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Abstract

Background: Mathematical models have been used to study the dynamics of infectious disease outbreaks and predict the
effectiveness of potential mass vaccination campaigns. However, models depend on simplifying assumptions to be
tractable, and the consequences of making such assumptions need to be studied. Two assumptions usually incorporated by
mathematical models of vector-borne disease transmission is homogeneous mixing among the hosts and vectors and
homogeneous distribution of the vectors.

Methodology/Principal Findings: We explored the effects of mosquito movement and distribution in an individual-based
model of dengue transmission in which humans and mosquitoes are explicitly represented in a spatial environment. We
found that the limited flight range of the vector in the model greatly reduced its ability to transmit dengue among humans.
A model that does not assume a limited flight range could yield similar attack rates when transmissibility of dengue was
reduced by 39%. A model in which mosquitoes are distributed uniformly across locations behaves similarly to one in which
the number of mosquitoes per location is drawn from an exponential distribution with a slightly higher mean number of
mosquitoes per location. When the models with different assumptions were calibrated to have similar human infection
attack rates, mass vaccination had nearly identical effects.

Conclusions/Significance: Small changes in assumptions in a mathematical model of dengue transmission can greatly
change its behavior, but estimates of the effectiveness of mass dengue vaccination are robust to some simplifying
assumptions typically made in mathematical models of vector-borne disease.
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Introduction

Mathematical models of dengue transmission can help elucidate

the dynamics of infectious disease transmission and will likely play

a role in planning for interventions such as mass vaccination [1,2].

Dengue is a vector-borne disease that infects an estimated 390

million individuals per year, resulting in about 96 million illnesses

[3]. Because the outcome of interest is usually the infection of

humans, a minimal mathematical model could represent the

transmission of the dengue virus from infected to susceptible

human hosts without explicitly representing the vector, Aedes

aegypti. Most deterministic models include both the human hosts

and the mosquito vectors, but the level of mechanistic detail can

vary. One of the most common assumptions used in mathematical

models of vector-borne disease transmission is that of homoge-

neous mixing of the vectors and their human hosts [1,4–8]. In

other words, all humans in the population are at equal risk of

being infected by each mosquito and vice versa. At the other

extreme, individual-based models can be used to explicitly

represent the locations of each human and mosquito and infection

can only occur between co-located hosts and vectors. However,

more complicated models require more parameters and are more

difficult to analyze.

Models of vector-borne disease have been studied for nearly a

century, starting with the malaria model of Ross [4]. Dengue

modeling is less mature [1], and there may be important

differences between the two diseases important to modeling.

Because the primary vector for dengue, Aedes aegypti, is a mosquito

that flies short distances [9–11], a homogeneous mixing assump-

tion might not be appropriate. Dengue cases tend to be clustered

in both space and time [12–14], possibly a consequence of the

short-range movements of A. aegypti. There are also complex

immune interactions among the circulating serotypes, which could

cause temporal and spatial patterns of infection [15–18].

Here, we use an individual-based model of dengue transmission

to examine the effect of making different assumptions about

mosquito movement and distribution. In this model, individual

households are represented in space, and infectious mosquitoes

can travel among the households, schools, and workplaces. The

model also represents the four dengue serotypes, and infection by

one serotype confers short-term protection against infection by the

others. Using an individual-based model allows one to easily
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change assumptions about mosquito movement and spatial

distribution. Because of recent progress towards producing a

dengue vaccine [19–22], we study both the human infection rates

and the effectiveness of mass vaccination in the models with

differing assumptions.

Methods

We used an individual-based model to simulate the spread of

dengue in a semi-rural region in Thailand over a single year. A full

description of this model, including the synthetic population and

parameter settings, is in [23], and the model was run with exactly

the same parameter values except where noted in the Results. The

version of the model used in this work was downloaded from

https://github.com/tjhladish/dengue/ on March 15, 2013. In

brief, a synthetic population of 207,591 individuals with

demography based on that of rural Thailand was assigned to

households according to census data [24], and households were

assigned continuous values for latitudes and longitudes to satisfy

gridded population density estimates for the region [25]. Each day,

these individuals travel between their households and workplaces

or schools, as appropriate for their ages and using a gravity model

to determine commuting distance for workers as described in

Supporting Text S1 in [23].

All of these locations are associated with a mosquito population

that can infect or be infected by humans. The model runs in one-

day time steps, and the daily probability of contact between an

individual human and a single mosquito is proportional to the

amount of time they spend in the same location. The proportion of

human–mosquito contact that occurs in the household is

proportional to the amount of estimated mosquito biting activity

before 9am and after 5pm, while the remaining transmission

occurs in the locations where individuals are during the day, which

may be work, school, or home (see Supporting Text S1 in [23]).

For computational efficiency, we do not explicitly model the

movement of susceptible mosquitoes because they do not affect the

transmission of dengue (see Supporting Text S1 in [23] for

implementation details). Infectious mosquitoes can transmit

dengue to susceptible humans who are in the same location with

a probability of bmp per mosquito bite, and infectious humans can

transmit to susceptible mosquitoes with a probability of bpm per

bite (Figure 1A). Transmission probabilities were calibrated as

described in Supporting Text S2 in [23]. Symptomatic individuals

may stop going to work or school, and symptoms may begin one

day before an infected person becomes infectious (see Supporting

Text S1 of [23]). An individual mosquito tends to remain in a

single location, but occasionally migrates to an adjacent location

and can, rarely, travel to a randomly selected and possibly distant

location (Figure 1B). Mosquitoes have a constant biting rate during

their limited lifespan. Each location (i.e., household, classroom,

workplace) can have the same number of mosquitoes or the

number of mosquitoes at each location can be drawn from an

exponential distribution.

There are two options for the mode of protection conferred by

vaccination in the model: all-or-none and leaky [26]. For all-or-none

protection, an individual is completely protected from infection by

each of the four dengue serotypes with a probability of one minus

the vaccine efficacy, with the probability of protection drawn

independently for each of the four serotypes. For leaky protection,

in which vaccinated individuals are x% less likely to become

infected per infectious mosquito bite, where x% is one minus the

vaccine efficacy.

The size of the mosquito population changes seasonally in the

model, and the June peak in the mosquito population causes a

peak in dengue cases in humans one or two months later. We do

not model the mechanisms for the seasonal fluctuations in the

mosquito population. Instead, the size of the mosquito population

is reset each month to appropriate levels based on seasonal

observations of adult mosquitoes to force the mosquito population

size to follow realistic dynamics as described in Supporting Text

S2 of [23].

Dengue is hyperendemic in the modeled region, so the level of

exposure to all four serotypes is relatively high. Individuals in the

synthetic population are assigned exposure histories to the four

dengue serotypes based on their age and on estimates of dengue

serotype prevalence in Thailand for the past forty years [23].

When running the model, a small fraction of individuals are

continually exposed to dengue to prevent local stochastic

extinction of a serotype. Because we assume that a vaccinated

region would be adjacent to non-vaccinated hyperendemic

regions, we do not think that local elimination of serotypes would

be realistic. This assumption would not apply to geographically

isolated populations or to non-hyperendemic areas. At the

beginning of each simulated day, eight randomly selected

individuals from the human population are exposed to dengue

(two people to each of the four serotypes). This exposure accounts

for both the introduction of dengue-infected humans and vectors

and the exposure to dengue of residents who travel outside the

model region. The magnitude of this influx affects the infection

attack rate, particularly during the peak of dengue transmission

from June to October. However, the model was calibrated to

generate realistic annual infection attack rates using this arbitrary

but low level of influx [23], and changes to this influx rate would

produce qualitatively similar results after model re-calibration. If

the person is not immune to the serotype, whether by prior

exposure to the same serotype, cross-protection from recent

infection by any serotype, or vaccination, that person becomes

infected.

Results

The effect of mosquito movement and distribution
assumptions on dengue incidence

We studied the relationship between mosquito mobility and

dengue transmission in the model. The default version of the model

was calibrated to produce a 5.5% infection attack rate in the

human population under the assumption that each mosquito

moves with a 15% probability each day, usually to a neighboring

location but with a 6.7% chance (i.e., a 1% probability per day) of

moving to a randomly selected location regardless of distance

(Figure 1B) [23]. We define the infection attack rate to be the total

number of individuals infected by any of the four circulating

serotypes during a simulated year divided by the population size. If

mosquitoes were confined to moving only to neighboring

locations, the attack rate was reduced to 4.3% (Figure 2 and

Table 1). When the spatial restrictions on mosquito flights were

eliminated and mosquitoes moved to any location with a 15%

probability each day, the infection attack rate rose to nearly 10%

(Figure 2). However, even in this model, mosquitoes tend to stay in

the same location each day.

In a version of the model in which the mosquito population was

well-mixed, mosquitoes moved to a random location each day

regardless of flight distance (Figure 1C). In the well-mixed model,

the infection attack rate was 30% (Table 1). If mosquitoes moved

every day but were restricted to moving only to nearby locations,

the infection attack rate was still high (about 20%) and attack rates

rose quickly as the fraction of random movement increased

(Figure 2). To reduce the well-mixed model’s attack rate to a more

Vectors in a Mathematical Model of Dengue
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realistic 5%, the transmissibility from person-to-mosquito (bpm) and

from mosquito-to-person (bmp) had to be reduced by 21%. In

other words, dengue transmissibility needed to be reduced by

about 38% to match the dengue incidence of the default model

with spatially constrained mosquito movement. Mosquitoes are

more likely to infect humans if they can immediately move to

other locations, which would be likely to have more susceptible

humans for at least two reasons: 1) The human who infected the

mosquito is immune to that serotype, and 2) other mosquitoes

infected by the same human are competing for susceptible human

hosts in the same location. Infectious mosquitoes in the well-mixed

model were more likely to infect humans than in the default model

(19% vs 16%) and were more likely to cause infections in more

than one location (46% vs 27%). We conclude that the vectorial

capacity of mosquitoes is greatly reduced by their tendency to stay

in a single building and to fly only short distances.

In the models described above, each location had the same

number of resident mosquitoes. When the number of mosquitoes

per location was drawn from an exponential distribution with the

same mean number of mosquitoes per location (Figure 1D),

transmission is reduced somewhat (Table 1). With an exponen-

tially distributed number of mosquitoes per location, increasing the

mean number of mosquitoes per location from 42 to 43 yields

similar attack rates to the default model with uniformly distributed

mosquitoes. We found the human infection attack rate to be more

sensitive to transmissibility than to the mosquito population size

(Figure 3).

Figure 1. Mathematical model of dengue transmission. (A) In the model, infectious mosquitoes transmit dengue to susceptible humans with a
probability of bmp per bite. After an average incubation period of six days, humans transmit dengue to susceptible mosquitoes with a probability of
bpm when bitten. Mosquitoes have an incubation period of eleven days, after which they are infectious. (B) In the default version of the model,

mosquitoes travel to other locations with a probability of 15% per day (and stay in the same location with an 85% probability). Usually, they travel to
nearby locations, but they can travel to randomly selected and arbitrarily distant location with a small probability. (C) In the well-mixed model,
mosquitoes travel to a randomly selected location each day with essentially a 0% probability of remaining in the same location for two consecutive
days. (D) In the exponential model, the number of mosquitoes per location is drawn from an exponential distribution instead of a uniform one, and
mosquitoes move as in the default model.
doi:10.1371/journal.pone.0076044.g001

Figure 2. The effect of mosquito mobility on dengue transmis-
sion in the model. In the model, a parameter determined the
probability that a mosquito’s movement would take it to a neighboring
location versus a random and possibly distant location. The plot shows
the relationship between the infection attack rate among humans and
this parameter. The lower points (black circles) plot attack rates when
mosquitoes moved with a 15% probability per day, and the upper
points (red diamonds) plot the attack rates when the mosquitoes
moved every day. Each point represents the median of 40 stochastic
simulations, and the vertical lines span the inter-quartile range. The two
filled points highlight the attack rates corresponding to the default
model in which mosquitoes tended to stay in one location (Figure 1B)
and the well-mixed model in which mosquitoes moved to random
locations each day (Figure 1C).
doi:10.1371/journal.pone.0076044.g002
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Simulating mass vaccination against dengue
We measured the effectiveness of mass vaccination of the

human population in the models described above. The vaccine

was 70% effective at preventing infection with any of the four

dengue serotypes in the vaccinee. Therefore, 70% of vaccinees

were completely protected against infection by a given dengue

serotype. The probability of protection against a single serotype

was independent of protection against the other three for a given

vaccinated individual, so the probability that a vaccinated

individual was protected against all four dengue serotypes was

70%4 = 24%. When the three models with different assumptions

about mosquito movement and spatial distribution were calibrated

to have the same attack rates in the absence of vaccination, mass

vaccination had similar effects on human infection attack rates for

all levels of coverage tested (Figure 4A). In the mass vaccination

simulations, all individuals had the same probability of being

vaccinated regardless of age. We also tested versions of the model

in which protection conferred by the vaccine was leaky instead of

all-or-none, so that vaccinees had a 70% reduction in susceptibility

to infection per infectious mosquito bite. There was little difference in

effectiveness of mass vaccination when the vaccine protection was

leaky instead of all-or-none (Figure 4B). Overall protection of the

vaccine, defined as one minus the attack rate within a partially

vaccinated population divided by the attack rate within a totally

unvaccinated population [27], surpassed 70%, the efficacy of the

vaccine, once 40% of the population was vaccinated for all three

versions of the model (Figure 4C). We found that indirect

protection, defined as one minus the attack rate among

unvaccinated individuals in a partially vaccinated population

divided by the attack rate among a fully unvaccinated population,

surpassed 70% once 60% of the population was vaccinated

(Figure 4D).

Discussion

Using an individual-based model of dengue transmission, we

explored how different assumptions about the movement and

spatial distribution of the vector can affect dengue incidence in

humans. We found that the tendency for the most important

vector of dengue, A. aegypti, to stay within a building and fly only

short distances greatly affects its vectorial capacity. However, once

a model is calibrated to obtain a realistic human infection attack

rate, the population-wide effectiveness of mass dengue vaccination

is robust to these assumptions. Although the model variants were

calibrated to produce the same average infection attack rates, the

spatial heterogeneity of infection risk could be different. When

mosquito mobility is low, dengue risk would be elevated near

dengue cases and lower elsewhere. In areas of high risk, a vaccine

that confers ‘‘leaky’’ protection would be less effective in areas of

high risk than one that confers ‘‘all-or-none’’ protection. However,

Table 1. Effect of mosquito movement and spatial distribution on human infection attack rates.

pr move, % random/short bpm bmp mosq per loc, mean (distr)
AR, mean % ± std
dev

a 15 6.7/93.3 0.100 0.250 42 (uniform) 5.560.5

15 0/100 0.100 0.250 42 (uniform) 4.360.3

15 100/0 0.100 0.250 42 (uniform) 9.860.8

100 0/100 0.100 0.250 42 (uniform) 20.161

100 1/99 0.100 0.250 42 (uniform) 22.961.4

100 50/50 0.100 0.250 42 (uniform) 29.261.4

100 100/0 0.100 0.250 42 (uniform) 29.761.2

b 100 100/0 0.079 0.1975 42 (uniform) 5.860.6

c 15 6.7/93.3 0.100 0.250 43 (exponential) 5.460.6

The parameters summarized are the daily probability that an individual mosquito moves to a new location, the ratio of moves that are random vs. short range, the
transmission probability per infectious bite from person to mosquito (bpm), the transmission probability per infectious bite from mosquito to person (bmp), the mean
number of mosquitoes per location and the distribution, and the mean and standard deviation of the human dengue attack rate (AR). Three scenarios are highlighted
and are illustrated in Figures 1B–D: a) is the default, which includes mostly short-range but some random (i.e., not restricted by distance) mosquito movement and a
uniform distribution of mosquitoes, b) is the well-mixed model, with frequent random mosquito movement and a uniform distribution of mosquitoes, and c) has the
same mosquito movement as the default but the number of mosquitoes per location is drawn from an exponential distribution. The infection attack rates are reported
as the means and standard deviations from 40 stochastic runs.
doi:10.1371/journal.pone.0076044.t001

Figure 3. The sensitivity of the human infection attack rate to
dengue transmissibility and the mosquito population size.
Parameters for dengue transmissibility and the mosquito population
size were varied with respect to the parameters of the default model.
The red +s plot the average human infection attack rates from
simulations in which the two transmission parameters, bpm and bmp , are
set to values x times the default value, as indicated on the x-axis. The
blue circles plot the results from simulations in which the mosquito
population size is x times the default. The results from the two sets of
models converge at x = 1.0, where all parameters match the default
model’s. Each point shows the average human dengue infection attack
rate from 40 stochastic runs.
doi:10.1371/journal.pone.0076044.g003
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the difference in the effectiveness of mass vaccination using the

leaky or all-or-none assumption was minor.

Households may be the primary venue for dengue infection in

humans. A. aegypti are known to breed in small containers

associated with households, which may lead to spatial clustering

at the household level [28]. Clusters of cases appear in households,

consistent with a single source of infection [12,13]. Households

members of symptomatic dengue cases have been found to have a

relatively high probability of being infected, though often

asymptomatically [14]. These phenomena are best captured by

mathematical models that explicitly include households, such as

the model used here. In one model variant, we assumed an

exponential instead of uniform distribution for the number of

mosquitoes per location. Because there is little empirical data on

adult mosquito counts per household, we chose a simple

distribution that requires only one parameter. Using a more

realistic or data-driven distribution might affect the results.

Dengue outbreaks often occur in small spatial clusters, probably

because of the short flight range of A. aegypti. Perifocal spraying

measures typically target a 100 meter radius around detected cases

of dengue fever. Studies have found that the risk of dengue

infection was significantly higher for children living within

100 meters of another infected child than in control clusters

[29–31]. The elevated risk of infection in these clusters was for

only a few days, evidence that risk was associated with individual

dengue outbreaks [32]. The focal nature of dengue outbreaks can

also be detected in spatial patterns of immunity to the four

serotypes [18]. Therefore, spatial effects might play an important

role in the multi-year dynamics of dengue.

A recent modeling study found that the fine-scale spatial

distribution of mosquitoes could affect dengue transmission, since

some houses had a superabundance of mosquitoes [33]. Our

results indicate that such fine-scale heterogeneity might ‘‘wash

out’’ when studying larger geographic areas. Including the ability

for mosquitoes to disperse to other households dilutes the

differences in mosquito populations in households with different

production rates [34,35]. We did not study coarser scales of spatial

heterogeneity, such as regions that include both urban and rural

populations.

Human movement probably plays a role in the spatial spread of

dengue. A recent study demonstrated that visiting households with

dengue-infected individuals was associated with an increased risk

of infection [36]. Additional evidence for the role of human

movement on the spread of dengue is the apparent spread of

dengue along major roads [37]. In our model, we assumed that

symptomatic people tend to stay home from school and work,

Figure 4. The effectiveness of mass vaccination under different mosquito movement and distribution assumptions. Mass vaccination
of the population was simulated under different model assumptions of mosquito movement and distribution. We plotted the attack rate vs vaccine
coverage of the human population for three different model variants, as shown in Figures 1B–D. The three models were calibrated to have similar
attack rates with no vaccination (0% coverage). The parameters for these three models are summarized in Table 1. The mean attack rates from 40
stochastic runs per scenario are plotted. (A) Protection by vaccine is all-or-none (the default) with 70% efficacy. (B) Protection by vaccine is leaky with
70% efficacy. (C) Overall protection vs coverage is plotted. Vaccine efficacy is 70%, as indicated by the horizontal dashed line. (D) Indirect protection
vs coverage is plotted.
doi:10.1371/journal.pone.0076044.g004
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which increases transmission in households. Thus, it may be

important to capture these detailed human movements to estimate

the risk of dengue, which was not our focus here.

We found that the incidence of dengue in the model was highly

sensitive to the parameters associated with transmissibility but less

so to the size of the mosquito population, which is consistent with

simple deterministic compartmental models of vector-borne

pathogens [4,5]. Therefore, it may be unwise for modelers to

borrow point estimates of transmission parameters directly from

the experimental literature. It may also be unwise to extract

parameter values from other models, since models with different

assumptions may produce different results even with the same

parameterization. For example, we found that when vectors in the

model are not constrained by space, they were able to spread

dengue much more effectively. Here, we decided to adjust

transmissibility and vector population size in the different model

variants in order to obtain consistent and realistic human infection

attack rates.

Keeping the limitations of our mathematical model in mind, we

can draw a few general conclusions. Although fine-grained spatial

heterogeneity in the mosquito population likely has significant

effects on dengue transmission within individual households, the

ability of mosquitoes, and people, to move reduces the effects of

these heterogeneities. Focal interventions, such as perifocal

spraying, may require careful and fine-grained spatial modeling

[33], but interventions that cover large regions, such as mass

vaccination, might be insensitive to these features. However, there

are features relevant to dengue transmission that occur at a coarser

spatial scale, such as urbanization or mosquito habitat differences,

and modeling dengue outbreaks in these regions probably requires

a better understanding of dengue epidemiology.
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