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Abstract

Background: Through its effects on gastric secretion, we hypothesized that Helicobacter pylori infection may influence oral
immunization. Accordingly, we examined the association between H. pylori infection, serum pepsinogen (PG) (measures for
H. pylori gastritis) and vibriocidal antibody (a correlate of protection) seroconversion following oral immunization with CVD
103-HgR live cholera vaccine among children of different ages.

Methods: Sera from 422 Chilean children who were vaccinated with a single dose of CVD 103-HgR were tested by ELISA for
serum IgG antibodies to H. pylori, PG I and PG II levels and antibodies to Shigella flexneri 2a lipopolysaccharide and hepatitis
A virus (as markers of low socioeconomic status and exposure to enteric pathogens).

Results: The likelihood of vibriocidal antibody seroconversion following vaccination with CVD 103-HgR was significantly
decreased in H. pylori-seropositive children age 6 months to 4 years with PG II.8 mg/L (adjusted OR 0.14 (95% CI 0.03–0.61;
P = 0.009), and also in H. pylori seropositives with lower PG II level (adjusted OR 0.34, 95% CI 0.14–0.83; P = 0.017), compared
to H. pylori-seronegatives. H. pylori-seropositive children aged 5–9 years with serum PG I.30 mg/L (indicating more severe
gastritis) had higher odds of vibriocidal seroconversion than those with lower PG I levels (adjusted OR 4.41, 95%CI 1.26–
15.38; P = 0.02). There was no significant association between exposures to S. flexneri 2a or hepatitis A virus and vibriocidal
seroconversion.

Conclusions: As H. pylori gastritis progresses with increasing pediatric age in developing country venues, changes in gastric
secretion ensue that we believe explain the observed differences in age-related immune responses to immunization with
live oral cholera vaccine. The effect of H. pylori and changes of gastric acid secretion on the immunogenicity of various oral
vaccines should be studied in different developing, transitional and industrialized country settings.
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Introduction

Oral administration of vaccines constitutes a practical, simple,

and safe method of immunization. With the exception of two non-

living cholera vaccines (DukoralH and ShancholH), all other

modern licensed oral vaccines have been live. These include

attenuated poliovirus (trivalent, bivalent and monovalent formu-

lations), three rotavirus vaccines (RotashieldTM [1], RotarixTM,

and RotaTeqH [2]), Salmonella Typhi strain Ty21a [3] and

attenuated Vibrio cholerae O1 strain CVD 103-HgR [4–6]. Despite

their practical advantages, most of these vaccines have exhibited

lower immunogenicity and efficacy when given to persons in

developing countries compared to industrialized countries [2,7].

The phenomenon of lower immunogenicity of CVD 103-HgR

oral cholera vaccine in developing country populations has been

intensively studied [4,5,7–13]. Whereas a single 56108 colony

forming unit (CFU) dose of CVD 103-HgR elicited high titers of

serum vibriocidal antibody (an immunologic correlate of protec-

tion) in 85–97% of US and European adults [4–6] and conferred

significant protection against cholera [5], a one-log higher dose

(56109 CFU) had to be administered to subjects in developing

countries to achieve high vibriocidal antibody seroconversion rates

[7,9–12]. The correlates of diminished vibriocidal antibody

response to CVD 103-HgR in developing country subjects [7]

include an elevated serum vibriocidal antibody titer at baseline [9],

proximal small bowel bacterial overgrowth (SBBO) [8] and low

socioeconomic level [11]. Enhanced vibriocidal antibody respons-

es (manifested as higher geometric mean titer [GMT]) were

observed in subjects of O blood group [12,13]. Interestingly,

vibriocidal antibody responses could be elevated in non-O blood

group subjects if they were treated with anti-helminthics prior to

vaccination [13]. Despite these helpful insights, the full panoply of

factors that affect the immune response to oral vaccines in

developing country populations and their interplay is still not

completely elucidated.

Helicobacter pylori a gram negative bacterium that colonizes the

gastric mucosa, is acquired early in life in developing countries in

association with low socioeconomic level and reaches a prevalence

of .50% by 5 years of age [14]. H. pylori induces gastritis that

mostly remains asymptomatic but that can alter gastric acid

secretion, an important non-specific host defense against bacterial

enteropathogens. Pepsinogen (PG) I and II, proenzymes for

pepsin, are secreted into the gastric lumen by chief cells in the

fundus and corpus of the stomach; PG II is also secreted by cells of

the gastric antrum, as well as by Brunner’s glands in the proximal

duodenum. Approximately 1% of PG I and II enters the vascular

system and can be detected in serum. Consequently, levels of

serum PG I or PG II, or both, are increased in children with H.

pylori gastritis [15–20], while the ratio of PG I:PG II decreases as

gastric inflammation progresses in severity [15–18]. In children

and adults, serum pepsinogen levels and their ratio correlate well

with the severity of gastric inflammation [15,19,20]. Importantly,

even if no clinical symptoms are manifest, with increasing age

progressive histological changes and gastric pathology develop

[21]. Indeed, progressive damage of the gastric mucosa was

observed in a 2-year follow-up of children with asymptomatic H.

pylori gastritis [22].

We hypothesized that gastric colonization by H. pylori inducing

gastric inflammation and possible changes in gastric acidity might

impact the serological response to CVD 103-HgR through

facilitating or inhibiting the passage of the vaccine strain through

the stomach, to the duodenum, the attachment site V. cholerae O1.

Therefore, we examined the association among evidence of H.

pylori infection (the presence of IgG antibodies to H. pylori and to

the CagA virulence protein encoded by a gene located in a

chromosomal pathogenicity island), serum PG I and PG II levels

(measures of gastric inflammation) and vibriocidal antibody

seroconversion, following oral immunization with CVD 103-

HgR in young children ,5 years and in children 5–9 years of age.

Since H. pylori may be a marker for other enteric infections that

exhibit enhanced transmission in crowded, low socioeconomic

level settings, we also examined whether past infection with

hepatitis A and S. flexneri 2a (known to be prevalent in Santiago in

the early 1990s [23]) correlate with the propensity to respond to

CVD 103-HgR.

Materials and Methods

Vaccine
Attenuated Vibrio cholerae O1 strain CVD 103-HgR was licensed

in the 1990s by many national regulatory agencies as a single-dose

live oral cholera vaccine and was commercialized in two

formulations, one containing ,108 CFU (OrocholH and Muta-

colH) for travelers from industrialized countries and the other

containing ,109 CFU (Orochol EH) for immunizing persons in

developing countries. CVD 103-HgR is currently being re-

commercialized by a new manufacturer (PaxVax, San Diego, CA).

Study design and populations
We tested coded (anonymized) stored serum samples collected

from children who were orally vaccinated with a single

56109 CFU dose of CVD 103-HgR in the course of 4 clinical

trials carried out by the Centro para Vacunas en Desarrollo, Chile

(CVD-Chile) in Santiago, Chile [8,12,24,25] in the 1990s. Three

trials assessed the immunogenicity of CVD 103-HgR in succes-

sively younger children of age 5–9 years [12], 2 to 4 years [24]

and, finally, infants and toddlers 3 to 17 months [25]; we excluded

sera of subjects ,6 months of age from the infant study because of

the inability to distinguish IgG H. pylori antibodies of maternal

origin that might still be present. Another trial studied children

aged 5 to 9 years who had fasting lactulose breath H2 tests to

determine whether the presence of SBBO influenced the

vibriocidal response to a dose of CVD 103-HgR [8]. Participants

of the original trials were healthy children; children under

antibiotic treatment were not enrolled.

Serum samples from 422 vaccinated pediatric subjects (47.3%

female; 184,5 years and 238 5–9 years of age) were available for

testing. The baseline specimen obtained prior to vaccination was

tested for H. pylori antibodies (except for the SBBO trial from

which we used the ,day-10 post-vaccination samples since

baseline specimens were no longer available from a proportion

of the subjects).

Laboratory methods
Serum vibriocidal antibody titers were measured upon comple-

tion of the clinical trials in the 1990s [8,12,24,25]. Vibriocidal

antibody seroconversion, defined as a .4-fold increase in serum

vibriocidal antibody titer between baseline and 8–14 days after

vaccination with one dose of CVD 103-HgR vaccine, was the

outcome variable. In the current study serum IgG antibodies to H.

pylori were measured using the EnzygnostH Anti-Helicobacter pylori

II/IgG Enzyme Linked Immunosorbent Assay (ELISA) kit

(Siemens Diagnostics Product GmbH, Marburg, Germany).

Optical density (OD) values $0.250 were considered positive.

The sensitivity of the kit in children is 92.7% and its specificity is

95.7%, and in those less than 6 years of age the respective values

were 91.6% and 97.1% [26]. H. pylori-positive sera were thereupon

tested for IgG antibodies to CagA using a commercial kit (Genesis
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Diagnostics, Cambridgeshire, UK). Samples were tested for H.

pylori antibodies in a blinded manner without knowing their

vibriocidal titers. The concentrations of serum PG I and II were

measured using ELISA kits (Biohit, Helsinki, Finland) according to

the manufacturer’s instructions and PG I:PG II ratios were

calculated. Cut-offs of .8 mg/L for PG II [18] and ,5 for the

ratio of PG I:PG II were used to indicate more severe degrees of

gastric inflammation. A serum PG I level ,25 mg/L denotes

gastric atrophy, which is very rare in children. We utilized values

of PG I.30 mg/L to indicate normal to high levels. To strengthen

the classification of H. pylori serostatus in children less than five

years of age, we followed the ‘‘2-tests strategy’’ [27] and classified

children into 3 categories: i) H. pylori seronegatives; ii) positive for

H. pylori IgG antibodies and having a serum PG II level #8 mg/L,

or; iii) positive for H. pylori IgG antibodies and having a serum PG

II level .8 mg/L, indicative of H. pylori gastritis. Sera were also

tested by ELISA kit (Abnova Inc. Taipei, Taiwan) for hepatitis A

antibodies following the manufacturer instructions, and for IgG

antibodies to S. flexneri 2a lipopolysaccharide (LPS) [28]; titers for

S. flexneri 2a were calculated from linear regression curves of

serially diluted serum samples and expressed as ELISA units/mL

[28]. The cutoff used to define positivity to S. flexneri IgG antibody

was determined as 208.9 units/mL; it was calculated as the mean

titer found among children ages 6–11 months (an age group of low

incidence of shigellosis) plus 3 standard deviations (SD). The

presence of S. flexneri and hepatitis A antibodies was considered an

additional proxy for low SES and suboptimal hygiene standards

[29] where the transmission of enteric pathogens is common.

Additional variables included age, sex and pre-vaccination

(baseline) vibriocidal antibody titer (reflecting prior natural

exposure to V. cholerae O1 or cross reacting antigens). ABO blood

typing was performed in two of the studies [12,24].

Statistical analysis
Differences in the percentage of vaccinees with vibriocidal

seroconversion after vaccination with CVD 103-HgR in H. pylori

seropositive versus seronegative subjects, according to CagA IgG

seropositivity, serum PG levels, age, sex, and presence of

antibodies to hepatitis A and S. flexneri were examined using chi

square test. Adjusted odds ratio (OR) and 95% Confidence

Intervals (CIs) were obtained from logistic regression models. The

variables entered in the multivariable analysis were baseline

vibriocidal titers, age, sex, H. pylori seropositivity, PG I, PG II, PG

I:PG II ratio and presence of hepatitis A and S. flexneri antibodies.

Analyses were stratified by age group (,5 years, 5–9 years), since

the vibriocidal seroconversion, the prevalence of H. pylori infection

and severity of gastritis may differ with age. One-way analysis of

variance (ANOVA) and Bonferroni test were used to examine

differences in the mean PG levels among H. pylori seropositive and

seronegative children by age group with multiple comparisons

correction. Correlations among the independent variables were

assessed using Spearman coefficient. P,0.05 was considered

statistically significant. Data were analyzed using SPSS version 20.

Ethics
Since we used archived anonymized samples that were collected

more than 15 years ago, without access to personal identifying

data, the IRB of University of Maryland School of Medicine

determined that the current study was exempt from full committee

review and did not require that an updated consent be obtained

from the individuals who provided the serum specimens.

Results

Overall vibriocidal antibody seroconversion
The pooled results of the four safety/immunogenicity studies of

CVD 103-HgR in Chilean pediatric subjects that had been

previously reported separately documented seroconversion of

vibriocidal antibody following vaccination with CVD 103-HgR

in 290 (68.7%) of the 422 children overall; however, seroconver-

sion was somewhat higher in subjects aged 5–9 years (73.1%) than

in children ,5 years of age (63.0%) (P = 0.027). Children who

failed to mount vibriocidal seroconversion had significantly higher

baseline titers of vibriocidal antibody GMT = 18.3, SD64.6) than

those who did seroconvert (GMT = 13.9, SD62.0) (P = 0.019).

The GMT of vibriocidal antibody after vaccination was higher in

persons of blood group O (GMT = 285.6, SD618.0) than in non-

O subjects (GMT = 144.8, SD67.1) (P = 0.014), but the serocon-

version rate was similar between the groups (70.1% vs. 64.4%

P = 0.34). The percentage of vibriocidal seroconversion among

males (71.4%) and females (66.4%) was similar (P = 0.27).

H. pylori seropositivity, serum PG levels and vibriocidal
seroconversion by age group

In total, 234 of the 422 children (55.5%) were seropositive for H.

pylori IgG antibodies. H. pylori seropositivity increased steeply

during the first 5 years of life, from 4.5% to 61.3%, and stabilized

at ,70%–83% in children age 5–9 years (P,0.001) (figure 1).

Serum PG levels were measured to assess the degree of gastric

inflammation (Table 1). In children ,5 years of age, the mean PG

II level was significantly higher among H. pylori seropositive than

seronegative children. Among children aged 5–9 years, the PG I

level was significantly increased in H. pylori-positive versus

seronegative children. Moreover, the mean PG I level in H.

pylori-seropositive children aged 5–9 years was significantly higher

than in H. pylori positive children ,5 years of age (Table 1).

An age-stratified analysis revealed that among children ,5

years of age the rate of vibriocidal antibody seroconversion was

markedly lower in H. pylori-infected (overall 46%, CagA-negative

46.4% and CagA-positive 45.5%) than in uninfected (69.4%)

subjects (P = 0.005) (Table 2). In this age group H. pylori

seropositive children with PG II#8.0 mg/L had slightly higher

(52%) vibriocidal serconversion than those with PG II.8.0 mg/L

(47%). In contrast, among children aged 5–9 years, 77.3% of

whom were H. pylori-positive, the vibriocidal seroconversion rate

was similar whether they were H. pylori seropositive (72.3%) or

seronegative (75.9%) (P = 0.59). However, among 5–9 year old

children with a serum PG I level .30 mg/L, there was a clear

trend towards a higher rate of vibriocidal seroconversion (P = 0.09)

(Table 2). In this age group 83.5% of the subjects with a PG I level

.30 mg/L were H. pylori-seropositive compared to only 45.5% of

those with lower PG I levels (P,0.001).

The above associations were confirmed in multivariable

analyses (Table 3). The odds of seroconversion were lowest in

children ,5 years of age who were seropositive for H. pylori and

had PG II.8 mg/L (P = 0.009) (Table 3). Among older children

5–9 years of age, those with serum PG I levels .30 mg/L had 4-

fold higher odds of seroconversion than subjects of this age with

lower PG I levels (P = 0.02). This model also showed that each one

log increase in baseline vibriocidal titer was associated with ,35%

lower likelihood of vibriocidal seroconversion following immuni-

zation with CVD 103-HgR. There was a significant positive, albeit

weak, correlation between baseline titer of vibriocidal antibody

and the presence of antibodies to H. pylori (r = 0.21, P,0.001),

S. flexneri (r = 0.22, P,0.001) and hepatitis A (r = 0.17, P = 0.001).

Whereas hepatitis A and S. flexneri seropositivity was significantly
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correlated with H. pylori infection (r = 0.22 and r = 0.51 respec-

tively, P,0.001), the presence of these antibodies was not

associated with vibriocidal seroconversion.

Discussion

We have found evidence that H. pylori infection modulates the

immune response to oral immunization with live oral cholera

vaccine in a complex and age-related manner. In our Chilean

pediatric cohorts H. pylori infection was acquired intensively during

the first years of life, reaching a prevalence of 83.3% by 5 years of

age (Figure 1), thereby corroborating earlier reports from Chile

[30] and from various developing countries [14,31]. Among young

children with H. pylori infection of relatively short duration,

gastritis is mild and presumably localized in the antrum and gastric

acid secretion may often be increased [32–35]. This can explain

why H. pylori-seropositive Chilean children ,5 years of age who

Figure 1. The Prevalence (%) of Helicobacter pylori infection by age.
doi:10.1371/journal.pone.0083999.g001

Table 1. Mean serum pepsinogens levels in relation to the presence of IgG H. pylori antibodies and by age group.

PG I PG II PG I:PG II ratio

Age,5 years

H. pylori-seronegative (n = 101) 65.6 (58.4–72.8) 5.7 (4.4–7.0) 22.2 (18.3–26.0)

H. pylori-seropositive (n = 44) 79.6 (68.2–91.0) 12.7 (6.9–18.4)* 19.8 (14.3–25.4)

Age 5 to 9 years

H. pylori-seronegative (n = 42) 69.3 (53.7–85.0) 9.2 (6.4–12.0) 12.7 (9.3–16.2)

H. pylori-seropositive (n = 162) 103.4 (95.8–111.0){ 11.0 (9.6–12.3) 15.3 (13.0–17.6)

Data presented are mean levels and 95% CI. By ANOVA there was a significant difference between the age groups and according to serostatus (P,0.001 for PG I and PG
II, and P = 0.002 for PG I:PG II ratio).
*Using the Bonferroni test that corrects for multiple comparisons a significant difference (P = 0.001) was noted in the serum PG II levels of H. pylori-seropositive vs.
seronegative children aged ,5 years.
{Using the Bonferroni test, a significant difference (P,0.001) was also found for serum PG I levels in H. pylori-seropositive vs. seronegative children aged 5–9 years. Also,
the mean serum PG I level among H. pylori-seropositive children aged 5–9 years was significantly higher than among H. pylori-seropositive children aged ,5 years
(P = 0.011). Other differences between the groups were not statistically significant.
doi:10.1371/journal.pone.0083999.t001
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Table 2. The association between H. pylori seropositivity, pepsinogen levels and vibriocidal seroconversion following vaccination
with CVD 103-HgR.

Total Vibriocidal antibody seroconversion, n (%) P value

Children ,5 years of age

Serum IgG antibodies to H. pylori and CagA

H. pylori-negative 134 93 (69.4)

H. pylori-positive (total) 50 23 (46.0)

H. pylori-positive, CagA-negative 28 13 (46.4)

H. pylori-positive, CagA-positive 22 10 (45.5) 0.0051

Serum PG I levels*

#30 mg/L 18 11 (61.1)

.30 mg/L 127 84 (66.1) 0.67

Serum PG II levels*

PG II#8 mg/L 106 67 (63.2)

PG II.8 mg/L 39 28 (71.8) 0.33

PG I:PG II ratio*

#5 16 10 (62.5)

.5 129 85 (65.9) 0.78

H. pylori positive and PG II.8 mg/L 15 7 (46.7)

H. pylori positive and PG II#8 mg/L 29 15 (51.7)

H. pylori negative 101 73 (72.3) 0.012"

Hepatitis A antibodies{

Negative 108 72 (66.7)

Positive 55 31 (56.4) 0.19

S. flexneri IgG antibodies`

,209 ELISA units/mL 105 69 (65.7)

$209 ELISA units/mL 62 37 (59.7) 0.43

Children aged 5–9 years

Serum IgG antibodies to H. pylori and CagA

H. pylori-negative 54 41 (75.9)

H. pylori-positive 184 133 (72.3)

H. pylori-positive, CagA-negative 134 98 (73.1)

H. pylori-positive, CagA-positive 50 35 (70.0) 0.591

Serum PG I levels*

#30 mg/L 22 13 (59.1)

.30 mg/L 182 138 (75.8) 0.09

Serum PG II levels*

PG II#8 mg/L 94 66 (70.2)

PG II.8 mg/L 110 85 (77.3) 0.25

PG I:PG II ratio*

#5 17 12 (70.6)

.5 187 139 (74.3) 0.73

Hepatitis A antibodies{

Negative 70 51 (72.9)

Positive 130 97 (74.6) 0.78

S. flexneri IgG antibodies`

,209 ELISA units/mL 35 28 (80.0)

$209 ELISA units/mL 174 129 (74.1) 0.46

1P for the difference between H. pylori-seropositive versus seronegative children.
"P for trend.
*PG analysis is based on 145 and 204 that belonged to children aged ,5 years and 5–9 years, respectively.
{163 and 200 samples were available for hepatitis A testing, and.
`167 and 209 samples were available for testing S. flexneri IgG antibody for children aged ,5 years and 5–9 years, respectively.
doi:10.1371/journal.pone.0083999.t002

H. pylori & Immune Response to Oral Vaccine

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e83999



had a high serum PG II level manifested a 86% lower likelihood of

vibriocidal antibody seroconversion following vaccination with

CVD 103-HgR (P = 0.009), while H. pylori seropositive children

with PG II,8 mg/L were ,65% less likely to develop vibriocidal

antibody seroconversion compared to young children lacking H.

pylori antibodies (P = 0.017).

In the older Chilean 5–9 year olds, serum PG levels indicate

that H. pylori infection was more chronic and extensive and had

progressed to greater degrees of gastric inflammation that might

involve the corpus, which in turn can be accompanied by

hypochlorhydria [15], a well-recognized risk factor for the

development of severe cholera [36–39]. Since long standing H.

pylori gastritis can diminish gastric acidity [40], it is not surprising

that studies from Bangladesh and Peru have reported a

significantly increased risk of cholera in H. pylori-infected persons

compared to uninfected ones [41–43]. Similarly, we observed that

older (age 5–9 years) Chilean subjects with H. pylori infection or

with higher serum PG I and PG II levels (indicating more severe

gastritis, most likely consequent to chronic H. pylori infection) had

higher odds of vibriocidal seroconversion following ingestion of

live cholera vaccine.

The age-dependent associations we observed make sense when

one takes into account the duration of H. pylori infection, the

physiological consequences of its progression and the exquisite

acid sensitivity of both wild type and attenuated V. cholerae O1 [39].

A study from Chile that compared gastric histological findings and

immunological profile of children ,12 years of age versus adults

infected with H. pylori provides data that supports our age-

dependent findings and the proposed explanations [44]. Lower

inflammation scores of the gastric mucosa were observed among

the children than adults, even though the bacterial load and

percent CagA-positivity were similar among H. pylori-infected

subjects, irrespective of age [44].

Whereas a high rate of vibriocidal antibody seroconversion was

observed among Chilean 5–9 year olds, particularly among

subjects with low baseline titers, the post-vaccination titers

achieved are lower than those recorded in vaccinated young

adults from industrialized countries [4–6]. We propose two

phenomena that jointly contribute to explain this. First,

hypochlorhydria also allows passage through the stomach of

increased numbers of fecal organisms to which persons living in

low socioeconomic environments are repetitively exposed. This

can lead to environmental enteropathy [7,45], which has been

well described in Latin America in school age children living in

poor environments [46] and which can diminish the vibriocidal

antibody response to CVD 103-HgR [8]. Second, H. pylori, which

may also affect the proximal duodenum, is a highly immuno-

modulating infection. It is quite possible that the proximal

duodenum, where V. cholerae attaches, is altered so that the

mucosa manifests both an up-regulated innate immune response

and a Th1 pro-inflammatory suppressive environment that

collectively inhibit the attenuated V. cholerae O1 vaccine

organisms [33,35].

Results of a clinical trial of live oral typhoid vaccine strain CVD

908-htrA in North American adults similarly showed that the

serological response was significantly stronger in persons with H.

pylori infection and chronic gastritis (based on serum PG levels)

[47]. This provides confirmatory evidence for the observations

made in the current study with live oral cholera vaccine in older

Chilean children.

H. pylori infection is acquired in early childhood in populations

living in crowded, low socioeconomic conditions, along with

exposure to other enteric pathogens. Some may argue that this

phenomenon, rather than H. pylori gastritis, leads to non-specific

priming and stimulation of the immune system that affects the

immunogenicity of CVD 103-HgR. We used serum antibodies to

hepatitis A and S. flexneri 2a as surrogates for enhanced exposure to

enteropathogens [29] and low socioeconomic level and adjusted

for their impact; notably, this did not modify the association

between H. pylori infection and vibriocidal seroconversion.

Our study has limitations. Serum IgG antibodies were

measured to detect H. pylori infection, which is not ideal in very

young children. However, the ELISA we used to detect H. pylori

IgG antibodies has high sensitivity and specificity in young

Table 3. Logistic regression models of the association between H. pylori infection, serum pepsinogen levels and vibriocidal
seroconversion after immunization with a single oral dose of CVD 103-HgR.

Unadjusted OR (95% CI)
Partially-adjusted OR
(95% CI){

Fully-adjusted OR
(95% CI) Pv

Children ,5 years of age (analysis 1)*

H. pylori-positive (vs. H. pylori-negative) 0.38 (0.18–0.79) 0.38 (0.18–0.81) 0.28 (0.12–0.64) 0.002

Children ,5 years of age (analysis 2)**

H. pylori positive and PG II#8 mg/L
(vs. H. pylori negative)

0.41 (0.17–.96) 0.40 (0.17–0.93) 0.34 (0.14–0.83) 0.017

H. pylori positive and PG II.8 mg/L
(vs. H. pylori negative)

0.33 (0.11–1.01) 0.38 (0.12–1.14) 0.14 (0.03–0.61) 0.009

Children aged 5–9 years*

Serum PG I.30 mg/L (vs. lower level) 2.17 (0.87–5.42) 2.23 (0.87–5.66) 4.41 (1.26–15.38) 0.02

Baseline vibriocidal titers (log scale) - - 0.65 (0.47–0.89) 0.007

{Partially adjusted analysis, in addition to H. pylori serostatus/PG levels, age and sex were added to the analysis.
*The following variables were entered: H. pylori infection, age (in years as a continuous variable), sex, PG I, PG II, PG I:PG II ratio, baseline vibriocidal antibody titers
(transformed into natural logarithm) S. flexneri 2a IgG and hepatitis A antibodies (as markers for environmental fecal contamination and low socioeconomic status). The
final model of children aged ,5 years included PG II and PG I:PG II ratio but they were not significant, and gender (OR 0.42 95% CI 0.19–0.92, for Males vs. females). The
final model of children aged 5–9 years included S. flexneri antibodies but it was not significantly associated with vibriocidal seroconversion.
**In addition to H. pylori/PG II status, the following variables were entered to the analysis: age (in years as a continuous variable), gender, S. flexneri 2a IgG, hepatitis A
antibodies and baseline vibriocidal antibody titers. The final model included the variables gender and hepatitis A, but they were not significantly associated with
vibriocidal antibody seroconversion,
doi:10.1371/journal.pone.0083999.t003
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children [26]. Moreover, H. pylori seropositivity correlated

significantly with serum pepsinogen levels, thus supporting the

validity of our results. Lastly, applying the stringent 2-test

strategy to indicate H. pylori gastritis in young children, i.e.,

H. pylori IgG seropositivity plus high PG II level, showed similar

results.

Strengths of our study include the utilization of identical

established methods to measure vibriocidal and H. pylori IgG

antibodies and other markers in serum specimens from the four

trials, and the same laboratory staff performed the assays. We hope

our findings will encourage others to study the effects of H. pylori

infection and its physiological consequences on the immunoge-

nicity of oral vaccines in children and adults in both developing

and industrialized country settings.
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