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Mesenchymal stem cells have been at the forefront of regenerative medicine for many years. Exosomes, which are nanovesicles
involved in intercellular communication and the transportation of genetic material transportation that can be released by
mesenchymal stem cells, have been recently reported to play a role in cell-free therapy of many diseases, including myocardial
infarction, drug addiction, and status epilepticus. They are also thought to help ameliorate inflammation-induced preterm brain
injury, liver injury, and various types of cancer. This review highlights recent advances in the exploration of mesenchymal stem
cell-derived exosomes in therapeutic applications. The natural contents, drug delivery potency, modification methods, and drug

loading methods of exosomes are also discussed.

1. Introduction

Mesenchymal stem cells (MSCs) originate from the meso-
derm of many tissues, including bone marrow, liver, spleen,
peripheral blood, adipose, placenta, and umbilical cord
blood, and have the capacity to self-renew and the ability to
generate differentiated cells. Over the last decade, MSCs have
emerged as a popular research topic because of their potential
role in regenerative medicine, immunoregulation, neuropro-
tection, and antitumor effects originally attributed to direct
cell replacement. However, experimental data indicates that
most MSCs are largely cleared, while a small proportion will
integrate into injured tissue after intravenous injection [1].
Furthermore, the “cell replacement theory” does not account
for the sufficient durations in a variety of disease models [2,
3]. Recently, several mechanisms have been put forward
regarding the therapeutic potential of MSCs, including (1)
paracrine factors involving proteins/peptides and hormones
and (2) the transfer of mitochondria or exosomes/microvesi-
cles packaging multitudinous molecules [4].

Exosomes are a family of nanoparticles with a diameter
in the range of 40-100 nm that are generated inside multi-
vesicular endosomes or multivesicular bodies (MVBs) and

are secreted when these compartments fuse with plasma
membrane [5]. Exosomes are enriched in endosome-
derived components as well as many bioactive molecules
such as proteins, lipids, mRNAs, microRNAs (miRNAs),
long noncoding RNAs (IncRNAs), transfer RNA (tRNA),
genomic DNA, cDNA, and mitochondrial DNA (mtDNA)
[6-12]. It has also been reported that exosomes may be
released from multiple cell types, including reticulocytes
[13], immunocytes, tumor cells, and MSCs [14]. This sug-
gests that the secretion of exosomes is a general cellular
function that plays an important role in the intercellular
transfer of information.

In this review, we focus on the mechanisms of exosomes/
microvesicles, covering the current knowledge on biological
characteristics and their potential cell-free therapeutic appli-
cations for MSC-derived exosomes.

2. Characterization and Isolation of Exosomes

Exosomes were first discovered by Harding’s group as “a
garbage can” in maturing sheep reticulocytes [13]. Originally,
they were thought to have a typical “cup-shaped” or “saucer-
like” morphology when analyzed by electron morphology
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TaBLE 1: Characterization of various extracellular vesicles.
Exosomes MVs Apoptotic bodies
Size 30-100nm  50-2000 nm 500-4000 nm
Surface markers CD63 ARF6 TSP
(used most) CD9 VCAMP3 C3b

[15, 16]. Zabeo’s group revealed a wide diversity in exosome
morphology when purified from homogeneous cell types
(the human mast cell line HMC-1). They classified exo-
some morphology into nine categories: (1) single vesicle;
(2) double vesicle; (3) triple vesicle or more; (4) small
double vesicle; (5) oval vesicle; (6) small tubule; (7) large
tubule; (8) incomplete vesicle; and (9) pleomorphic vesicle
[17]. This categorization suggested that different morphol-
ogies of exosomes may be accompanied by various and
specific functions. Exosomes also contain surface proteins
unique to the endosomal pathway, which are generally
used to characterize exosomes and distinguish them from
microvesicles (MVs), apoptotic bodies, and other vesicles
(Table 1), such as tetraspanins (CD63, CD81, and CD9),
heat shock proteins (Hsc70), lysosomal proteins (Lamp2b),
the tumor-sensitive gene 101 (Tsgl01), and fusion proteins
(CD9, flotillin, and annexin) [12, 18]. Exosomes are released
in almost all types of extracellular fluids, including blood,
urine, amniotic fluid, ascites, hydrothorax, saliva, breast milk,
seminal fluid, and cerebrospinal fluid. Exosomal content
greatly depends on cellular origin. For example, exosomes
derived from B lymphocytes that bring functional MHCI,
MHCIL, and T cell costimulatory molecules can stimulate T
cell proliferation [19]. Furthermore, cancer cell-derived exo-
somes contain gelatinolytic enzymes and other cell adhesion-
related molecules to help tumor progression and metastasis
[20]. Importantly, these cancer cell-derived exosomes are
actively incorporated by MSCs in vitro and in vivo, in that
the transfer of exosomal proteins and miRNAs acquire the
physical and functional characteristics of tumor-supporting
fibroblasts [21, 22]. For more details on the molecular cargos
and extracellular signal transmission pathway of exosomes,
the reader may refer to ExoCarta (http://www.exocarta.org)
or EVpedia (http://evpedia.info), as well as the American
Society for Exosomes and Microvesicles (http://www.asemv.
org), for an in-depth exploration.

Ultracentrifugation and a commercial kit rooted in
polymer-based precipitation are the most well-established
purification protocols [16]. Other conventional validated
isolation methods described in the literature include ultrafil-
tration, chromatography, and affinity capture [23]. New
protocols have been established in order to facilitate the
large-scale and high-purity manufacture of exosomes.
Microfluidic techniques [24] are based on electrochemical,
electromechanical, viscoelastic [25], optical, nonoptical, and
other principles, yet the isolation is a mixed population of
small nanoparticles without further demonstration of their
intracellular origin. Thus, we use the term exosomes in this
review to refer to extracellular vesicles characterized by
exosome-specific surface markers, regardless of the primitive
appellations in the published data.
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3. Cargos and Functions of MSC-Derived
Exosomes

The abundance of cargos identified from MSC-derived exo-
somes attracts broad attention because of their therapeutic
potential in cardiovascular disease, tissue (kidney, liver, skin,
and cornea) repair, immune disease, tumor inhibition, and
neurological disease (Figure 1). They function largely via
the constant transfer of miRNAs and proteins, resulting
in the alteration of a variety of activities in target cells
via different pathways.

3.1. Protein. Over 900 species of proteins have been col-
lected from MSC-derived exosomes according to ExoCarta.
With the exception of some common proteins involved in
cell metabolism and the cytoskeleton, many proteins have
been found in different tissue sources of MSC-derived exo-
somes. Proteomic studies by Kang’s group identified 103 pro-
teins from neural stem cell-derived exosomes. For example,
the presence of polymyositis/scleroderma autoantigen 2
(PM/Scl2), a highly specific nuclear autoantigen, indicates
that exosomes may be involved in triggering autoimmunity.
They also found an imparity between exosomes larger
than the baseline (50 nm) and those of smaller morphology
[26]. These findings may explain the phenomenon recently
observed by Caponnetto et al. regarding size-dependent cel-
lular uptake of exosomes by target cells [27]. Intriguingly,
all enzymes involved in the ATP synthesis of glycolysis (glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH), phos-
phoglycerate kinase (PGK), phosphoglucomutase (PGM),
enolase (ENO), and pyruvate kinase m2 isoform (PKm2)),
as well as the rate-limiting glycolytic enzyme phosphorylated
PFKFB3 that upregulates phosphofructose kinase, were
identified in MSC-derived exosomes. Furthermore, oxidative
stress was reduced via peroxiredoxins and glutathione S-
transferases in MSC-derived exosomes [28], which suggests
that replenishing glycolytic enzymes to increase ATP pro-
duction, as well as additional proteins to reduce oxidative
stress through exosomal transportation, may help reduce cell
death in myocardial ischemia/reperfusion injury. Compara-
ble levels of VEGF, extracellular matrix metalloproteinase
inducer (EMMPRIN), and MMP-9 have also been reported
in MSC-derived exosomes. These three proteins play a vital
role in stimulating angiogenesis [29], which could be funda-
mental for tissue repair. Recent experimental evidence sum-
marized by Burrello suggests that transcriptional factors,
such as Nanog, octamer-binding transcription factor 4
(Oct-4), HoxB4, and Rex-1, play an important role in the
immune system [30]. For example, HoxB4 has been shown
to affect DC maturation and T-cell proliferation, differentia-
tion, and activation through WNT signaling. Interestingly,
membrane proteins and exosome-specific surface markers,
such as CD81, CD63, and CD9, may affect the immune
response by regulating cell adhesion, motility, activation,
and signal transduction [31]. Several studies have also shown
that exosomes derived from MSCs harbor cytokines and
growth factors, such as TGFf1, interleukin-6 (IL-6), IL-10,
and hepatocyte growth factor (HGF), which have been
proven to contribute to immunoregulation [30].
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FIGURE 1: The main functions of MSC-derived exosomes. The external bilayer (green circle) is the membrane and the internal bilayer

(white circle) is packed with various bioactive compounds.

3.2. miRNAs. miRNAs consist of a class of small noncod-
ing RNAs that regulate gene expression posttranscriptionally
by targeting mRNAs to induce suppression of protein expres-
sion or cleavage [32]. Many miRNAs have been found in
MSC-derived exosomes and are reportedly involved in
both physiological and pathological processes such as organ-
ism development, epigenetic regulation, immunoregulation,
tumorigenesis, and tumor progression. Notably, exosomes
with membrane structure act as preservers and deliverers
of miRNAs, transferring functional miRNAs into recipient
cells. It has been reported that exosomal miR-23b, miR-
451, miR-223, miR-24, miR-125b, miR-31, miR-214, and
miR-122 [33, 34] may inhibit tumor growth and stimulate
apoptosis through different pathways. For instance, miR-
23b promotes dormancy in metastatic breast cancer cells
via the suppression of the target gene MARCKS, which
encodes a protein that promotes cell cycling and motility
[34]. MiR-16, shuttled by MSC-derived exosomes, has also
been found to suppress angiogenesis by downregulating
VEGEF expression in breast cancer cells [35]. Recently, let-
7f, miR-145, miR-199a, and miR-221, which are released
from umbilical MSC-derived exosomes, have been found to
largely contribute to the suppression of hepatitis C virus
(HCV) RNA replication [36]. Di Trapani’s group evaluated
the immunomodulatory effects exerted by MSC-derived exo-
somes on unfractionated peripheral blood mononuclear cells
and purified T, B, and NK cells. They observed that exosomes
had higher levels of miRNAs compared to MSCs and could
also induce inflammatory priming via increasing levels of
miR-155 and miR-146, which are two miRNAs involved in
the activation and inhibition of inflammatory reactions
[37]. Similar immunosuppressive functions have also been
reported in animal experiments by Cui et al. [38]. Exosomes
from MSCs effectively increased the level of miR-21 in the
brain of AD mice. Additionally, replenishment of miR-21
restored the cognitive deficits in APP/PS1 mice and pre-
vented pathologic features by regulating inflammatory
responses and restoring synaptic dysfunction [38]. Recent
studies have also shown that aging is substantially controlled
by hypothalamic stem cells, partially through the release of
exosomal miRNAs [39]. However, contradictions regarding

these outcomes remain. A quantitative analysis of exosomal
miRNA abundance and stoichiometry by Chevillet’s group
quantified both the number of exosomes and the number of
miRNA molecules in replicate samples isolated from diverse
sources. Regardless of the source, the study indicated that, on
average, over 100 exosomes would need to be examined to
observe one copy of a given abundant miRNA, suggesting
that most individual exosomes do not carry biologically
significant numbers of miRNAs and are thus unlikely to
be functional individually as vehicles for miRNA-based
communication [40].

3.3. Others. In 2006, MSC-derived exosomes that could mod-
ulate the phenotype of target cells, supporting self-renewal of
hematopoietic progenitors and multipotency by transfer of
growth factors and mRNA, were first reported. For instance,
exosomal SOX2 was found to initiate innate responses
against microbial infection through neutrophil activation
[41]. Although MSC-derived exosomes have the same mor-
phology as exosomes from other cells and carry typical
markers, they are quite different in regard to compartmental-
ization and protein and RNA composition. For example,
studies have indicated that not all MSC-derived exosomes
are equivalent [42]. Baglio’s group [6] characterized the
small RNAome of exosomes released by early passage
adipose-MSCs (ASC) and bone marrow-MSCs (BMSCs).
They found a large discrepancy in the proportion of miRNAs
in total small RNA content between cells (19-49%) and exo-
somes (2-5%), suggesting that the miRNAs in exosomes do
not merely reflect the cellular content. Further studies
regarding the overrepresentation of small RNA content-
tRNAs revealed a similar outcome. The most abundant tRNA
in ASC exosomes, tRNA GCC (Gly), represented only a small
fraction (5%) of the total cellular tRNA. Importantly, the
authors also determined that the striking differences in
tRNA species seemed to be associated with the differentia-
tion status of MSCs. Recent research has shown that the
stability of exosome composition is susceptible to localized
environmental conditions. For example, hypoxia and
inflammatory signals, such as lipopolysaccharides, may be
strong interference factors [43].



4. Exosomes as Drug Delivery Vehicles

Optimal features of drug delivery vehicles may be applied
to improve carrier qualities, including cellular tropism, effi-
cient therapeutic cargos, appropriate physicochemical prop-
erties, and sufficient immune tolerance. Among the many
drug platforms, liposomes have been the preferred pharma-
ceutical vehicles for drug delivery. A wide range of liposome
products have been approved for the treatment of diseases,
including fungal infections, pain management, hepatitis
A, influenza, and various types of cancer [44, 45]. In con-
trast to liposomes, exosomes are optimal for drug delivery
because of their natural properties and plasticity with
minor modifications. Here, we compare exosomes and
liposomes and suggest that exosomes may be a promising
star for drug delivery.

4.1. Exosomes versus Liposomes. Exosomes and liposomes
are both coated with a phospholipid membrane. The
membrane structure of exosomes is inlayed with multiple
natural biomolecules, such as surface proteins and MHCs,
while liposomes may be modified with targeting ligands or
inert polymeric molecules such as oligosaccharides, glyco-
proteins, polysaccharides, and synthetic polymers [45]. The
size of liposomes is in the range of 30 nm to several microns
[46]. Smaller liposomes (as small as exosomes) display a pro-
longed circulation time compared to larger ones, but the
capacity for optimal drug reservation and release profiles is
partly lost. For more details regarding circulation time and
biodistribution, readers can refer to other sources [46].
Regarding cellular interactions and uptake, liposomes can
be equipped with targeting ligands, which can bind to recep-
tors or other molecules that are specific or overexpressed by
target cells for interactions and the intracellular delivery of
drugs [46]. However, the drug delivery of liposomes is not
efficient, since many modifications have been designed to
minimize clearance and poisonousness. In general, liposomes
accumulate in the macrophages of the liver and spleen after
intravenous injection. Few liposomes are interspersed in
other tissues, which may be due to the lack of immunocom-
patibility. On the other hand, exosomes are born with many
features of an ideal drug delivery vehicle. For example, they
exhibit lower toxicity compared to liposomes. In addition,
they are well tolerated by the immune system, even across
the blood-brain barrier, avoiding phagocytosis or degrada-
tion by macrophages [47]. Exosomes exhibit an innate target-
ing tendency. For instance, MSC-derived exosomes home
preferentially to inflamed tissues and tumor tissues [48].
Furthermore, abundant bioactive materials within exosomes
or on the surface provide primitive treatment potential, and
there are abundant modification methods for membrane
targeting and drug loading. Alvarez-Erviti et al. engineered
dendritic cells to express Lamp2b, an exosomal membrane
protein, fused to the neuron-specific RVG peptide and
loaded these modified exosomes with siRNAs by electropo-
ration. These intravenously injected exosomes showed a
strong knockdown of BACEI (mRNA (60%) and protein
(62%)), a therapeutic target of Alzheimer’s disease, in
wild-type mice [49].
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4.2. Exosomal Modification and Cargo Loading. To amplify
the therapeutic effects, many studies try to modify and
load various treatment factors into exosomes via various
methods. To date, these methods can be classified into
two categories: (1) loading after isolation and (2) loading
exosomes during biogenesis.

The first approach has been applied to load chemothera-
peutic agents, siRNAs, and miRNAs. To reduce immunoge-
nicity and toxicity of doxorubicin, Tian’s group facilitated
exosomal tumor targeting by engineering mouse immature
dendritic cells (imDCs) to express a well-characterized exo-
somal membrane protein (Lamp2b) fused to a breast
cancer-specific iRGD peptide (CRGDKGPDC). Chemother-
apeutic agents were loaded via electroporation. The results
showed an encapsulation efficiency of up to 20% and
exosomal-delivered doxorubicin specific to breast cancer
cells in vitro, leading to strong antiproliferative activity with-
out overt toxicity after intravenous injection of BALB/c
nude mice [50]. For nucleic acid, electroporation method
has also been the first-rank used reported in several studies
[49, 51]. Although these studies provided positive delivery
outcomes, debates remain. Some studies indicate that siRNA
encapsulation is an illusion caused by nonspecific aggregate
formation, independent of the exosomes. In addition, no sig-
nificant encapsulation of siRNA could be measured when
aggregate formation was blocked [52]. Therefore, it is neces-
sary to establish multiple protocols for loading exosomes
with nucleic acid.

The second approach is based on transfection methods to
package active proteins, nucleic acid, and other active mole-
cules into exosomes, where cells are transfected with an engi-
neered effector-expressing vector. Liu’s group used this
method to load cells with opioid receptor Mu (MOR) siRNA
in order to treat drug addiction via downregulating the
expression of MOR, the primary target for opioid analgesics
used clinically, including morphine, fentanyl, and metha-
done. This novel study provided a new strategy for the treat-
ment of drug addiction [53]. Similarly, synthesized RNA
oligonucleotides were transferred to MSCs in order to
produce miR-143-rich exosomes, inhibiting the migratory
potential of osteosarcoma cells [54]. Akt was transfected
into umbilical cord-derived MSCs by using an adenovirus
transfection system that improved cardiac function in
animals treated with modified exosomes [55]. In addition,
Pascucci reported that MSCs can acquire strong antitumor
properties after incubation with paclitaxel (PTX), including
the uptake of high drug doses followed by release into exo-
somes, inhibiting tumor growth activity. This method pro-
vides the possibility of using MSCs for the development of
drugs with a higher cell-target specificity [56]. Sterzenbach
reported the usage of the evolutionarily conserved late-
domain (L-domain) pathway as a mechanism for loading
exogenous proteins into exosomes [57]. They labeled an
intracellular target protein with a WW tag, which was recog-
nized by the L-domain motifs on Ndfipl, resulting in the
loading of the target protein into exosomes.

For better tissue-targeting and an enhanced exosomal
therapeutic effect, surface modification of exosomes was
recently attempted by many groups using gene transfection
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TasLE 3: Clinical trials of exosome-based therapies.

Study title Disease Intervention Phase NCT
Effect of plasma-derived exosomes on Autologous exosomes
intractable cutaneous wound healing: Ulcer & Early phase 1 NCT02565264

prospective trial

Rich plasma

Study investigating the ability of plant

Curcumin delivery

exosomes to deliver curcumin to normal Colon cancer Phase 1 NCT01294072
. by exosomes

and colon cancer tissue

Effect of microvesicles and exosomes therapy on Type I diabetes Umbilical Ford blood- Phase 2

B-cell mass in type I diabetes mellitus (T1DM) mellitus derived Phase 3 NCT02138331
MSC microvesicles

Preliminary clinical trial investigating the ability Dietary Supplement:

of plant exosomes to abrogate oral mucositis Head and neck cancer grape extract Phase 1 NCTO01668849

induced by combined chemotherapy and
radiation in head and neck cancer patients

Oral mucositis

Drug: lortab, fentanyl
patch, mouthwash

Pilot study of metformin in head and neck
cancer and its effect on proinflammatory
cytokines and exosomes implicated in acute
and chronic toxicity

Head and neck cancer

Radiation: external beam
radiation therapy
Drug: metformin

hydrochloride
Other: placebo

Early phase 1 NCT03109873

Phase II trial of a vaccination with tumor
antigen-loaded dendritic cell-derived exosomes

Non-small-cell lung

Tumor antigen-loaded

on patients with unresectable non-small-cell cancer dendritic cell-derived Phase2 ~ NCT01159288
lung cancer responding to induction exosomes

chemotherapy

Clinical trial of tumor cell-derived Biological: tumor-derived

microparticles packaging chemotherapeutic Malignant pleural effusion microparticles Phase 2  NCT02657460

drugs to treat malignant pleural effusion

Drug;: cisplatin

techniques. The conventional method for surface protein
loading was the expression of a genetic fusion between the
targeted peptide and a protein that natively localized on the
exosomal surface, such as Lamp2 [50]. Similarly, Ohno and
colleagues engineered donor cells to express the transmem-
brane domain of platelet-derived growth factor receptor
fused to the GE11 peptide, which efficiently delivered let-7a
miRNA to epidermal growth factor receptor- (EGFR-)
expressing breast cancer cells [58]. Furthermore, Tamura
modified the exosomal surface by a simple mixing of original
exosomes and cationized pullulan through an electrostatic
interaction of both substances, thus targeting injured liver
tissue and enhancing the therapeutic effects [59].

The fate of nucleic acid cargos in target cells remains con-
troversial. For example, Kanada et al. suggests that exosomes
cannot deliver functional nucleic acids to target cells by
detecting differential fates of transfection-loaded biomole-
cules (plasmid DNA (pDNA), mRNA, and siRNA) delivered
to target cells [60].

4.3. MSCs as an Ideal Source of Exosomes for Drug Delivery.
Despite the fact that the properties of natural MSC-derived
exosomes are disputed and distinctive of different origins,
the use of MSC-derived exosomes has been confirmed for
the cell type-specific targeting of drug delivery as a better
alternative because of several features. First, exosomes do
not elicit acute immune rejection, and there is no risk for
tumor formation [61]. Second, MSCs are efficient mass pro-
ducers of exosomes, which can be manufactured large scale

in culture [62], providing support for individualized therapy.
Third, the safety of exosomes has been confirmed in vivo by
different animal models [63, 64]. To achieve cell-specific tar-
geted drug delivery, several studies have tested donor cells,
loading methods, and therapeutic cargos of MSC-derived
exosomes. Bone marrow stem cells are typically used as the
donor cells, and miRNAs are typically used for therapeutic
cargos (Table 2). A phase II-III study has also been processed
by a group in Egypt, who hypothesized that intravenous infu-
sion of cell-free umbilical cord blood-derived MSC microve-
sicles may reduce the inflammatory state, thus improving the
B-cell mass and glycemic control in patients with type 1 dia-
betes (T1DM). However, these outcomes remain controver-
sial, particularly in reference to dose responses. The data
reported in several studies is highly dependent on the drug-
loading of exosomes, not the quantity of exosomes.

5. Exosomes for Cell-Free Therapy

Currently, the use of exosomes as early diagnostic tools for
various types of cancer is underway. In addition, the use of
exosomes as diagnostics for prostate cancer is undergoing
FDA-approved tests. While complexities surrounding the
therapeutic potential of exosomes continue to unravel, sev-
eral clinical trials (Table 3, data from http://clinicaltrials
.gov) have been completed or are underway in order to
evaluate this therapeutic potential. In these trials, largely
modified exosomes were used rather than native exosomes.


http://clinicaltrials.gov
http://clinicaltrials.gov

6. Conclusion and Perspective

The therapeutic potential of exosomes presents exciting new
avenues for intervention in many diseases. The ability
instinct to transport genetic messages and to protect the car-
gos to natural preferential recipient cells has drawn a rapid
rise in attention. Therefore, specialized journals and websites
have been established to disseminate this continuously unra-
veling information. While various clinical trials are underway
to evaluate the safety and effectiveness of exosomes as thera-
peutic targets, many issues still remain. Questions regarding
how clinical-grade exosomes can be produced in quantity
and how various loading and isolation strategies impact the
potency of exosome-based drug delivery remain unanswered.
Therefore, there is an urgent need to closely examine the fol-
lowing aspects of exosomes: (1) natural therapeutic potential;
(2) biogenesis mechanism; and (3) circulation kinetics and
biodistribution. There is still a long road ahead, from prom-
ising phenomenological observations to clinical applications.
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