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Studies on myotonic dystrophy type 1 (DM1) have led to the RNA-
mediated disease model for hereditary disorders caused by non-
coding microsatellite expansions. This model proposes that DM1
disease manifestations are caused by a reversion to fetal RNA
processing patterns in adult tissues due to the expression of toxic
CUG RNA expansions (CUGexp) leading to decreased muscleblind-like,
but increased CUGBP1/ETR3-like factor 1 (CELF1), alternative splicing
activities. Here, we test this model in vivo, using the mouse HSALR

poly(CUG) model for DM1 and recombinant adeno-associated virus
(rAAV)-mediated transduction of specific splicing factors. Surpris-
ingly, systemic overexpression of HNRNPA1, not previously linked
to DM1, also shifted DM1-relevant splicing targets to fetal isoforms,
resulting in more severe muscle weakness/myopathy as early as 4 to
6 wk posttransduction, whereas rAAV controls were unaffected.
Overexpression of HNRNPA1 promotes fetal exon inclusion of rep-
resentative DM1-relevant splicing targets in differentiated myo-
blasts, and HITS-CLIP of rAAV-mycHnrnpa1-injected muscle revealed
direct interactions of HNRNPA1 with these targets in vivo. Similar to
CELF1, HNRNPA1 protein levels decrease during postnatal develop-
ment, but are elevated in both regeneratingmousemuscle and DM1
skeletal muscle. Our studies suggest that CUGexp RNA triggers ab-
normal expression of multiple nuclear RNA binding proteins, includ-
ing CELF1 and HNRNPA1, that antagonize MBNL activity to promote
fetal splicing patterns.
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Microsatellite expansions in the noncoding regions of several
human genes are associated with hereditary neurological

diseases, including fragile X mental retardation (FRAXA) and
myotonic dystrophy (DM) (1). In DM type 1 (DM1), the tran-
scription of a CTG microsatellite expansion (CTGexp) in the 3′
untranslated region (3′ UTR) of the DMPK gene results in the
expression of toxic CUGexp RNA, which sequesters muscleblind-
like (MBNL) proteins and blocks their splicing activity (2, 3).
MBNL inhibition in DM1 tissues leads to a shift from adult to fetal
splicing events for MBNL-targeted RNAs and results in tissue-
specific disease manifestations, including muscle hyperexcitability
(myotonia) and insulin resistance. In addition, CUGexp RNA
also activates protein kinase C (PKC), resulting in the hyper-
phosphorylation and elevated levels of CUGBP1/ETR3-like factor
1 (CELF1) in DM1 muscle and heart (4). In contrast to MBNL,
CELF1 induces fetal splicing events in embryonic and early neo-
natal stages, and increased CELF1 levels in adult DM1 tissues
causes a reversion to fetal isoforms. Thus, the current DM1 dis-
ease model is that coordinate MBNL sequestration and CELF1
accumulation caused by CUGexp RNA expression synergistically
promote aberrant fetal splicing patterns in DM1 (3, 5).
Support for both MBNL loss of function and CELF gain of

function has come from mouse knockout and transgenic models
(6–8). Mbnl1 knockout adults develop muscle myotonia and
myopathy, subcapsular dust-like cataracts, and alternative splicing
changes characteristic of DM1, while compound loss of MBNL1

and MBNL2 is required for the onset of severe muscle wasting (6,
9). In contrast, Mbnl2 knockouts recapitulate CNS features of
DM1, including hypersomnia and learning/memory deficits, but
additional MBNL1 loss is required for MAPT/tau missplicing (9,
10).Mbnl3 is expressed during muscle regeneration, and loss of its
major protein isoform delays adult muscle regeneration in mice
(11). Transgenic CELF1 overexpression mice are characterized by
impaired myogenesis, centralized myonuclei, and muscle de-
generation similar to transgenic mice expressing an inducible
CTGexp in skeletal muscle (EpA960/HSA-Cre- ERT2) (8, 12, 13).
In addition to CELF and MBNL proteins, other factors have also
been proposed to play a role in disease onset. For example, levels
of the double-stranded RNA-binding protein Staufen1 (STAU1)
also increase in DM1 tissues, and STAU1 overexpression pro-
motes a splicing shift to adult isoforms, suggesting it may be an
effective DM1 disease modifier (14, 15).
Here, we demonstrate that overexpression of HNRNPA1,

similar to CELF1, has the opposite effect as STAU1 and triggers
DM1 disease muscle pathology while shifting the splicing of
DM1 RNA targets to an earlier developmental pattern (8).
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Myotonic dystrophy type 1 (DM1) is a model for RNA-mediated
disease in microsatellite expansion disorders. DM1 is caused by
CTG expansions (CTGexp) and expression of CUGexp RNAs that
sequester muscleblind-like (MBNL) proteins, while also trig-
gering hyperphosphorylation of CUGBP1/ETR3-like factor 1
(CELF1). These proteins regulate developmental transitions in
RNA processing, so DM1 is characterized by retention of fetal
RNA processing patterns in adults. Although current evidence
indicates that CELF1 is a specific antagonist of MBNL activity,
this study reveals that another protein, HNRNPA1, is also
downregulated during normal development but upregulated
in DM1, where it also induces fetal splicing shifts. Thus, DM1
disease results from an imbalance in the expression of multiple
RNA processing factors important for both proliferation and
differentiation.
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Moreover, HNRNPA1 expression declines during normal post-
natal skeletal muscle development, but is up-regulated during
muscle regeneration and in DM1 muscle. Our results suggest
that CUGexp RNA expression impacts the levels of multiple
nuclear RNA binding proteins, including members of the hnRNP
family, that are important for cell proliferation, resulting in a re-
versal to an early developmental RNA processing program.

Results
Reduced Lifespan and Muscle Pathology Following HNRNPA1
Overexpression in a Mouse DM1 Model. Previously, we proposed a
gene therapy strategy for DM1 that involved MBNL over-
expression, leading to an increase in the nonsequestered nuclear
pool of MBNL protein and reversal of DM1-associated RNA
missplicing and pathology. To test this therapeutic approach, we
demonstrated that MBNL1 was overexpressed following intra-
muscular (i.m.) injection of rAAV2/1-mycMbnl1 virus, and this
led to the reversal of myotonia and missplicing of DM1 target
RNAs in the HSALR poly(CUG) model for DM1 (16). In this
study, our initial objective was to determine if systemic over-
expression of MBNL proteins would have a similar effect, and we
selected rAAV2/9 as the viral vector, since it has been shown to
more effectively transduce a wider array of tissues using either
i.p. or i.v. injections (17, 18). Furthermore, MBNL2 (rAAV2/9-
mycMbnl2) was chosen for overexpression, since this paralog
compensates for loss of MBNL1 due to sequestration by CUGexp

RNA in skeletal muscle and is the major MBNL protein
expressed in the brain (9). As a control for overexpression of an
unrelated nuclear RNA binding protein, the effects of hnRNP A1
(HNRNPA1) overexpression were also characterized by systemic ex-
pression of rAAV2/9-mycHnrnpA1. In addition, rAAV2/9-mycCelf1
was generated for CELF1 systemic overexpression, since it is a
well-characterized DM1-related RNA missplicing effector.
Following injections into the temporal vein of HSALR neonates

(postnatal days 0 to 2, P0 to P2), mice were sacrificed at 4 to 6 wk
of age, and four muscle groups (tibialis anterior, gastrocnemius,
quadriceps, paraspinals) were analyzed for myc-Mbnl2 as well as
endogenous MBNL2 protein levels (Fig. 1A). Similar levels of
endogenous MBNL2 were observed by immunoblot analysis in
control (PBS-injected) versus rAAV2/9-mycMbnl2/40-injected
mice, while myc-MBNL2 was only detectable in the latter mus-
cles. In contrast, endogenous HNRNPA1 was either undetectable
or detectable at very low levels in control HSALR adult muscles,
presumably due to the relatively low proliferative state and tran-
scriptional activity of differentiated skeletal muscle, while AAV-
mediated overexpression of HNRNPA1 or CELF1 varied con-
siderably between different muscles, with quadriceps displaying
the highest level (Fig. 1A and SI Appendix, Fig. S1). Surprisingly,
myc-HnrnpA1 overexpression reduced the maximum lifespan of
HSALR mice to ∼6 wk of age (SI Appendix, Fig. S2A) and resulted
in muscle weakness (Fig. 1B), as well as moderate muscle pathol-
ogy (increased centralized nuclei, myofiber atrophy, and sporadical
ring fibers; Fig. 1 C and D and SI Appendix, Fig. S2B) in 4- to 6-wk-
old mice, while rAAV2/9-GFP and rAAV2/9-mycMbnl2 were
similar to uninjected HSALR mice (7). Systemic HNRNPA1 over-
expression also resulted in aberrant motility (Movies S1–S3), al-
though comparison of injected versus uninjected neuromuscular
junctions did not show obvious abnormalities caused by HNRNPA1
overexpression (SI Appendix, Fig. S3).

HNRNPA1 Induces DM1-Associated Fetal Splicing Patterns. To assess
the effects of rAAV-mediated RNA binding protein over-
expression on alternative splicing regulation, RT-PCR of RNA
targets misspliced in DM1 muscle was performed. In paraspinal
muscles, MBNL2 overexpression after rAAV2/9-mycMbnl2 trans-
duction shifted the splicing of DM1 target pre-mRNAs, including
Atp2a1/Serca1 and Ldb3/Cypher, to a more adult pattern, while
splicing changes in other muscle groups were either unchanged or

more modest (Fig. 2A). This result may reflect variations in HSALR

transgene expression levels or Mbnl2 subcellular localization in
these muscles from relatively young (4 wk of age) mice. Contrary
to MBNL2, HNRNPA1 overexpression led to a striking shift of
these RNAs to a more fetal pattern in all muscles examined,
similar to the splicing changes observed previously in CELF1
overexpression mice (8). These results suggested that in addition
to CELF1, the splicing activities of other nuclear RNA-binding
proteins might be affected by expression of CUGexp RNAs.
To confirm that these splicing shifts were not the result of

systemic pathology and compromised lifespan following neonatal
systemic delivery of AAV, DM1-relevant splicing shifts were
subsequently evaluated in adult skeletal muscle following direct
i.m. injections. The levels of HNRNPA1 overexpression were
more consistent following i.m. versus systemic injections, although
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Fig. 1. AAV9-mediated systemic overexpression of HNRNPA1 in a mouse
model of DM1 leads to disease-associated pathology. (A) HSALR P0-P2 mice
(n = 4 each) were injected (i.v.) with PBS (control), AAV9/Mbnl2 (Mbnl2), or
AAV9/HnrnpA1 (Hnrnpa1) and protein levels were assessed by immuno-
blotting using antibodies against both endogenous (MBNL2, HNRNPA1) and
exogenous (myc-MBNL2, myc-HNRNPA1) proteins in tibialis anterior (TA),
gastrocnemius (Gastroc), quadriceps (Quad) and paraspinal (Para) muscles.
GAPDH served as the loading control. (B) AAV9-mediated overexpression of
either CELF1 (AAV9-Celf1, n = 5) or HNRNPA1 (AAV9-Hnrnpa1 n = 5) led to
reductions in grip strength compared with PBS (n = 5), GFP (AAV9-GFP, n = 5),
or Mbnl2-injected (AAV9-Mbnl2, n = 5) mice. (C) Statistical analysis and (D)
representative muscle cross-sections indicated an earlier onset of DM1-relevant
myopathic changes including centralized myonuclei (white arrows), atrophic
(white arrowhead) myofibers, and split (asterisk) fibers in HNRNPA1 (rAAV9-
Hnrnpa1) overexpression quadriceps. P values were calculated using a one-way
ANOVA with Tukey’s HSD post hoc test or an unpaired two-tailed Student’s
t test. Data are SEM and significant. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not
significant. (Scale bar, 50 μm.)
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a shorter myc-HNRNPA1 isoform was detectable in some muscle
samples (Fig. 2B, αmyc lanes Hnrnpa1.2 and 1.3) and the levels of
proteins comigrating with the endogenous 34-kDa HNRNPA1
protein also substantially increased (Fig. 2B, αHNRNPA1 lanes).
Up-regulation of endogenous CELF1 has also been observed in
mice overexpressing His-CELF1 (12). In agreement with the sys-
temic overexpression study, HNRNPA1 overexpression following
i.m. injections resulted in a shift to the fetal pattern for DM1
splicing targets including Ldb3 exon 11, Atp2a1 exon 22, Clcn1
exon 7a, Mbnl1 exon 7, Pdlim exon 5, and Tnnt3 exon F (Fig. 2 C
and D). Previous work has shown that CELF1 protein levels in
skeletal muscle are not significantly different between wild-type
and HSALR mice (19) and CELF1 levels were relatively consistent
following overexpression of MBNL1 or MBNL2, although AAV/
HNRNPA1 transduction induced a modest up-regulation of
CELF1 in injected muscle tissue. To exclude the possibility that
these splicing events reflected secondary effects from HNRNPA1-
induced CELF1 up-regulation, we compared these DM1 targets
with CELF1 splicing targets in CELF1-overexpressing transgenic
mice (8). Importantly, Clcn1 exon 7a, Mbnl1 exon 5, and Tnnt3
exon F are not affected by CELF1 overexpression (8) while they
were altered by HNRNPA1 overexpression in our study, indicating
that the splicing shifts following HNRNPA1 overexpression were
not due to CELF1 up-regulation.
To further investigate the effects of HNRNPA1 on DM1 splicing

targets, the splicing activity of HNRNPA1 and CELF1 proteins was
also examined using mouse primary myoblasts transduced with
lentiviruses overexpressing HNRNPA1 or CELF1 either prior to
(day 0, D0) or after induction of myogenic differentiation into

myotubes for days 3 to 7 (D3, D5, D7), D3-7. The splicing patterns
of the DM1 representative splicing targets Atp2a1 exon 22, Ldb3
exon 11, and Tnnt3 fetal exon showed a differentiation time-
dependent increase in the adult to fetal isoform ratio (Fig. 3 A and
B) together with a coordinate decrease in HNRNPA1, HNRNPH,
and CELF1, as well as increase in MBNL1, protein levels (Fig.
3C). Similar to HSALR muscle, HNRNPA1 overexpression in
differentiated myotubes resulted in significant shifts in Atp2a
exon22, Ldb3 exon 11, and Tnnt3 F exon splicing to a more fetal
pattern, whereas CELF1 overexpression did not (Fig. 3 D–F).
Overall, these results indicated that elevated levels of HNRNPA1
led to a reversion of the splicing program to a fetal pattern
characteristic of DM1 muscle. To demonstrate that these splicing
alterations were a direct effect of HNRNPA1 binding to regula-
tory regions proximal to MBNL1-regulated exons, HITS-CLIP/
CLIP-seq analysis was performed.

Direct Binding of HNRNPA1 to MBNL-Regulated Exons. To determine
if HNRNPA1 bound in the vicinity of MBNL-regulated alter-
native cassette exons, HITS-CLIP transcriptome-wide analysis was
performed on HSALR quadriceps muscle injected with rAAV2/9-
HnrnpA1 (Fig. 4A). The genomic distribution of CLIP peaks
showed that the majority (74%) of the HNRNPA1 binding sites
were intronic, consistent with the previously established role of
this protein in splicing regulation (Fig. 4B and Dataset S1A) (20).
Within the flanking introns of some regulated alternative cassette
exons, HNRNPA1 showed more upstream binding for inclusion,
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Fig. 2. Increased expression of HNRNPA1 in skeletal muscles promotes fetal
splicing patterns for DM1 targets. (A) Systemic HNRNPA1 overexpression
exacerbated, while MBNL2 partially reversed, DM1 fetal splicing patterns in
HSALR muscles. RT-PCR analysis of Atp2a1 exon 22 and Ldb3 exon 11 splicing
patterns were used as representative DM1 targets and positions of the fetal
and adult exon splicing RT-PCR products are indicated (Right). Alternative
cassette exon splicingwas determined in wild-type (FVB) andHSALR mice without
injection (control) or following AAV9-Mbnl2 (Mbnl2) or AAV9-HnrnpA1 HSALR

injections (n = 4 each). (B) Immunoblotting for myc-tagged HNRNPA1 (αmyc),
HNRNPA1 (αA1), CELF1 (αCELF1), and the loading control GAPDH (αGAPDH)
following direct i.m. injections of AAV9-mycHnrnpa1 (n = 4 mice Hnrnp1.1-1.4),
AAV9-mycMbnl1, or AAV9-mycMbnl2. The positions of myc-HNRNPA1 (myc-A1)
and endogenous HNRNPA1 (A1) are indicated. (C) RT-PCR splicing analysis of six
DM1 targeted gene transcripts demonstrated that HNRNPA1 overexpression in
HSALR TA promoted fetal splicing events. The wild-type splicing pattern for each
gene is shown in the FVB lanes. (D) Fetal exon inclusion was determined
using percentage spliced in (Ψ; n = 4). P values were calculated using a
one-way ANOVA with Tukey’s HSD post hoc test. Data are SEM and sig-
nificant. ***P < 0.001.
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5474 | www.pnas.org/cgi/doi/10.1073/pnas.1907297117 Li et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1907297117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1907297117


and more downstream binding for exclusion, of MBNL-regulated
cassettes (Fig. 4C, Tnnt3 and Atp2a1, respectively; Dataset S1 B
and C). Furthermore, considerable overlap was observed between
MBNL1-regulated exons identified by exon junction microarray
analysis and proximal binding sites for HNRNPA1 (Fig. 4D).
Further comparison of HNRNPA1 binding events to the top 50
alternative exons/introns in HSALR muscle identified 18 of 50 al-
ternative splicing sites bound by HNRNPA1, including key events
that may be used as clinical biomarkers for DM1 (Fig. 4E and
Dataset S1D). Previous SELEX experiments and CLIP-seq anal-
yses have shown preferential binding of HNRNPA1 to UAGGGA/
U and UAGU sequence elements, respectively (20, 21), while in
skeletal muscle, HNRNPA1 preferentially crosslinked to AG-rich
sequences (Fig. 4F). Therefore, HNRNPA1 binds directly, and acts
antagonistically, to MBNL1 in skeletal muscle and promotes both
inclusion of fetal and skipping of adult exons previously implicated
in DM1 spliceopathy.

Down-Regulation of HNRNPA1 RNA and Protein during Muscle
Development. HnRNPs are abundant and multifunctional nu-
clear RNA binding proteins in proliferating cultured cells. Since
HNRNPA1 overexpression promoted fetal splicing, the expression
of hnRNP genes implicated in several microsatellite expansion
diseases, including amyotrophic lateral sclerosis and fronto-
temporal dementia and DM1, was examined using existing RNA-
seq datasets of human muscle differentiation (22) and compared
with control skeletal muscle from the DM deep sequencing data
repository (http://dmseq.org/). In contrast to MBNL1, the ex-
pression levels of HNRNPA1, HNRNPA2B1, HNRNPH1,
CELF1, and ELAVL1 RNAs all decrease during normal myo-
genic differentiation in vitro from myoblasts to mature myotubes
(Fig. 5A and Dataset S1E). In wild-type adult skeletal muscle,
these RNAs are expressed at low levels, and the corresponding
protein levels during mouse skeletal muscle development con-
firmed that all these RBPs declined during muscle development,
with the exception of the MBNL1 protein, in agreement with our
data for protein accumulation patterns of these RBPs in differ-
entiating myoblasts (Fig. 3C), and previous studies on MBNL1
and CELF1 expression during embryonic and postnatal skeletal
and heart muscle development (Fig. 5B) (23, 24). To address the
question of how these protein levels vary during adult muscle
regeneration, tibialis anterior muscles were injected with notexin,
a snake venom phospholipase A2 that triggers sarcolemma dis-
ruption leading to transient myofiber loss. Previously, we showed
that mature myofibers are mostly lost at day 1 postinjection, and
proliferating myoblasts are elevated by day 3 following injection
(11).Consistent with our previous observations for MBNL1 RNA
expression patterns during notexin-induced muscle regeneration
(11), MBNL1 protein was expressed throughout the regeneration
course only with a transient decrease at day 1 following injection
(Fig. 5C). In contrast to MBNL1, HNRNPA1, HNRNPA2B1,
HNRNPH, CELF1, and ELAVL1 protein levels were relatively
low until day 3 postinjection. Interestingly, HNRNPA1 upregula-
tion was only detected at the early regeneration stage (day 3
postinjection), whereas HNRNPH, CELF1, and ELAVL1 pro-
teins remained through day 7, when myofibers have regenerated
(Fig. 5C). We conclude that Hnrnpa1/HNRNPA1 genes are down-
regulated during normal development, and only transiently
expressed during adult regeneration, of skeletal muscle, while DM1
muscle recapitulates the fetal HNRNPA1 expression pattern. Next,
we compared the expression of HNRNPA1 and CELF1 in DM1
muscle.

HNRNPA1 Protein Is Elevated in DM1 Biopsied Muscle. Initially, we
attempted to determine HNRNPA1 protein levels using control
versus DM1 autopsy muscles, but immunoblotting either failed
to detect HNRNPA1 or detected polypeptides migrating below
the HNRNPA1 34-kDa full-length protein. To avoid the potential
problem of postmortem protein degradation, biopsied samples
were obtained from both control and DM1 muscles (Dataset S1F).
In DM1 skeletal and heart muscle, CUGexp RNAs activate PKC
signaling and lead to hyperphosphorylation and increased levels of
CELF1 (4). Although we also detected an increase in CELF1 in
DM1 biopsied muscles compared with controls (Fig. 6 A and B),
HNRNPA1 levels significantly increased in DM1. RNA-seq data
(DMseq.org) indicated a similar increase in HNRNPA1 tran-
scripts in DM1 biopsies, and DM1 disease severity corresponded
with increased HNRNPA1 transcription (Fig. 6C). To test if other
hnRNPs have similar effects on DM1 targets, protein expression
levels for two additional hnRNPs, HNRNPH1 and HNRNPA2B1,
were examined in DM1 biopsies, but the expression levels of these
hnRNPs were not significantly different from controls (SI Ap-
pendix, Fig. S4 A and B). Moreover, an increase in fetal splicing
shifts of representative muscle DM1 targets was not observed in
AAV/Hhnrph1-transduced myofibers (SI Appendix, Fig. S4C), and
MBNL1 levels were not markedly perturbed in DM1 biopsies or
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HNRNPA1/CELF1-overexpressed myofibers (SI Appendix, Fig.
S4 A, B, and D). Cumulatively, these data demonstrate that
CELF1 up-regulation is not a unique diagnostic marker of DM1
muscle, and that this disease also induces an increase in HNRNPA1,
and possibly other nuclear RNA binding proteins, that modulate the
effects of MBNL sequestration and DM1-induced spliceopathy.

Discussion
During a study designed to determine if systemic MBNL2
overexpression in neonatal mice would block disease progression
in the HSALR polyCUG model of DM1, we also tested for
nonspecific effects of an unrelated RBP, HNRNPA1. Surpris-
ingly, HNRNPA1 recapitulated both the physiological and mo-
lecular effects associated with CELF1 overexpression, including
reduced lifespan and muscle strength, muscle histopathology,
and the persistence of specific DM1-relevant splicing patterns in
adult tissues (8). Splicing assays using differentiated primary
myoblasts confirmed that elevated HNRNPA1 protein levels
reproduced DM1 splicing patterns, while HITS-CLIP of HSALR

muscle overexpressing HNRNPA1 revealed that >30% of
HNRNPA1 targets overlapped with MBNL1 target RNAs. The
expression of multiple hnRNP genes declined, while MBNL1
increased, during late fetal and early postnatal skeletal muscle
development and HNRNPA1 was only transiently overexpressed
during adult muscle regeneration. Interestingly, DM1 muscle
showed elevated HNRNPA1 protein levels. It is important to note
that the increase in HNRNPA1 protein levels was only observed in
biopsy DM1 muscle, since immunoblotting of autopsy muscle with
anti-HNRNPA1 antibodies consistently failed to detect the full-
length protein, likely due to postmortem proteolysis. Indeed,
HNRNPA1 was originally characterized as the eukaryotic helix-

unwinding single-stranded DNA binding protein UP1, a 24-kDa
proteolytic fragment that contains two N-terminal RNA recogni-
tion motifs, but is missing the glycine-rich C terminus (25–27). On
the basis of these results, we conclude that (CUG)n repeat ex-
pansions trigger the overexpression of multiple RBPs, including
CELF1 and HNRNPA1, that cumulatively drive fetal splicing
events in DM1 adult tissues.
Although HNRNPA1 functions include transcription elonga-

tion (28), pri-miR processing (29, 30), mRNA translation, and
telomere maintenance (31, 32), its role in pre-mRNA splicing
has been the most thoroughly characterized (21, 33–35). In
general, HNRNPA1 binds to exonic and intronic splicing si-
lencers to repress exon inclusion, but it also activates inclusion of
some exons and is involved in proofreading 3′ splice site recog-
nition by U2AF (21, 34, 36, 37). Our results extend these prior
observations by demonstrating that developmental splicing pat-
terns are also affected by manipulating HNRNPA1 protein levels
in vivo. Similar to CELF1, HNRNPA1 acts antagonistically to
MBNL1 in skeletal muscle and promotes the inclusion of fetal
exons, but the exclusion of adult exons, for a specific set of
developmentally regulated genes. This developmental splicing
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activity agrees with prior studies that have shown that HNRNPA1
is highly expressed in proliferating cells and a wide range of can-
cers, but is either undetectable or present at much lower levels in
most normal differentiated tissues (38, 39).
The demonstration that increased expression of HNRNPA1

recapitulates DM1 manifestations and splicing defects adds to a
growing list of diseases attributed to HNRNPA1 misexpression
and mutations, including Alzheimer’s disease (AD) and amyo-
trophic lateral sclerosis (40). In AD, HNRNPA1, in conjunc-
tion with SRSF2, regulates the splicing of APP exon 7, with
HNRNPA1 acting as a repressor of this alternative cassette (41).
Relevant to this study, MBNL2 functions antagonistically as an
activator of this splicing event. MBNL sequestration by CUG
expansion RNAs in DM1 results in enhanced APP exon 7
skipping (2), while HNRNPA1 knockdown leads to expression of
full-length APP (+exon 7), which has been suggested to lead to
increases in Aβ peptide secretion and amyloid plaques. Microarray
analysis of control versus AD entorhinal cortex, which is severely
affected in AD, shows striking increases in alternative exon in-
clusion and significant decreases in hnRNP A/B levels in AD (42).
Several hereditary diseases have also been linked to HNRNPA1
missense mutations, including multisystem proteinopathy and
amyotrophic lateral sclerosis. These mutations are located in
the HNRNPA1 C-terminal region, which contains a prion-like

domain that confers unusual physical properties to this protein,
including the ability to phase separate into liquid droplets (43, 44),
and may result in HNRNPA1 loss of function although the effects
on splicing regulation have not been evaluated. In light of the
observations reported here, further studies on HNRNPA1 func-
tions in embryonic versus postnatal tissues are clearly warranted
and may reveal additional regulatory functions of the hnRNP
A/B family.

Materials and Methods
Detailed information on DM1 biopsies, animal handling, viral preparation
and administration, immunoblotting, muscle functional analysis and histol-
ogy, primary myoblast culturing and lentiviral transduction, splicing analysis,
CLIP-seq and RNA-seq, and muscle injury/regeneration are provided in SI
Appendix, Materials and Methods.

Data Availability Statement. All data obtained for this study are presented
within the main text, SI Appendix, and Dataset S1.
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