow (BM) with an
unknown origin or function. With further in-depth research, as well as the employment of
novel experimental techniques such as lineage tracing, it is now acknowledged that BMAT
originates from skeletal lineages, maintaining bone marrow homeostasis and influencing
whole-body energy metabolism [3,4]. BMAT is a heterogeneous tissue, found mostly
in the medullary canal of the long bones (tibia, femur and humerus), in the vertebrae
and iliac crest. Haematopoiesis and osteogenesis are the processes responsible for the
formation of bone marrow and bone, respectively. Adipogenesis in bone marrow cavities
is a consequence of ageing or may accompany pathologies like diabetes mellitus type 1
(T1DM), T2DM, anorexia nervosa, oestrogen and growth hormone deficiencies or impaired
haematopoiesis and osteoporosis.

2. Types of Adipose Tissue

Adipose tissue is distributed in distinct depots in the human body. Histologically it
is characterised by the presence of adipocytes containing lipid filled vacuoles. Adipose
tissue may be further differentiated, mostly based on its origin, function and molecu-
lar/biochemical features (reviewed in Li [5]) The subtypes of adipose tissue include WAT,
BAT, beige or so-called ‘brite’ (brown/white) adipose tissue and MAT/BMAT.
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2.1. White Adipose Tissue

Mitochondria-sparse WAT is mostly located in the subcutaneous and visceral depots
and functions as lipid storage, which is mobilised and liberates the free fatty acids from
triglycerides in situations of energy demand. It constitutes 10–20% of body weight in lean
humans [6]. When excess energy exists, lipogenic enzymes are stimulated to synthesise
triglycerides for further use [7], while caloric intake restriction triggersthe release of free
fatty acids from fat stores via enzymatic lipid hydrolysis into the blood stream [8]. Recent
data show important differences between the two WAT depots, as visceral adipocytes are
more responsive to lipolytic signals which upregulate the transport of free fatty acids, while
subcutaneous adipocytes serve as stable energy reserves [9,10]. In periods of increased
calorie intake, WAT expands through adipocyte hypertrophy (cell size increase) and hy-
perplasia (cell number increase), and terminal peroxisome proliferator-activated receptor
delta (PPAR-γ)- driven differentiation of adipocyte progenitors [10]. This expansion is
especially significant in obese persons with metabolic syndrome, increased risk of T2DM
or cardiometabolic disease [11].

Moreover, it plays an important role as a secretory organ, as it releases cholesterol,
steroid hormones and vital molecules involved in immunological (immunomodulation)
and endocrine processes, energy balance and regulation of food intake such as interleukin-
6(IL-6), adipokines or tumour necrosis factor-α(TNFa). Inflammatory molecule release
may be also associated with macrophages infiltrating the tissue and with phagocytosing
of dead adipocytes, which produces local inflammation that in future associates with the
development of insulin resistance, particularly in obesity [12,13].

2.2. Brown Adipose Tissue

Brown adipocytes originate from myogenic lineage (dermomyotomes expressing
MYF-5) [14]. BAT plays an important role in the control of body temperature. The main
function of BAT is transfer energy from food into heat and the activity of this tissue is
under the control of norepinephrine released from sympathetic nerves [15]. In foetuses and
newborns, BAT, by intensive metabolism of fatty acids and expression of mitochondrial
uncoupling protein 1 (UCP1), is responsible for heat production (thermogenesis). As the
body develops, the presence of this tissue is limited and in adults it is barely detectable [16].
Some amount of cold-activated mitochondria-enriched BAT is present as discrete tissue
deposits above the clavicle and in the subscapular region of the back [16–18]. Along with its
role in adaptive thermogenesis, BAT seems to have an important role in regulating insulin
resistance, protecting against obesity and diabetes [5,9,19,20]. BAT is inversely correlated
with the body mass index [18].

Beige adipocytes (the‘third’ fat tissue) are an intermediate type of the above-mentioned
adipocyte cell populations. They are mostly found in WAT depots and responds to stim-
uli like cold, the sympathetic nervous system (via catecholamines and β-adrenergic sig-
nalling), thyroid hormones or exercise. Beige adipocytes express UCP-1 protein at a lower
level than brown adipocytes but are more sensitive to stimulation (reviewed in Martinez-
Fernandez [20] and Chechi [21]).

The main subject of this review is, however, BMAT.

2.3. Bone Marrow Adipose Tissue

Presently, with the help of the recent advent of non-invasive methods to measure and
analyse the marrow adipose tissue, the role of BMAT is receiving greater appreciation as
it is a very important element of the marrow microenvironment, making up ~50–70% of
the marrow volume. This adipose tissue is also known as marrow adipose tissue (MAT)
or yellow adipose tissue. It is an adipose depot with unique features distinguishing it
from the better characterised extramedullary sites. It accounts for approximately 5–10% of
the total fat mass in healthy, lean, adult humans (reviewed in Fazeli [22]). Application of
MRI-based techniques demonstratesthat the amount of total BMAT in a skeleton of average
size ranges from 0.5 to 3 kg [23].
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Bone marrow adipocytes originate in the BM from mesenchymal stem cells (MSC).
The key transcriptional factors, PPARγ and c/EBPα, control BM adipogenesis [9]. BM
MSCs have the potential to differentiate towards osteoblasts, adipocytes or chondrocyte
lineages [24–26]. PPARγ insufficiency in BM progenitor cells leads to osteoblastogenesis,
which is considered a competitive process for adipogenesis [27]. The two processes are
strictly and opposingly regulated. Factors that promote osteogenesis like mechanical forces,
growth hormone or insulin-like growth factor 1 (IGF-1) limit adipogenesis and vice versa,
pro-adipogenic stimuli like oxidative stress, immobilisation, elevated glucocorticoid levels
limit osteoblastogenesis [4,25,28]. Thus, the BM MSCs shift towards either lineage results
from a complex interplay of systemic and local mediators.

For many years, this tissue was considered as only a filler of trabecular bone cavities
(ribs, sternum, vertebrae) and the medullary canal of long bones (tibia, femur, humerus) in-
volved in the transition of red (haematopoietic) bone marrow to yellow (non-haematopoietic)
bone marrow. It gradually accumulates in areas of trabecular bone of the femur, tibia and
vertebrae and fills the entire marrow cavity by the third decade of human life [22,28],
with males demonstrating greater amounts of BMAT compared to females [29]. In the
red marrow, where haematopoiesis and bone remodelling are active, adipocytes are less
frequent and account for up to 45% of the marrow, while in the yellow marrow, where
haematopoiesis is almost absent, adipocytes are densely packed and fill up to 90% of the
marrow compartment [5]. It has also been shown that enlargement of this compartment
accompanies metabolic diseases, states of increased bone fragility and obesity [30].

Histologically, BMAT resembles white adipocytes, however it is a heterogeneous
population of cells with distinct metabolisms and lipid compositions that, with ageing,
gradually replaces the nucleus with lipid droplets [31]. The lipid content of BMAT, which
is composed of saturated, monounsaturated and polyunsaturated fat, is used mostly as an
energy source for populations of osteoblasts, osteoclasts and haematopoietic cells [32].

What is interesting is that BMAT expresses brown adipocyte gene markers (Prdm16,
Dio2 and PGC1a), which decrease with ageing and diabetes [33]. Further studies have
evidenced that BMAT has a mixed BAT/WAT phenotype. When bone marrow adipocytes
were treated with triiodothyronine or a thyroid hormone receptor beta-specific agonist
(GC-1) or rosiglitazone, a synthetic agonist for adipocyte-specific PPARγ and a potent
insulin sensitiser significantly increased both BAT (Ucp1, Pgc1α, Dio2, β3AR, Prdm16 and
FoxC2) and WAT (Adipoq and Lep) markers [33–35].

In both rodents and humans, two distinct subtypes of BM adipocytes have been
described: constitutive BMAT (cBMAT/cMAT) and regulated BMAT (rBMAT/rMAT) [35].
rBMAT/rMAT is present within active haematopoietic sites such as the mid- to proximal
tibia, femur and lumbar vertebrae and develops throughout life. cBMAT/cMAT is located
in the distal tibia and caudal vertebrae and develops rapidly after birth [35]. There are
some important differences between these two populations: compared with cBMAT/cMAT
adipocytes, rBMAT/rMAT adipocytes contain more saturated fatty acids and express lower
levels of the adipogenic transcription factors Cebpa and Cebpb, similar to WAT [35].

Furthermore, their response to physiological stress differs: rBMAT/rMAT adipocytes
reduce in size and number after cold exposition [35], fasting [36] or prolonged exercise [37].
Additionally, the size of rBMAT/rMAT cells increases with ageing, a high fat diet, caloric
restriction and anorexia, irradiation, or treatments with hypoglycaemic thiazolidinediones
(insulin-mimetic drugs used for type 2 diabetes treatment) and hyperglycaemia-causing
glucocorticoids [38,39]. Conversely, cBMAT/cMAT changes in size in response to external
stimuli or pathophysiological changes are less evident [26,35].

3. BMAT—Function

The exact function of BMAT remains unclear. When WAT capacity is exhausted,
ectopic fat accumulation in other tissue as liver is found, and is regulated by insulin
and responds to the energy balance in the body. BMAT is enclosed in cavities of the
skeleton and also responds to insulin signalling-triggering molecules (i.e., rosiglitazone, a
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thiazolidinedione) [40]. As BMAT adipocytes are situated in a unique microenvironment,
surrounded by haematopoietic and skeletal lineage cells, this likely contributes to its
differential regulation and points to the local microenvironment, in addition to endocrine
mediators, as major regulators of BMAT function.

As previously mentioned, both calorie restriction (CR) [2,41] and high fat diets (HFD)
anorexia nervosa [38] can increase skeletal BMAT in mice and humans. Research suggests
that increased BMAT during calorie restriction is a result of adipogenesis and an increase
of adipocyte number rather than an increase in adipocyte size; this may cause uncoupling
between BMAT and energy metabolism [2]. Experiments on a mouse model of T1DM
indicate that hypoinsulinaemia is insufficient to stop BMAT accumulation [42]. This may
indicate different functions of adipocytes in BMAT: while some cells are connected with
systemic energy demands, other may be responsible for supporting neighbouring cells.

3.1. BMAT and Haematopoiesis

The supporting function, both mechanical and biochemical, of BMAT adipocytes may
be envisioned by certain examples. There are data showing BMAT’s contribution to the me-
chanical properties of the skeleton or its association with haematopoiesis [43–45]. In vitro
experiments showed increased differentiation of CD34+ cells in the presence of human
BMAT and in the same context, in vivo results showed inhibitory characteristics of BMAT,
induction of quiescence and loss of haematopoietic progenitor cells [43,46]. Inhibition of
BMAT expansion improved haematopoietic engraftment and recovery in an experiment
with marrow transplant after bone marrow irradiation in mice [46]. On the other hand,
thiazolidinedione (TZD)-induced BMAT overgrowth did not cause a change in progenitor
cell number in bone marrow in mice [47]. The latter may be explained by the existence of
more complex regulatory loops when PPARs are activated. Furthermore, BMAT may serve
as a certain source of cytokines, as discussed later and thus, influenceshaematopoiesis [48].
BMAT may protect osteoblasts from lipotoxicity, by creating a storage space for ectopic
lipids [49]. During triglyceride excess, liver and skeletal muscle also store high amounts of
lipids [50]. Cells of BMAT harvested from healthy animals show expression of transcription
factors connected to adipogenesis: Pparg, Cebpa, Cebpbin [43,51].

3.2. Cytokine Production

Research on human adipocytes derived from sternal bone marrow stem cells (BMSCs)
show secretion of cytokines IL-6, MIP-1α, G-CSF, and GM-CSF [52]. Adipocytes from the
human iliac crest also secreted IL-6 and G-CSF and additionally, IL-8 after seven-days
ceiling culture [43].

In a study by Laharrague, it was noted that primary culture of medullary adipocytes,
secrete low amounts of IL-1 beta and TNF-alpha, but they secrete significant and regulated
levels of IL-6 [53]. Murine BMSC-derived adipocytes produceCXCL1 and CXCL2 [54].
Moreover, genes encoding for IL-6, IL-1β and TNFa were found to be highly expressed in
mouse BM adipocytes when compared to epididymal adipocytes, and what is interesting
is that the expression of some of these factors was reduced with age [55]. A recent study
showed that inflammatory cytokine levels were increased in visceral adipocytes, in high
fat-induced obese mice, but BMAT did not exhibit a pro-inflammatory phenotype [56].
Cytokines produced in vitro and ex vivo are shown in Figure 1.

Osteoclast differentiation and activation are stimulated by cytokine secretion and
it may seem that the cytokines released from BMAT may be greatly involved in the
process [57,58]. Thus, BMAT may havean important role in bone remodelling by contribut-
ing to bone loss in osteoporosis and bone destruction during skeletal metastasis [57–59].
Adipocytes derived from BMAT also secrete adiponectin (explants of BMAT) and lep-
tin (in vitroisolated cells) [43,53]. Adiponectin promotes insulin sensitivity, fat oxidation
and anti-inflammatory action. The main source of adiponectin in normal conditions is
WAT. However, during CR, expanding BMAT becomes an additional source of increased
adiponectin level [60].
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Figure 1. BMAT secretion of cytokines in different experimental protocols (extracted cells or whole
tissue explants—without separation of single adipocytes). CXCL1—chemokine (C-X-C motif) ligand
1; CXCL2—chemokine (C-X-C motif) ligand 2; G-CSF—granulocyte colony-stimulating factor; GM-
CSF—granulocyte-macrophage colony-stimulating factor; IL-6- interleukin 6; IL-8—interleukin 8;
MIP-1α—macrophage inflammatory protein alpha.

3.3. BMAT and the Endocrine System

BMAT quantity changes in metabolic diseases like diabetes, ovarian dysfunctions,
obesity and anorexia nervosa (Table 1). BMAT formation is influenced by endocrine factors
(growth hormone, oestrogens, glucocorticoids) and is prone to endocrine modification.
Depending on the metabolic context, the BMAT compartment may be either increased or
decreased.Pituitary-derived growth hormone reduces BMAT formation [61]. The exper-
imental removal of rats’ pituitary glands caused a massive increase of BMAT that was
reversed by the administration of somatotropin, but parathormone (PTH), 17β-oestradiol
or IGF-1 were not effective [61]. A decreased oestrogen level found in postmenopausal
women or in experimental ovariectomy in animal models, FGF-21 and increased level
of glucocorticoids also contribute to BMAT expansion [62–65]. BMAT accumulation may
be the result of glucocorticoid increases during CR and short-term transdermal oestro-
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gen administration diminishes vertebral BMAT in premenopausalanorexia nervosa (AN)
patients [66]. For example, PTH administration in CR mice induces adipocyte number
or adipocyte size reduction in BMAT depending on the experimental protocol [67] and
erythropoietin (EPO) administration to female mice reduces BMAT with no effect on total
body fat mass [68]. Leptin is noteworthy, and hypoleptinaemia is proposed to promote
BMAT accumulation. A decrease in circulating leptin by pituitary removal or WAT loss
in CR caused increased BMAT formation [61,69]. On the contrary, intracerebroventricular
(ICV) leptin administration resulted in a BMAT decrease in rodents [70–72]. The effective
loss of BMAT with exogenous leptin administration requires usage of supra-physiological
dosages and it is still not estimated if a physiological amount of leptin causes BMAT
changes. In conditions of a decreased oestrogen level, BMAT accumulation proceeded in
spite of an increased leptin level, which shows that higher leptin alone is not sufficient to
regulate BMAT [73,74]. In rodent CR studies, rabbits exhibited hypoleptinaemia without
BMAT accumulation, while in female mice, CR caused BMAT formation but without signs
of hypoleptinaemia [69]. This may lead to the conclusion that hypoleptinaemia is not
necessary nor sufficient for BMAT accumulation. Peripheral administration of exogenous
leptin causes a drop in BMAT differentiation [75]. Leptin, probably, causes sympathetic
nervous stimulation (SNS). Sympathetic stimulation leads to an energy deficit by nutrient
reservoir depletion [76]. The SNS may further trigger a release of norepinephrine and in-
duce, through β-adrenergic receptors, lipolysis in BMAT. Some data indicate that apoptosis
mayalso lead to BMAT loss as a result of leptin action [71,77].

Table 1. BMAT in various conditions [66–68,78].

Increased BMAT Decreased BMAT

Ageing Weight loss (gastric bypass)
Diet regimes (HFD, CR) Oestrogen administration

Glucocorticoids PTH administration (and Scl-Ab) (mice rats)
T1DM (mice), T2DM (mice) EPO administration (mice)

Decreased oestrogen (ovariectomy—mice and rats) Vitamin D3 administration
Anorexia nervosa GH, IGF-1

obesity

HFD—high fat diet; CR—caloric restriction; Scl-Ab—sclerotin-neutralising antibodies; EPO—erythropoietin.

3.4. BMAT in Metabolic Disorders

Despite its importance, the role of BMAT formation and differentiation in metabolic
disorders remainsrelatively unidentified.The increase of BMAT in metabolic disease studies
is higher in rodent models than in human studies. In mice with T1DM, the increase of
BMAT is not equal in the skeleton;an expansion of BMAT is observed in bones of limbs,
but not in the axial skeleton [42,78]. However, in humans with T1DM, changes in BMAT
were not detected [78] (Table 1).

A similar observation comes from experiments on mice.In a model of T2DM (ob/ob)
and mice fed a high fat diet (HFD), there was a significant increase in BMAT in both [77].
In humans with T2DM, only a minimal or no change in BMAT has been noted [79,80].
In obesity experiments, fed mice exhibited a higher level of BMAT expansion than obese
humans [38,81,82]. These differences may be a result of a generally higher BMAT level in
humans than in mice, relative to the body mass and also longevity of fat tissue [57,83–85].

BMAT expansion may rely on the presence of local and systemic factors regulating
BMAT biogenesis and role. Clinical evidence indicates a potential role of circulating
triglycerides in BMAT formation [78,86]. In this light, treatment with statins (decrease
serum lipids levels) may potentially ‘trim’ BMAT. Additionally, other endocrine factors
may also have a role in BMAT expansion.

4. BMAT in Dietary Regimes

Changes in quantity and quality of BMAT are observed in different nutritional states.
Malnutrition or dietary restrictions and also HFD influence BMAT in a species-, strain- and
gender-dependent manner.
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4.1. BMAT in Obesity and High Fat Diets

In experiments with a HFD, changes in BMAT were also dependent on a type of
dietary source of fat used in the study (Table 2) [38,56,87–90]. In experiments with lard as
the main calorie source, BMAT was increased, even if in some studies bone mass remained
unchanged [56,89]. An increase of BMAT was observed in male and female C57BL/6 mice,
but in females, HFD effects were dependent on the amount of food consumed; female
C57BL/6 mice overeating during experiments: in FVB/NJ females which did not overeat
the fat mass and BMAT were unchanged [88]. Difference in feeding behaviour are due to
genetic background of these strains [88]. A strain-dependent effect of HFD was also noted
in experiments with fish oil and saffloweroil on C57BL/6 and C3H/HeJ mice strains [89].
In C3H/HeJ mice, BMAT and osteoclast number in the spine were increased in fish oil fed
animals [89]. In studies with fish oil and conjugated linoleic acid, a decrease in total fat
content and BMAT amount was observed. Fish oil itself or vegetable oil (corn oil) did not
cause a similar effect [90].

Table 2. Differences in BMAT due to different types of fat in the diet and strain of animals used in the study.

Species/Strain Age/Gender Study Length Type of Fat Effects in Bones Reference

Mice
C57BL/6J

12 months
females 6 months linoleic acid

+ fish oil ↑BMD, ↓BMAT, ↓total fat mass [90]

corn oil ↑BMAT
Mice

C57BL/6J
6 weeks
males 12 weeks 62% lard ↓cortical bone cross-section area,

↑BMAT, ↓BMD [87]

Mice
C57BL/6J
C3H-6T

10 weeks
females

sacrificed in 12th
month of age 22% fish oil ↑BMAT in spine, ↓BMD more

pronounced in 6T strain than in B6, [89]

22% safflower oil prevented weight gain and bone loss
in spine

Mice
C57BL/6J

3 weeks
males 12 weeks 60% lard ↑BMAT volume, ↑total body weight,

≈ BMD [38]

males and
females short term 2 weeks 58% lard ↑BMAT, ↑body weight

Mice
C57BL/6J

3 weeks
females 3,8,17 weeks 39% lard+

6% soybean oil

↑BMAT, ↑body weight, ↓ trabecular
bone architecture, ↓femoral cortical

bone acquisition
[88]

Mice FVB ≈ BMAT, body weight,
Mice

C57Bl/6J
8 weeks
males 12 and 20 weeks 6% fat from lard ↑BMAT volume, ↓BMD, ↓ amount of

stem cells in bone marrow [56]

BMD—bone mineral density.

The amount of BMAT was also studied in obesity and diabetes in humans. In prepu-
bertal girls, BMAT increases with age, and is correlated with body mass and body fat [91].
In adults, increased body weight is not always associated with increased BMAT in obese
and diabetic patients [92]. A positive correlation is observed between BMAT and HbA1c,
but not with HOMA-IR (marker of insulin resistance), insulin level, Pre adipocyte factor
1 (Pref-1) or leptin [92–94]. On the other hand, weight loss in clinically obese patients
decreases the BMAT amount [95]. After gastric bypass, all obese patients lost weight and
BMAT. Interestingly, patients with a lower content of BMAT in preoperative examination,
lost less BMAT in comparison to patients with a higher BMAT, who lost more BMAT in
the post-operative period. Females lost more than males, probably due to endogenous
oestradiol levels [95]. However, the BMAT reduction after bariatric procedures depends on
the type of procedure used [96]. In a comparison of Roux-en-Y gastric bypass (RYGB) and
sleeve gastrectomy (SG) patients, greater loss of weight was observed in RYGB patients
than SG. BMAT increased in SG patients in comparison to RYGB patients, probably due to
the smaller weight loss in SG [96].
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4.2. Dietary Restrictions and BMAT

Dietary restrictions are considered beneficial for health and longevity [97]. The impact
of caloric restriction has been studied in many animal models, also in the context of
bone health.

In human studies with dietary restrictions in the context of BMAT, work has focused
mainly on anorexia nervosa (AN) patients, as bone quality is severely lowered and BMAT is
increased and may comprise about 31% of total body adipose tissue [2,98]. The differences
observed by various groups are mainly due to age and disease severity. Red to yellow
marrow transition is related to the degree of nutritional deprivation [99]. In adolescent
girls (mild to moderate AN), BMAT shows a strong association with age: in younger girls
(<16 years of age) authors observed a positive correlation between BMAT and body mass
index (BMI) and bone mineral density (BMD). In older girls (>17 years of age), BMAT
was inversely correlated with BMI and BMD [99]. In another study, the authors showed
increased BMAT and lowered BMD in bones of the spine and hips as weight-bearing
bones, and also in the whole body in adolescent patients. BMAT showed a negative
association with bone strength [100]. In older AN patients (>25years of age), BMAT was
also increased and BMD was lowered. It was correlated with a decreased leptin level,
increased adiponectin level, and interestingly, inversely correlated with HOMA-IR factor
and Pref-1 [22,101]. In this age group of AN patients, weight gain was associated with an
increase in BMAT in the femur with a % change in BMAT positively associated with a %
change in leptin level and positively associated with a % change in subcutaneous adipose
tissue [101]. In severe cases of AN, the gelatinous transformation of bone marrow was
noted as a sign of starvation [102]. Bone marrow biopsies of some AN patients revealed
atrophy of adiposecells and loss of haematopoietic cells, which may be related to fat cell
depletion due to catabolism in the tissue [103]. This symptom, however, is rare—0.2–4.8%
of all AN patients and is usually present in young males [103]. After weight gain, the
restoration of haematopoietic cells and BMAT cells was observed [103].

In animal models of caloric restriction (CR), the effect of food deprivation on BMAT is
species-, strain- and gender-specific (Table 3).

Table 3. CR in animal models.

Species/Strain Age/Gender Study Length Type of Restriction Effects in Bones Reference

Mice
C57BL/6J

Apo-/-

11 weeks
males 4–12 weeks 30% CR

↓bone quality, ↓BM,
↑adiponectin in BMAT

No influence of CR in apo-/-
[104]

Mice
C57BL/6J

3 weeks
males 3–9 weeks 30% CR

↓trabecular volume, leptin,↓
osteoblast

number,↑trabecular
separation, ↑ bone resorption,

↑BMAT

[41]

Mice
C57BL/6J

9 weeks
males

and females
6 weeks 30% CR

Males:
↓ BW,↓leptin,↑rBMAT (tibia),

↑adiponectin,
↑Glucocorticoids

Females:
≈TBF, ≈leptin, ↑rBMAT

(tibia),

[69]

Rabbits 6 weeks
males 7 weeks 30% CR ≈adiponectin,↓BW,↓leptin,

↓bone quality, ≈BMAT

Mice
C57BL/6J

4 weeks
Males
and

females

9 months every-other day
feeding

↑BMAT in females, ≈mineral
content in long bones [105]

Mice
C57BL/6J

11 weeks
females

6 weeks + voluntary
running 30% CR ↓bone quality, ↑BMAT

(femurs), ↑CD36 [106]

Sprague-
Downey rats 8 months of age 12 months 40% CR ↓ BW, ↓bone quality, ↓leptin,

↑rBMAT(tibia), [107]

Sprague-
Downey rats Males and females 48h fasting ↓body mass, ↓BMAT in tibia [36]

TBF—total body fat; BW—body weight.
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In rabbits, a decreased adipocyte size was observed during extensive CR in growing
animals, in mature rabbits during 30% CR, BMAT remained unchanged [69]. In the same
study, moderate (30%) CR in mice caused an increase of BMAT deposits in the proximal tibia
in males but in females the body fat was unchanged, while rBMAT increased. The authors
concluded that glucocorticoids were responsible for BMAT expansion, as these hormones
were increased in mice and unchanged in rabbits [69]. In growing mice (C57BL/6), 30% of
CR caused growth retardation, decreased bone quality (more pronounced in limb bones
than in vertebrae), increased bone resorption and dramatically increased BMAT (after
9 weeks of treatment +794%) [41]. In short experiment in C57BL/6 and apo-/- (adiponectin
knockout) mice CR negatively affected the microstructure of long bones and vertebrae of
C57BL/6 mice but not bones of apo-/- mice [104]. Adiponectin levels in C57BL/6 mice was
increased in all measured adipose tissue regions, suggesting that adiponectin is responsible
for bone loss during CR [104]. In our experiment with long-term every-other-day feeding
(effects similar to about 40% restriction), we found increased BMAT but only in female
C57BL/6 mice [105]. In this experiment, bone mineral content measured directly in long
bone ashes was unchanged [105]. Short (48h) fasting in rats caused a decrease of BMAT in
the tibia but not in the vertebrae of males and females [36]. In long experiment with 40% CR
in mature rats increase of BMAT in limb bones was observed [107]. In old rats on CR, serum
leptin was on a similar level to young (2-month-old) rats and significantly lower than age
matched ad libitum(AL) fed animals [107]. Decreased calorie intake effects on bone and
BMAT may be moderated by other interventions, i.e., physical exercise or osteoanabolic
agent administration. In an experiment with voluntary running female mice, trabecular
bone parameters were decreased in CR running animals, but BMAT in long bones in CR
runners was lower than in sedentary CR mice [106]. These authors concluded that lipid
storage in BMAT may be a result of different expression of fatty acid (FA) uptake during
CR and exercise, as CD36 (marker of FA uptake) was increased in sedentary CR mice in
comparison to CR runners and AL groups of animals [106]. In a study with CR and PTH
administration in female mice, the effects of hormone’s action was dependent on time, when
PTH treatment was introduced to the study protocol. Intervention with PTH when CR was
started resulted in the upregulation of osteogenic genes’ expression, but not adipogenesis-
related genes—resulting in decreased number of adipocytes in BMAT. Injections with PTH,
started after CR was introduced to animals, did not prevent adipogenesis, but caused a
reduction of adipocyte size due to lipolysis [67].

5. Conclusions

In conclusion, the proper amount of BMAT is required for bone health and an increase
in marrow adiposity negatively influences bone quality. Additionally, there is a link
between total body fat (TBF) and BMAT. The existing data show a U-shaped association
between TBF and BMAT. During conditions of high and low TBF, BMAT is elevated,
and normalises with the normalisation of TBF [95]. Studies in AN patients indicate that
elevated levels of preadipocyte factor-1 (Pref-1), cortisol, early B-cell factor-1 (Ebf-1) may be
determinants of BMAT development [22]. However further research is needed to establish
correlation between these factors and BMAT.
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