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Abstract

The metacaspase Mca1 from Saccharomyces cerevisiae displays a Q/N-rich region at its N-terminus reminiscent of yeast prion
proteins. In this study, we show that the ability of Mca1 to form insoluble aggregates is modulated by a peptide stretch
preceding its putative prion-forming domain. Based on its genomic locus, three potential translational start sites of Mca1
can give rise to two slightly different long Mca1 proteins or a short version, Mca1451/453 and Mca1432, respectively, although
under normal physiological conditions Mca1432 is the predominant form expressed. All Mca1 variants exhibit the Q/N-rich
regions, while only the long variants Mca1451/453 share an extra stretch of 19 amino acids at their N-terminal end. Strikingly,
only long versions of Mca1 but not Mca1432 revealed pronounced aggregation in vivo and displayed prion-like properties
when fused to the C-terminal domain of Sup35 suggesting that the N-terminal peptide element promotes the
conformational switch of Mca1 protein into an insoluble state. Transfer of the 19 N-terminal amino acid stretch of Mca1451

to the N-terminus of firefly luciferase resulted in increased aggregation of luciferase, suggesting a protein destabilizing
function of the peptide element. We conclude that the aggregation propensity of the potential yeast prion protein Mca1 in
vivo is strongly accelerated by a short peptide segment preceding its Q/N-rich region and we speculate that such a
conformational switch might occur in vivo via the usage of alternative translational start sites.
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Introduction

Several proteins that can undergo structural conversion from a

soluble state into an insoluble heritable prion conformation have

been characterized in the yeast Saccharomyces cerevisiae including

Sup35 forming the prion [PSI+] or Ure2p and its prion state

[URE3] [1–5]. A common feature of these yeast prion proteins is

the prion-forming domain (PFD), a glutamine and/or asparagine-

rich (Q/N-rich) region with repeats of oligopeptides, such as the

imperfect PQGGYQQYN repeats found in Sup35.

Sup35 is a translation termination factor and conversion to the

[PSI+] prion state inactivates Sup35 molecules thereby increasing

the levels of nonsense suppression [1,6,7]. The Sup35 protein has

three domains, an N-terminal PFD which is essential for the

conversion into the [PSI+] prion form, a middle domain and a

C-terminal domain, which is essential for its function in translation

termination [5,8,9].

The in vivo assay for monitoring [PSI+] usually involves read-

through of nonsense alleles in auxotrophic markers, e.g. ade1–14

(UAG) or ade2-1 (UAA). Cells lacking the [PSI+] prion fail

to synthesize adenine in the presence of a nonsense allele like

ade1–14. Accordingly, [psi2] cells cannot grow on minimal media

lacking adenine and in addition accumulate a red pigment on rich

media under adenine-limiting conditions. [PSI+] cells, however,

grow on minimal media lacking adenine (-ADE) and do not

accumulate the red pigment on rich media [1,10].

Recent database analyses and genetic screens were performed in

order to detect new yeast proteins with key prion features

including Q/N-rich regions, similar to prion forming domains of

other yeast prions [11–13]. Nemecek et al. [13] detected Mca1 as

a potential new prion protein by a genetic screen. Mca1 was

described earlier as a metacaspase that regulates apoptosis in

Saccharomyces cerevisiae [14]. Mca1 harbors a Q/N-rich region in its

N-terminal domain that is characteristic for yeast prion proteins

and aggregation-prone proteins. In addition, this putative prion-

forming domain of Mca1 contains several imperfect repeats of

QQYG that are reminiscent of the imperfect PQGGYQQYNre-

peats found in the yeast prion protein Sup35 (Figure 1). Nemecek

et al. [13] fused random yeast DNA fragments to the middle and

C-terminal domain of Sup35 (Sup35MC) and selected for clones

with increased read-through of the ade2-1 nonsense allele caused

by elevated aggregation of the Sup35MC fusion protein. Three

different clones contained parts of the Q/N-rich N-terminal

domain of Mca1 and the Ade+ phenotype of the Mca1-Sup35MC
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fusion protein dominantly segregated as a non-chromosomal

genetic element, typical for prion proteins. Furthermore, the

authors investigated several characteristic properties of yeast

prions including curability and metastability. They found that

the Ade+ phenotype could be cured by overexpression of Hsp104

and showed the reversible curability by spontaneous appearance of

the prion protein in a previously cured strain. De novo formation of

the Mca1 prion protein occurred by overexpression of the N-

terminal domain of Mca1 suggesting that the isolated Ade+ clone,

which contained a portion of Mca1, fulfills the criteria of a yeast

prion [13]. In another recent study, Alberti et al. performed a

bioinformatic proteome-wide survey for proteins with prion-like

properties in S. cerevisiae [11]. The authors experimentally

investigated 100 prion protein candidates and found 19 new

prions. Also in this study, Mca1 had been tested for its aggregation

properties, albeit the authors did not find compelling evidence for

[MCA+] being a prion. Mca1 did neither form SDS-resistant

aggregates in semi-denaturing detergent-agarose gel electropho-

resis, which would indicate prion-like structures, nor did a Mca1-

Sup35C fusion protein display an Ade+ phenotype.

Interestingly, based on its genetic structure three potential

translational starts of the MCA1 gene from yeast (YOR197W) exist

which could give rise to different isoforms. Two potential

translational start sites of MCA1 are in immediate vicinity giving

rise to Mca1 proteins that differ only slightly by two amino acids in

length (453 and 451 amino acids, respectively), while the third one

is more distant giving rise to a significantly shorter Mca1 protein of

432 amino acids. Which of these potential translational start sites

are used in vivo is still unclear due to the lack of supportive

experimental data. In addition, the annotated translational start of

MCA1 was changed over the past years. Based on automated

genome sequence comparison of closely related Saccharomyces

species, the translational start site of MCA1 was recently moved

downstream to the third AUG, giving rise to the short version of

the Mca1 protein (432 amino acids) [15,16].

Here we show that dependent on which isoform of Mca1 is

expressed, the aggregation propensity of Mca1 is strongly affected.

While the short version Mca1432 is completely soluble, the long

versions of Mca1 aggregate in vivo. The conversion of Mca1 from a

soluble protein into an insoluble conformation with prion-like

properties is triggered by the additional peptide stretch present at

the N-terminus of the long Mca1 versions. However, under

regular growth conditions only the short soluble isoform is

detectable in vivo.

Figure 1. Domain architecture of metacaspase Mca1. The annotated metacaspase Mca1 consists of 432 amino acids (Mca1432), whereas
previously two upstream translational start sites (57 and 63 base pairs upstream) have been annotated that give rise to Mca1 proteins of 451 amino
acids (Mca1451, N-terminal extension of MSLEVYLNYHQRRPTRFTI) and 453 amino acids length (Mca1453, N-terminal extension of MKMSLEVYL-
NYHQRRPTRFTI). In this study, we additionally used a 454 amino acids long Mca1 protein (Mca1454, N-terminal extension of MGKMSLEVYL-
NYHQRRPTRFTI) that introduced an additional glycine residue after the methionine because of cloning considerations as outlined in the text and
Materials and Methods. The additional N-terminal amino acids of the long Mca1 variants display a hydrophilic-hydrophobic charge distribution as
shown in the upper left part of the figure. The hydrophobicity of the MGKMSLEVYLNYHQRRPTRFTIpeptide stretch was calculated using the ProtScale
tool of the ExPASy Proteomics Server (www.expasy.org) that uses an amino acid scale described by Kyte and Doolittle [28]. All Mca1 variants also
contain a Q/N-rich region reminiscent of the prion-forming domain (PFD) of Sup35 and other yeast prion proteins. Additionally, the putative PFD of
Mca1 consists of several imperfect repeats of QQYGas visualized in the figure.
doi:10.1371/journal.pone.0009929.g001
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Results

Mca1432 is predominantly expressed in vivo
We were intrigued by the possibility of Mca1 from S. cerevisiae

being a potential new yeast prion protein and set out to examine the

aggregation and prion properties of this protein more closely. The

domain architecture and the putative prion-forming domain (PFD)

of Mca1 are displayed in Figure 1. First, we determined which

potential initiation codon of the MCA1 allele is used for translation in

vivo. The use of the recently annotated start would result in a Mca1

protein of 432 amino acids (designated hereafter Mca1432), while the

use of the AUG start codons 57 or 63 nucleotides upstream of the

currently annotated AUG would result in a Mca1 protein of 451 or

453 amino acid residues, respectively (Figure 1). Interestingly,

homologous Mca1 proteins from other fungi display similar features

in respect to their translational start site. For example, Kluyveromyces

lactis Mca1 contains a Q/N-rich N-terminal region and a potential

second translational start site, giving rise to a 20 amino acids N-

terminally extended isoform (data not shown).

The additional amino acids extension at the N-terminus of

longer Mca1 versions should result in a molecular weight

difference of 2.4 or 2.7 kDa compared to Mca1432. However,

PFD containing proteins migrate aberrantly in SDS-PAGE gels

[17–19]. Accordingly, we could not accurately determine the

molecular weight of Mca1 expressed in vivo by immunoblotting of

wild type lysate with polyclonal antibodies raised against Mca1.

Also, our attempts to purify C-terminally TAP-tagged Mca1

expressed under authentic chromosomal conditions from S.

cerevisiae failed due to the very low abundance of Mca1 and

massive contamination by unspecifically co-purified proteins

which did not allow the determination of its molecular mass by

mass spectrometry. Therefore, we chose an alternative strategy to

elucidate the translational start site used in vivo. We cloned two

MCA1 genes with different translational start sites that served as

standards to distinguish the long Mca1 versions from the short

Mca1 protein. The short MCA1 gene contained only the third

AUG (bp +1 to bp +1299 respective to the currently annotated

MCA1 coding sequence) giving rise to Mca1432. The long version

of MCA1 started at the first AUG (bp 263 to bp +1299 respective

to the annotated MCA1 coding sequence). Due to cloning

considerations the long MCA1 gene encoded an additional glycine

residue after the initial methionine thereby resulting in a Mca1

protein of 454 amino acids (designated hereafter Mca1454,

Figure 1). Both MCA1 genes were cloned under control of a

copper-inducible promoter into pRS313. To determine the

authentic translational start of MCA1 in vivo, we additionally

cloned the MCA1 containing DNA segment including its

endogenous promoter and terminator regions (MCA1endog = bp

2582 to bp +1799 respective to the annotated MCA1 coding

sequence) into pRS313 yeast vector lacking the copper-inducible

promoter. We transformed the plasmids encoding MCA1454

(V414) and MCA1432 (V413), as well as MCA1 under endogenous

control (MCA1endog = V415) into mca1D yeast cells lacking the

chromosomal MCA1 gene. After copper induction of the plasmid

encoded MCA1454 and MCA1432 genes, total cell lysates were

prepared and all Mca1 variants were visualized by immunodetec-

tion using polyclonal Mca1 antibodies. As shown in Figure 2A,

both Mca1 isoforms could be distinguished by their migration

behavior in SDS-PAGE albeit they only displayed a small mass

difference (Figure 2A, lanes 2 and 3). While cells expressing

Mca1432 showed only one signal with an approximate size of

50 kDa, cells expressing Mca1454 driven by the copper promoter

showed a signal at a size of about 55 kDa reflecting full-length

Mca1454 and two additional smaller products. We assume that the

smaller products are either due to the usage of alternative

downstream AUG translational start sites or perhaps resulted from

proteolytic degradation. Importantly, comparison with the signal

obtained from cells expressing MCA1 under endogenous control

clearly showed that the short version Mca1432 is identical to wild

type Mca1 indicating that the third translational start site of MCA1

is predominantly used in vivo.

Aggregation of Mca1 is dependent on the N-terminal
amino acid residues preceding the putative prion-
forming domain

Importantly, the putative prion-forming domain is present in

both cloned Mca1 variants, Mca1454 and Mca1432. Thus, we

Figure 2. Native start site and aggregation analysis of Mca1. (A)
Mca1432 and Mca1454 (N-terminal extension MGKMSLEVYL-
NYHQRRPTRFTI) were expressed from a copper-inducible promoter in
the presence of 150 mM CuSO4 and endogenous Mca1 was expressed
from its native promoter in a strain lacking the chromosomal MCA1
gene (Y103). Mca1 protein was detected using polyclonal anti-Mca1
antibodies and immunoblotting. Plasmids used in this assay: V294
(vector control = VC), V413 (Mca1432), V414 (Mca1454) and V415
(endogenous Mca1). (B) MCA1432 and MCA1454 (N-terminal extension
MGKMSLEVYLNYHQRRPTRFTI) were expressed from a copper-inducible
promoter and endogenous Mca1 was expressed from its native
promoter in a mca1D strain (Y103). Soluble and aggregated proteins
were separated by low-spin (18,0006g) and high-spin (100,0006g)
centrifugation. Mca1 protein was detected using polyclonal anti-Mca1
antibodies (raised against Mca1454) and immunoblotting. Rnq1 was
detected using polyclonal anti-Rnq1 antibodies. (T) total lysate; (LS) low-
spin supernatant fraction; (LP) low-spin pellet fraction; (HS) high-spin
supernatant fraction; (HP) high-spin pellet fraction. Plasmids used in this
assay: V294 (vector control = VC), V413 (Mca1432), V414 (Mca1454) and
V415 (endogenous Mca1). Please note that the two smaller fragments
of Mca1454 seen in A (see text for details) were also present in B, albeit
not shown in this section.
doi:10.1371/journal.pone.0009929.g002
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analyzed the aggregation properties of the different Mca1 isoforms

by preparing lysates from mca1D cells expressing copper-inducible

MCA1454 or MCA1432, as well as MCA1 under endogenous control.

The lysates were applied to sequential centrifugation analysis to

differentiate between large aggregates that sediment by low-speed

centrifugation, and smaller ones or aggregates with specific

sedimentation properties such as Rnq1 aggregates that could be

monitored by high-speed centrifugation. As it is evident in

Figure 2B, endogenous Mca1 and the short version Mca1432

controlled by the copper-inducible promoter were exclusively

found in the supernatant but not in the pellet fraction implying

that these Mca1 variants do not aggregate under the tested

conditions. In contrast, the Mca1454 variant revealed insoluble

material by both, low-speed and high-speed centrifugation with

18,000 g and 100,000 g, respectively. Based on the fact that the

same promoter drives both Mca1 variants, Mca1432 and Mca1454,

and that we detected similar total protein levels, the pronounced

difference in the solubility can be attributed to the additional N-

terminal amino acid stretch present in Mca1454.

To further analyze the aggregation properties of Mca1 in vivo,

we fused the different Mca1 constructs to green-fluorescent protein

(GFP) under the control of a copper-inducible promoter

(Figure 3A) and expressed the fusion proteins in cells lacking the

chromosomal MCA1 gene. As discussed above, three translational

Figure 3. Quantification of Mca1-GFP aggregates. (A) Domain architecture of the various Mca1-GFP fusion constructs used for fluorescence
microscopy analysis. (1) Mca1454N-GFP, contains the N-terminal extension MGKMSLEVYLNYHQRRPTRFTIand the prion-forming domain of Mca1454

(amino acids 1-148) fused to sGFP; (2) Mca1454-GFP, Mca1 with an N-terminal extension of MGKMSLEVYLNYHQRRPTRFTIfused to sGFP; (3) Mca1451-
GFP, Mca1 with an N-terminal extension of MSLEVYLNYHQRRPTRFTIfused to sGFP; (4) Mca1432-GFP; (5) Mca1C-GFP, caspase domain of Mca1 fused to
sGFP; (6) Mca1mut1-GFP, Mca1 with an N-terminal extension of MSLEVYLNYHfused to sGFP, and (7) Mca1mut2-GFP, Mca1 with an N-terminal extension
of MQRRPTRFTI fused to sGFP. (B) Mca1454N-GFP, Mca1454-GFP, Mca1451-GFP, Mca1432-GFP, Mca1C-GFP, Sup35NM-GFP and GFP control were
expressed in a strain lacking the chromosomal MCA1 gene (Y103) for 24 hours by induction with 150 mM CuSO4. GFP-expressing cells were analyzed
using fluorescence microscopy. Plasmids used: V454 (Mca1432-GFP), V455 (Mca1451-GFP), V84 (Mca1454N-GFP), V85 (Mca1454-GFP), V106 (Mca1C-GFP),
V66 (Sup35NM-GFP) and V26 (GFP control). (C) Mca1454N-GFP, Mca1454-GFP, Mca1C-GFP, Sup35NM-GFP and GFP control were expressed in a MCA1+

(WT = Y67) strain by induction with 150 mM CuSO4 for 24 hours. GFP-expressing cells were analyzed using fluorescence microscopy. Plasmids used
in this assay: V84 (Mca1454N-GFP), V85 (Mca1454-GFP), V106 (Mca1C-GFP), V66 (Sup35NM-GFP) and V26 (GFP control). (D) Mca1432-GFP, Mca1451-GFP,
Mca1mut1-GFP, Mca1mut2-GFP, firefly luciferase - GFP (FFL-GFP) and FFL-GFP with the 19 amino acids N-terminal extension of MSLEVYLNYHQRRPTRF-
TI(FFL19aa-GFP) were expressed in a mca1D strain (Y103) by induction with 150 mM CuSO4 for 24 hours. GFP-expressing cells were analyzed using
fluorescence microscopy. Plasmids used in this assay: V454 (Mca1432-GFP), V455 (Mca1451-GFP), V456 (Mca1mut1-GFP), V457 (Mca1mut2-GFP), V481
(FFL-GFP) and V458 (FFL19aa-GFP).
doi:10.1371/journal.pone.0009929.g003
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start sites can be theoretically engaged based on the genomic locus

of MCA1. Thus, we also cloned the third Mca1451 variant as GFP-

fusion protein (MCA1451 = bp 257 to bp +1299 respective to the

annotated MCA1 coding sequence, Figure 1) to test for the

solubility of the second extended Mca1 version (Figure 3 and

Figure 4).

The expression of both Mca1454-GFP and Mca1451-GFP fusion

proteins led to aggregate formation after 24 hours of induction in

cells deleted for the chromosomal MCA1 gene as well as in wild

type cells. In contrast, for the short version of Mca1 (Mca1432-

GFP) and for the truncated Mca1 variant lacking the putative

prion-forming domain (Mca1C-GFP) significantly less GFP foci

were found (Figure 3 and Figure 4). A quantitative analysis of the

frequency of aggregate formation in cells deleted for chromosomal

MCA1 revealed Mca1454-GFP and Mca1451-GFP aggregates

in about 50% of the cells, whereas we found Mca1432-GFP

aggregates in only about 10% of the analyzed cells (Figure 3B).

Importantly, both long Mca1 variants, Mca1454-GFP and

Mca1451-GFP, share the 19 amino acids N-terminal extension

segment (MSLEVYLNYHQRRPTRFTI, Figure 1) and show very

similar aggregation properties in vivo. Thus, the major difference in

solubility observed for the two long Mca1 variants compared

to the short Mca1432-GFP protein can be attributed to this

N-terminal stretch of additional 19 amino acids which is absent in

Mca1432-GFP. As control, we investigated the fusion protein

Sup35NM-GFP which was expressed by similar means and at

comparable levels (data not shown and Figure 3B). Expression of

the Sup35NM-GFP fusion protein caused aggregation in about

20% of the cells which is consistent with previously published data

[20] supporting the significance of Mca1451-GFP and Mca1454-

GFP aggregation under the conditions we tested. We additionally

analyzed the effects of Mca1454–GFP aggregation in cells

containing a wild type copy of MCA1 and found no difference in

the frequency of GFP aggregate formation (Figure 3C). Impor-

tantly, a fusion comprising only the N-terminal extension of

Mca1454 together with the putative prion-forming domain of

Mca1 (Mca1454N-GFP containing amino acids 1 to 148 of

Mca1454) to GFP displayed aggregation levels comparable to full

length Mca1454 and Mca1451. In contrast, truncated Mca1

containing only the caspase domain (Mca1C, amino acids 150

to 451) fused to GFP did not aggregate (Figures 3B+3C) suggesting

that the PFD domain is essential but not sufficient for the

pronounced aggregation of Mca1454 and Mca1451.

In summary, we conclude that the short GFP-fusion version of

Mca1432 has only a latent aggregation tendency. However, the

addition of 19 amino acids to the N-terminus of Mca1432 converts

the Mca1 protein into a strong aggregation-prone variant in vivo.

Next, we analyzed the N-terminal 19 amino acids of Mca1 for

their biochemical properties and found an unusual hydrophobic-

hydrophilic charge distribution (Figure 1). We wondered whether

the strong hydrophobic character within the first 10 amino acids is

responsible for the strongly enhanced aggregation of Mca1451.

Therefore, we divided the 19 amino acids into two parts and fused

either the hydrophobic (Mca1mut1) or the hydrophilic part

Figure 4. Fluorescence microscopy of Mca1-GFP aggregates. (A) Strain Y103 (mca1D) expressing copper-inducible GFP control, Mca1432-GFP
and Mca1451-GFP was analyzed by fluorescence microscopy after 24 hours of induction with 150 mM CuSO4. Punctate Mca1-GFP aggregates are
predominantly found in cells expressing Mca1451-GFP, but not in cells expressing Mca1432-GFP. DIC = differential interference contrast. (B) Strain Y75
(OT55; wildtype MCA1, weak [PSI+][PIN+]) expressing copper-inducible GFP control, Mca1454N-GFP and Mca1454-GFP was analyzed by fluorescence
microscopy after 24 hours of induction with 150 mM CuSO4. Punctate GFP aggregates are predominantly found in cells expressing Mca1454-GFP and
Mca1454N-GFP. DIC = differential interference contrast.
doi:10.1371/journal.pone.0009929.g004

Aggregation Properties of Mca1

PLoS ONE | www.plosone.org 5 March 2010 | Volume 5 | Issue 3 | e9929



(Mca1mut2) of the 19 amino acids stretch to Mca1432-GFP and

analyzed the different truncation mutants for their ability to form

GFP aggregates. As displayed in Figure 3D, the frequency of

aggregate formation was not altered by the different truncations,

indicating that the presence of either hydrophilic or hydrophobic

stretch at the N-terminus of the prion-forming domain of Mca1 is

sufficient to destabilize the protein conformation.

Next, we investigated whether the destabilizing effect of these 19

amino acids is specific for Mca1 or perhaps portable to other

proteins as well. To this end, we constructed a fusion protein

containing the N-terminal 19 amino acids stretch of Mca1451 fused

N-terminally to firefly luciferase together with a GFP moiety at the

C-terminus (FFL19aa-GFP). Luciferase has no Q/N-rich region

and displayed only minor protein aggregation on its own.

However, the frequency of GFP aggregates was 3-fold increased

for FFL19aa-GFP although the aggregation was clearly less

pronounced compared to Mca1451 (Figure 3D). We conclude that

the increased ability to form aggregates of Mca1451 and FFL19aa is

due to the presence of the additional N-terminal 19 amino acids

stretch that presumably destabilizes protein conformations in

general but shows a more dramatic effect when combined with the

Q/N-rich region of Mca1.

The extended version of Mca1 fused to Sup35C displays a
nonsense-suppressor phenotype

Intrigued by the ability of the long Mca1 isoforms to form

aggregates dependent on their extra N-terminal amino acids and

the Q/N-rich prion-forming domain, we examined the aggrega-

tion properties and a potential prion-like behavior of Mca1454

more closely. In order to mimic the suppressor phenotype of

[PSI+], the prion isoform of the translation termination factor

Sup35, we constructed different Mca1454 fusion proteins to the C-

terminal translation termination domain of Sup35 (Sup35C). It is

important to note that all Mca1454-Sup35C fusion proteins did

complement a sup35D deletion strain indicating that the Mca1454-

Sup35C fusions are functional in vivo (not shown).

First, we studied the ability of different Mca1454-Sup35C fusion

proteins to form protein aggregates by centrifugation analysis. As

shown in Figure 5A, the aggregate formation of Mca1454-Sup35C

was dependent on the Q/N-rich region of Mca1454. Neither

Sup35C alone, nor Mca1C-Sup35C that lacks the entire N-

terminal domain including the PFD of Mca1 displayed pro-

nounced aggregation properties. However, we detected strong

aggregation of both full-length Mca1454-Sup35C and a variant

containing the N-terminal extension of Mca1454 together with the

PFD-domain (Mca1454N-Sup35C) in the respective pellet frac-

tions. Importantly, the aggregation properties of both Mca1454-

Sup35 and Mca1454N-Sup35C closely mimic the aggregation

properties of endogenous Sup35 in a [PSI+] strain (Figure 5).

These results indicate that Mca1454 is able to mimic the

aggregation-prone nature of Sup35 prion proteins in vivo.

To investigate this possibility further, we examined the ability of

the different Mca1454- Sup35C fusion proteins to induce an Ade+

phenotype of a strain containing the ade1–14 nonsense mutation.

We generated strains lacking chromosomally encoded SUP35 but

expressing the Mca1454-Sup35C, Mca1454N-Sup35C, or Mca1C-

Sup35 fusion protein from a constitutive GPD-promoter, and

tested two independently isolated clones of each strain. While cells

Figure 5. Aggregation analysis and Ade+ phenotype of Mca1454-Sup35C. (A) Full-length Mca1454 (N-terminal extension of
MGKMSLEVYLNYHQRRPTRFTI), the N-terminal extension and Q/N-rich region of Mca1454 (Mca1454N) and Mca1C (caspase domain of Mca1) were
fused to Sup35C and expressed in a sup35D strain. Soluble and aggregated proteins were separated by centrifugation analysis and detected using
polyclonal anti-Sup35C antibodies and immunoblotting. Mca1454-Sup35C fusions revealed aggregation dependent on the Q/N-rich region of
Mca1454. Strains used in this assay (from top to bottom): Y133 (endogenous Sup35p; [PSI+]), Y312 (p2HG-SUP35C), Y320 (p2HG-MCA1454-SUP35C), Y316
(p2HG-MCA1454N-SUP35C), Y322 (p2HG-MCA1C-SUP35C). (B) Full-length Mca1454 (N-terminal extension of MGKMSLEVYLNYHQRRPTRFTI), the N-
terminal extension and Q/N-rich region of Mca1454 (Mca1454N) and Mca1C (caspase domain of Mca1) were fused to Sup35C and constitutively
expressed in a sup35D strain harboring the chromosomal ade1–14 mutation. Growth of two independent clones was analyzed on media lacking
adenine after 12 days of incubation. Strains used in this assay: Y133 (endogenous Sup35p; [PSI+]), Y81 ([psi2][pin2]), Y320 (p2HG-MCA1454-SUP35C),
Y316 (p2HG-MCA1454N-SUP35C), Y322 (p2HG-MCA1C-SUP35C), Y312 (p2HG-SUP35C).
doi:10.1371/journal.pone.0009929.g005
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expressing the Mca1C-Sup35 fusion protein or only Sup35

showed no growth, cells harboring the Mca1454-Sup35C or

Mca1454N-Sup35C fusion protein showed growth on adenine

minimal media (Figure 5B) and also white color on rich media

(data not shown) confirming the pronounced aggregation

properties of Mca1454.

In summary, our results suggest that the prion-like domain of

Mca1, together with the extra N-terminal peptide stretch of

Mca1454, has the capacity to convert Mca1 into an aggregation-

prone state that can additionally induce an Ade+ nonsense

suppressor phenotype similar to the Sup35 prion protein.

Discussion

The metacaspase Mca1 of Saccharomyces cerevisiae contains a Q/

N-rich region similar to the prion-forming domains of yeast prion

proteins like Sup35. Mca1 can theoretically be expressed in three

isoforms that differ by extra amino acids at the N-terminus. In this

study, we showed that this N-terminal extension segment is critical

for the pronounced aggregation properties of Mca1. We found

that the longer versions of Mca1 (Mca1451/454), which share an N-

terminal extension of 19 amino acids, form significantly more

aggregates than the shorter version of Mca1 (Mca1432). We further

analyzed the aggregation properties of Mca1432, Mca1451,

Mca1454 and various truncation mutants of the N-terminal 19

amino acids stretch upstream of the endogenous start site and

found that the ability of Mca1 to form aggregates is dependent on

the addition of upstream N-terminal amino acids as well as on the

presence of the Q/N- rich region of Mca1.

To our surprise, the length and the overall character of the N-

terminal extension seems not to be of decisive importance for the

aggregation of Mca1. The frequency of aggregate formation was

similar for the two extended Mca1 versions (Mca1454 and

Mca1451) and also for the truncation mutants of the amino-

terminal hydrophobic-hydrophilic stretch, Mca1mut1 (containing

the hydrophobic part) and Mca1mut2 (containing the hydrophilic

part). This indicates that the addition of either a hydrophobic,

hydrophilic, or hydrophobic-hydrophilic stretch to the N-terminus

of the Q/N-rich region of Mca1 is sufficient for destabilizing the

protein conformation. The addition of the hydrophobic-hydro-

philic 19 amino acids stretch to the N-terminus of firefly luciferase

also increased the frequency of aggregate formation. Firefly

luciferase lacks an aggregation-prone Q/N-rich region, suggesting

that the 19 amino acids N-terminal extension has a general

destabilizing effect on protein conformations. Such destabilizing

effects of N-terminal extensions had been observed in previous

studies investigating polyQ-proteins, which are not related to

prions but also capable to convert their structures into amyloid-like

fibers. A FLAG-tag was found to unmask the latent polyQ length-

dependent toxicity in polyQ-expanded exon I of Huntingtin

protein (Htt) [21]. Moreover, a very recent analysis of the

Frydman lab showed that polyQ aggregation kinetics is not solely a

function of polyQ repeat length, but rather includes the critical

contribution of the N-terminal 17 amino acid residues forming an

amphipathic helix and promoting rapid Htt aggregation by direct

modulation of Htt conformation [22]. Thus far, it is unclear why

and how the N-terminal extension of Mca1 has such a dramatic

impact on the aggregation properties of Mca1 and further analyses

are required to resolve that finding on a mechanistic basis.

However, we speculate that the addition of the hydrophobic-

hydrophilic 19 amino acids stretch to the N-terminus of Mca1 or

luciferase presumably destabilizes the protein conformation,

thereby increasing the probability of aggregate formation, which

in case of Mca1 allows for conversion of the protein into an

aggregation-prone state potentially displaying prion-like proper-

ties.

Intrigued by the possibility that the sole addition of N-terminal

amino acids might trigger the aggregation properties of Mca1, we

furthermore characterized the potential of the aggregation-prone

version of Mca1 (Mca1454) to induce an Ade+ phenotype if fused to

the C-terminal domain of Sup35. We found that Mca1454-Sup35C

fusion constructs can complement a sup35D deletion strain and

indeed displayed an Ade+ phenotype dependent on the putative

prion-forming domain of Mca1454. Only constructs containing the

Q/N-rich domain of Mca1454 fused to Sup35C were able to

suppress the adenine deficient phenotype of strains harboring the

ade1–14 mutation, as analyzed by growth on adenine minimal

media as well as white color on rich media. Thus, the long Mca1

isoform, Mca1454, reveals an aggregation behavior reminiscent of

yeast prion proteins like Sup35.

The question remains why Nemecek et al. [13] detected Mca1

as a yeast prion protein in their genetic screen, whereas Alberti et

al. [11] did not detect Mca1 in their respective systematic screen

for yeast prions. Based on the results presented in this study, we

can speculate about this issue. Nemecek and coworkers [13]

investigated a MCA1 fragment starting 161 base pairs upstream of

the MCA1 coding region including all potential translation

initiation sites fused to Sup35C on a plasmid called p20MCA.

Thus, in addition to the shorter Mca1432 version, theoretically also

the longer Mca1 version could be expressed by their construct,

perhaps at a level that could not be detected under their assay

conditions but sufficient to trigger aggregation of Mca1. In

contrast, Alberti et al. [11] cloned MCA1 for their study according

to the currently annotated start site that is lacking the destabilizing

N-terminal amino acids. This would resolve, together with our

findings showing that the extra N-terminal amino acids modulate

the aggregation properties of Mca1, the discrepancy in the

conclusions regarding the prion properties of Mca1 that are

present in the two studies [11,13]. Alternatively, and not mutually

exclusive, it is also possible that differences in the experimental

systems used by Alberti et al. (who focused on full-length Mca1

fusions to reporter proteins) and Nemecek et al. (who fused the N-

terminal proposed prion-forming domain of Mca1 to reporter

proteins) could contribute to the different findings about the prion

properties of Mca1.

Many intrinsic and extrinsic factors are known that can

contribute to the conversion of soluble proteins into an

aggregation-prone or prion-like state, including chaperones and

various stress conditions. To our knowledge, this is the first report

about a potential yeast prion protein that strongly varies in its

aggregation and potential prion-like properties based on the

translational start codon employed by nature. We provide

evidence that the delicate balance of Mca1 conformation depends

on its N-terminal start. Although there is no proof so far that such

a translational switch of the start codon occurs in vivo for Mca1 or

any other prion-like protein, we consider such a hypothesis as very

attractive. It is tempting to speculate that perhaps yeast cells may

also use the alternative translation initiation codons of MCA1

under special environmental conditions. It is known that

alternative usage of ATG codons can be triggered, for example,

in a hormone-dependent manner in the testis or by stress

conditions [23].

Thus far, we could not detect such a condition for Mca1 (data

not shown). Interestingly, we found by screening yeast proteins

harboring potential prion-forming domains for additional up-

stream start sites that Pgd1, a subunit of the RNA polymerase II

mediator complex, also possesses an alternative, upstream start

site. This finding indicates that other aggregation-prone proteins
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might also feature alternative start sites that may change their

aggregation properties according to the isoform made in the cell.

Additionally, Komar et al. [24] described an internal ribosome

entry site (IRES) in the mRNA of URE2. Expression of Ure2 from

that internal initiation site resulted in a truncated Ure2 protein

that lacked the prion-forming domain. Importantly, the authors

showed that this alternative, truncated Ure2 protein affected the

[URE3] prion phenotype indicating that yeast cells can influence

propagation of prion proteins by using different translation

initiation sites depending on e.g. growth conditions or environ-

mental signals.

Materials and Methods

Strains and plasmids used in this study
Strains and plasmids constructed and used in this study are

listed in Table 1 and Table 2. Cloning strategies and primer

sequences are listed in supplemental Table S1. The sup35D strain

Y133 was generated by transforming strain Y119 [25] with PCR-

generated copies of the kanmx cassette amplified from plasmid

pFA6a-KanMX6 [26] with primers containing regions homolo-

gous to the SUP35 locus: (CCATTGTACTGTAACAAAAAG-

CGGTTTCTTCATGACTTGCTCGGcggatccccgggttaattaa and

GCATTTACTTATGTTTGCAAGAAATTTACTCGGCgaatt-

cgagctcgtttaaac, regions homologous to SUP35 locus indicated in

capital letters).

Aggregation analysis of Mca1, Sup35 and Rnq1
Cultures for aggregation analysis were grown in appropriate

media to mid-log phase and cell lysis was performed as described

previously [5,27]. Protein aggregates were separated by low- and

high-speed centrifugation (18,000 and 100,000 g, respectively) and

subsequently analyzed by SDS-PAGE and Western blotting using

standard techniques. Sup35, Rnq1 and Mca1 proteins were

detected using polyclonal anti-Sup35 antibodies [7], polyclonal

anti-Rnq1 antibodies [5] and polyclonal anti-Mca1454 antibodies

(this study), respectively. For preparation of crude cell extracts for

Western Blot analysis NaOH lysis was performed.

Fluorescence microscopy
Cells containing the respective GFP vectors were grown

overnight in appropriate selective media. Subsequently, the

cultures were diluted into fresh selective media, expression was

induced by addition of 150 mM CuSO4 and the cells were grown

for additional 24 hours. Fluorescence was observed using a Carl

Zeiss fluorescence microscope at 1006 magnification using a

standard FITC filter set.

Assays for Ade+ formation and curing
Mca1-Sup35C fusions were assayed for their Ade+ phenotype

through the inability of aggregated Sup35 to terminate translation.

Accordingly, readthrough of the ade1–14 (UGA) allele enables

adenine biosynthesis and additionally prevents the accumulation

of a red pigment.

Mca1-Sup35C fusion proteins were constitutively expressed in a

strain lacking the chromosomal SUP35 gene and growth on media

lacking adenine was analyzed after four and 18 days of incubation,

respectively. The strains and plasmids used in this study are listed

in Table 1 and Table 2.

Table 1. List of plasmids used and constructed in this study.

Plasmid number Relevant characteristics Vector backbone Reference

V26 (pmCUPsGFP) PCUP1-sGFP pRS316 [7]

V29 pRS313 [29]

V66 (CNMsG) PCUP1-SUP35NM-sGFP pRS316 [7]

V84 PCUP1-MCA1454N-sGFP (amino acids 1-148 of Mca1454) pRS316 this study

V85 PCUP1-MCA1454-sGFP (N-terminal extension of MGKMSLEVYLNYHQRRPTRFTI) pRS316 this study

V106 PCUP1-MCA1C-sGFP pRS316 this study

V119 PGPD p2HG [8]

V123 PGPD-MCA1454-SUP35C (N-terminal extension of MGKMSLEVYLNYHQRRPTRFTI) p2HG this study

V124 PGPD-MCA1454N-SUP35C (amino acids 1-148 of Mca1454) p2HG this study

V236 PGPD-SUP35C p2HG this study

V257 PGPD-MCA1C-SUP35C p2HG this study

V294 pmCUP313 pRS313 [30]

V334 PCUP1-MCA1432N-sGFP pRS316 this study

V413 PCUP1-MCA1432 pRS313 this study

V414 PCUP1-MCA1454 (N-terminal extension of MGKMSLEVYLNYHQRRPTRFTI) pRS313 this study

V415 Pendo-MCA1 pRS313 this study

V454 PCUP1-MCA1432-sGFP pRS316 this study

V455 PCUP1-MCA1451-sGFP (N-terminal extension of MSLEVYLNYHQRRPTRFTI) pRS316 this study

V456 PCUP1-MCA1mut1-sGFP (N-terminal extension of MSLEVYLNYH) pRS316 this study

V457 PCUP1-MCA1mut2-sGFP (N-terminal extension of MQRRPTRFTI) pRS316 this study

V458 PCUP1-FFL19aa-sGFP (N-terminal extension of MSLEVYLNYHQRRPTRFTI) pRS316 this study

V481 PCUP1-FFL-sGFP pRS316 this study

Cloning strategies and primer sequences are given in supplemental Table S1.
doi:10.1371/journal.pone.0009929.t001
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