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A new strategy for exploring the 
hierarchical structure of cancers by 
adaptively partitioning functional 
modules from gene expression 
network
Junmei Xu1, Runyu Jing1, Yuan Liu1, Yongcheng Dong2, Zhining Wen1 & Menglong Li1

The interactions among the genes within a disease are helpful for better understanding the hierarchical 
structure of the complex biological system of it. Most of the current methodologies need the 
information of known interactions between genes or proteins to create the network connections. 
However, these methods meet the limitations in clinical cancer researches because different cancers 
not only share the common interactions among the genes but also own their specific interactions 
distinguished from each other. Moreover, it is still difficult to decide the boundaries of the sub-
networks. Therefore, we proposed a strategy to construct a gene network by using the sparse inverse 
covariance matrix of gene expression data, and divide it into a series of functional modules by an 
adaptive partition algorithm. The strategy was validated by using the microarray data of three cancers 
and the RNA-sequencing data of glioblastoma. The different modules in the network exhibited specific 
functions in cancers progression. Moreover, based on the gene expression profiles in the modules, 
the risk of death was well predicted in the clustering analysis and the binary classification, indicating 
that our strategy can be benefit for investigating the cancer mechanisms and promoting the clinical 
applications of network-based methodologies in cancer researches.

Researches on analyzing the functions of individual gene have contributed to finding potential oncogenes 
involved in the initiation and progression of tumors that may be potential targets of anticancer drugs and can 
be applied to the prognosis of patients1–8. Although the biological studies of individual gene play a vital role in 
clinical treatment, the emergent functions and behaviors of individual genes in the context of the whole biological 
systems still require further investigation9,10. As the biological function is usually completed by the cooperation 
of a set of genes, the gene network is one of the suitable tools for better understanding the molecular mechanisms 
of biological processes in the whole systems11.

The network has been used to represent the interactions or regulations among the elements in the system12. 
The framework of gene network, for which the nodes represent genes and the edges represent the interactions 
between genes, allows us to explore the integrated functions of the sub-networks as well as the property of the 
whole network, which serves as a powerful paradigm for genes analysis and provides a system-level understand-
ing of gene functions13. Generally, the connections among genes or proteins are created mainly based on the 
known interactions in the knowledge-based databases, such as Human Protein Reference Database (HPRD)14, 
STRING15, and Biomolecular Interaction Network Database (BIND)16. A number of algorithms have been devel-
oped to partition the whole network into several sub-networks in order that people can investigate the potential 
relationships among the sub-networks, and subsequently infer the molecular mechanisms of the complex biolog-
ical systems17–30. Recently, Ghiassian et al. successfully extracted the disease modules by systematically analyzing 
the protein-protein interaction networks of 70 diseases and discovered the pathobiological relationships among 
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these diseases with the identified modules31. Menche et al. further elucidated the pathobiological relationships 
among the diseases based on the similarities of the disease modules32.

In clinical cancer researches, the gene networks are also benefit for exploring the hierarchical structure of the 
biological system of a complex cancer33 and identifying the functional gene sets that are highly associated with 
the clinical outcomes. However, the networks constructed with the knowledge-based interactions cannot reflect 
the heterogeneity of the cancer outcomes very well. Therefore, considering that the gene expression profiling 
measured by microarray or RNA-sequencing technology is one of the common elements for investigating the 
molecular mechanisms of cancers, it is essential to develop a strategy, which can construct the gene network only 
with the gene expression data instead of the known interactions in the database.

In our study, we presented a strategy to generate the potential connections among the genes in a specific can-
cer with the gene expression profiles, and adaptively divide the whole network into several functional modules, 
in which the genes directly connected with each other shared similar biological functions. Our proposed strategy 
was validated by using the microarray data of acute myeloid leukemia (AML), glioblastoma and neuroblastoma, 
as well as the RNA-sequencing data of glioblastoma (glioblastoma_seq). The gene set enrichment analysis for 
the genes in the functional modules clearly showed the similarities and differences among the three cancers. 
Kaplan-Meier analysis showed that the patients with diverse survival durations were well discriminated based on 
the expression profiles of the genes in functional modules, indicating that our strategy can successfully generate 
the networks with the gene expression data and extract the functional modules that are highly associated with 
cancer outcomes. Furthermore, the binary classification with the re-sampling method showed the robust perfor-
mance of the predictive models on predicting the clinical outcomes of cancers.

Results
The gene networks constructed with the gene expression data displayed the scale-free char-
acteristics.  In our study, gene networks of three cancers were constructed by using graphical lasso based 
on gene expression profiles. All of them followed the power-law degree distribution, which were depicted in 
Supplementary Figs S1–S4. The networks were scale-free networks, in which most of the genes had a few neigh-
borhoods, but some of them had many directly connected genes34.

The top 20 genes ranked by degrees in the networks that were used for generating the seed 
modules.  The top 20 hubs (genes) with high degrees were separately selected from the gene networks of AML, 
glioblastoma and neuroblastoma. The gene functions were searched in Tumorportal (http://www.tumorportal.org/) 
and GeneCards (http://www.genecards.org/) to obtain the gene functions.

Among the top 20 genes in AML gene network, four genes had been reported that were correlated with AML. 
The detailed information about the 20 genes was shown in Supplementary Table S1.

For the hubs in the glioblastoma gene network, ten genes had been reported to be associated with glioblastoma 
in previous researches. Details of these genes were listed in Supplementary Table S2.

As to the neuroblastoma gene network, the degrees of NTRK1 and CDH19 were much larger than those of 
other genes. Five out of 20 genes were directly related with neuroblastoma (Supplementary Table S3).

For the 20 hubs in the RNA-sequencing data of glioblastoma network, seven genes had reported to be related 
with glioblastoma (Supplementary Table S4).

Functional modules derived from the gene networks were associated with specific functions.  
In this study, two functional modules were separately generated for each gene network. We conducted Gene 
Ontology (GO) functional annotation and pathway analysis with the genes in each of the modules by using 
Database for Annotation, Visualization, and Integrated Discovery (DAVID) Functional Annotation Chart tool35 
and found the diverse functions between the modules of three cancers (Supplementary Tables S5–S12). For each 
gene network, the module related with the cancer progression was marked as module I, while another one was 
marked as module II.

The expression profiles of the genes in functional modules were correlated with the survival 
outcomes of patients.  Hierarchical clustering analysis was conducted with the gene expression profiles as 
features to classify the patients. The 151 AML patients, 100 glioblastoma patients, 236 neuroblastoma patients, 
138 RNA-sequencing data of glioblastoma patients, and the 237 independent testing set of neuroblastoma patients 
were separately grouped into two classes via hierarchical clustering (see Figs 1a,c, 2a,b, 3a,c, 4a,c and 5a,c).

Kaplan-Meier survival analysis was subsequently performed on the patients with AML, neuroblastoma, glio-
blastona_seq, and independent testing set of neuroblastoma (Figs 1b,d, 3b,d, 4b,d, 5b,d). The results suggested 
that the patients in AML, neuroblastoma, RNA-sequencing data of glioblastoma, and independent testing set of 
neuroblastoma datasets with shorter survival durations can be well discriminated by using the expression profiles 
of the genes in cancer-related functional modules.

Binary classification with the genes in functional modules.  The averaged performance of the 100 
times random re-sampling of the AML, glioblastoma, neuroblastoma, and the RNA-sequencing data of glioblas-
toma datasets was shown in Table 1. According to Table 1, all the features derived from module I achieved better 
performance than that derived from the module II, and the averaged ACCs for the module I of AML, glioblas-
toma, neuroblastoma, and RNA-sequencing data of glioblastoma were 0.919, 0.991, 0.899, and 0.902. The aver-
aged MCCs for the functional modules of four datasets and the distribution for 100 times random re-sampling 
with the ACC and MCC were shown in Fig. 6. The performance of the independent testing set of neuroblastoma 
was shown in Table 2.

http://www.tumorportal.org/
http://www.genecards.org/
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Discussion
In this study, we proposed a strategy for gene network analysis, which is based on the gene expression data 
and can adaptively divide the whole network into several functional modules. The microarray data sets of three 

Figure 1.  Unsupervised hierarchical clustering of genes in two modules and the Kaplan-Meier analysis 
of 151 patients with AML. (a,c) Unsupervised hierarchical clustering of tumor growth module and substance 
biosynthetic and metabolic module of AML. According to expression profiles of 1484 genes and 738 genes in 
two modules, 151 patients were clustered into two groups. The blue bar above the patients indicates the low 
risk group, the red bar indicates the patients with high risk. (b,d) Kaplan-Meier survival plots of low risk and 
high risk AML patients based on the hierarchical clustering results of (a,b) The gene expression signature of the 
patients in high risk (red lines) with a significantly increased risk of death when compared to low risk group 
(blue lines).

Figure 2.  Unsupervised hierarchical clustering of genes in two modules of 100 patients with glioblastoma. 
(a,b) Unsupervised hierarchical clustering of the tumor proliferation and progression modules and cellular 
signaling transduction module of glioblastoma. According to expression profiles of 3710 genes and 1875 genes 
in two modules, 100 patients were clustered into two groups. The blue bar above the patients indicates the 
patients belong to the low risk group, the red bar indicates the patients with high risk.
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cancers, namely AML, glioblastoma and neuroblastoma, as well as the RNA-sequencing dataset of glioblastoma, 
were applied to evaluate the performance of our strategy. Based on the gene expression profiles of the patients, 
we separately constructed the gene networks for four datasets and obtained two functional modules from each of 
the networks. In general, one functional module was related to the tumor initiation and progression (module I),  
and another one was mainly associated with the cellular process (module II). According to the hierarchical clus-
tering and Kaplan-Meier analysis, the gene expression profiles in module I achieved better discrimination of the 
patients’ risk group. To tested whether the clustering results achieved with the genes in functional modules are 
better than those obtained with the randomly selected genes by using the Monte Carlo sampling procedure. In 
total, 1484, 3710 and 3334 genes were grouped into the cancer related modules for the datasets of AML, glioblas-
toma and neuroblastoma, respectively, and used in the subsequent clustering analysis and survival analysis. So, 
for each of the datasets, we randomly selected the same number of genes from the gene network and used them 
for clustering analysis and survival analysis. This procedure has been repeated for 100 times and the p values 
obtained by log-rank test (conducted in survival analysis) were shown in Supplementary Fig. S5. From the figure, 
we find that the p values (p =​ 0.004, 0.004, and 0.001 for AML, neuroblastoma, and glioblastoma, resp.) obtained 
by using the genes in module I were less than those (average p value =​ 0.057, 0.125, and 0.160 for AML, neuro-
blastoma, and glioblastoma, resp.) obtained in the 100 re-sampling procedures. We also used all the differentially 
expressed genes (DEGs) for the clustering analysis and the survival analysis, the log-rank p values were 0.004, 
0.008, and 0.211 for AML, neuroblastoma, and glioblastoma, respectively. We considered that, to some extent, the 
genes in the functional modules performed better than those selected by chance in clustering the patients into 
high/low risk groups.

The gene networks were constructed by using graphical lasso based on gene expression profiles. In the AML 
gene networks, the degrees of a few genes were very larger than the most genes in the network, which were 
shown in Fig. 7. The node degree distribution of the AML gene network followed a power-law distribution 
(Supplementary Fig. S1), which was a characteristic of scale-free networks36. The other three gene networks also 
showed the same property (Supplementary Figs S2–S4). The top 20 genes ranked by degrees and their first neigh-
bors in the networks were the basis of our strategy to identify the functional modules. Thus, the scale-free topol-
ogy of the gene networks was necessary in this study.

Figure 3.  Unsupervised hierarchical clustering of genes in two modules and the Kaplan-Meier analysis 
of 236 patients with neuroblastoma. (a,c) Unsupervised hierarchical clustering of apoptosis and tumors 
migration module and nervous system development module of neuroblastoma. According to expression profiles 
of 3334 genes and 1739 genes in two modules, 236 patients were clustered into two groups. The blue bar above 
the patients indicates the low risk group, the red bar indicates the patients with high risk. (b,d) Kaplan-Meier 
survival plots of low risk and high risk neuroblastoma patients based on the hierarchical clustering results of 
(a,b) The gene expression signature in apoptosis and tumors migration module of the patients in high risk  
(red lines) with a significantly increased risk of death when compared to low risk group (blue lines).
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In the gene network of AML, SOCS2 and CDK6 were involved in two modules. The overexpression of SOCS2 
in AML patients indicates the favorable prognosis37. CDK6 plays an vital role in mixed-lineage leukemia fusions 
in myeloid leukemogenesis, which is associated with poor prognosis of patients38. In the module related to the 
tumor growth (Supplementary Table S5), the GO terms of damaged DNA binding was significantly enriched 
(p =​ 2.09 ×​ 10−2), which promoted to tumor suppression39. The enriched biological process (BP) of glycolysis 
(p =​ 4.7 ×​ 10−2) is usually active in tumor cells and the intermediates were involved in tumor tissues40. The oxi-
dative phosphorylation pathway (p =​ 1.59 ×​ 10−9) was significantly enriched in tumor growth module, which 
decreased the availability of ATP that associated with malignancies and tumor cell expansion and was reported to 
be one of the key progress in tumor growth41. In particular, the level of oxidative phosphorylation pathway might 
leads to the changes of mitochondrial functions, which was the character of the hematological cell malignancies, 
AML was included42. In the module related to the biosynthesis and metabolism of substance, the pathways of 
steroid biosynthesis (p =​ 3.50 ×​ 10−3), pyruvate metabolism (p =​ 1.81 ×​ 10−2), and amino sugar and nucleotide 
sugar metabolism (p =​ 2.64 ×​ 10−2) were significantly enriched, which mainly contributed to the biosynthetic 
and metabolic processes of the proteins, steroids and pyruvate. The GO terms and pathways enriched with the 
genes in this module were listed in Supplementary Table S6. From the results of Kaplan-Meier survival analysis 
(Fig. 1b,d), we found that the difference of survival durations of the patients between high- and low-risk groups 
separated by the gene expression profiles in the module related to tumor growth was more significant than that 
separated by the gene expression profiles in another module, indicating that the genes involved in the initiation 
and progression of AML were more suitable for the prognosis of patients.

For glioblastoma, in the module of tumor proliferation and progression, the hub FSTL5, as a candidate gene for 
tumor-suppressor, encodes a secretory glycoprotein and its expression level is highly correlated with tumor size. 
IL13RA2 is a tumor antigen-like factor, which is highly expressed in the glioblastoma patients43. Two enriched GO 
terms named cell morphogenesis involved in differentiation (p =​ 1.24 ×​ 10−5) and cell migration (p =​ 2.59 ×​ 10−6) 
mainly contribute to the tumor progression and migration. MAPK signaling pathway (p =​ 4.31 ×​ 10−4) and the 
pathway in cancer (p =​ 3.48 ×​ 10−3) were also significantly enriched in this module (Supplementary Table S7). 

Figure 4.  Unsupervised hierarchical clustering of genes in two modules and the Kaplan-Meier analysis 
of 138 glioblastoma patients of the RNA-sequencing dataset. (a,c) Unsupervised hierarchical clustering 
of apoptosis and cell death regulation module and substance biosynthesis and metabolism module of RNA-
sequencing data of glioblastoma. According to expression profiles of 1417 genes and 794 genes in two modules, 
138 patients were clustered into two groups. The blue bar above the patients indicates the low risk group, 
the red bar indicates the patients with high risk. (b,d) Kaplan-Meier survival plots of low risk and high risk 
RNA-sequencing data of glioblastoma patients based on the hierarchical clustering results of (a,b). The gene 
expression signature in apoptosis and cell death regulation module of the patients in high risk (red lines) with a 
significantly increased risk of death when compared to low risk group (blue lines).
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The enriched Wnt signaling pathway (p =​ 4.73 ×​ 10−5) had been reported in previous study that it might con-
tribute to glioma cell proliferation and impaired apoptosis, which allowed for the progression to glioblastoma44. 
Genes in axon guidance pathway (p =​ 3.39 ×​ 10−3) were reported to be differentially expressed in the patients 
with Parkinson disease compared to the healthy ones, which are the signs of the occurrence of the brain disor-
der45. In the module about cellular signaling transduction, the enriched GO terms named intracellular signaling 
cascade (p =​ 3.60 ×​ 10−7), regulation of cell communication (p =​ 1.12 ×​ 10−5) and ion transport (p =​ 1.30 ×​ 10−5) 
contribute to the transduction among the cells. The most significantly enriched calcium signaling pathway 
(p =​ 1.82 ×​ 10−4) in this module, was involved in regulating neural functions such as brain rhythms generation 
and information transduction in the processes of memory and learning46. The pathways about cellular signaling 
transduction were also significantly enriched with the genes in this module (Supplementary Table S8).

In the gene network of neuroblastoma, one functional module was about cell apoptosis and tumor migration 
and another was about the development of nervous system. The hub NTRK1 was involved in two functional 
modules. It is high expressed in the low-risk group of neuroblastoma patients, indicating the favorable prognosis 
of neuroblastoma patients47. In the module about cell apoptosis and tumor migration, Pathway of apoptosis was a 
genetically controlled mechanism of cell death involved in the regulation of tissue homeostasis. MAPK signaling 
pathway (p =​ 4.23 ×​ 10−3) was activated in human cancers and resulted in malignant phenotypes48. The pathway 
of cell adhesion molecules (CAMs) (p =​ 2.27 ×​ 10−8) was involved in tumors migration49. All the enriched GO 

Figure 5.  Unsupervised hierarchical clustering of genes in two modules and the Kaplan-Meier analysis 
of the independent testing set of 237 neuroblastoma patients. (a,c) Unsupervised hierarchical clustering of 
two modules of independent testing set. According to expression profiles of 3334 genes and 1739 genes in two 
modules, 237 patients were clustered into two groups. The blue bar above the patients indicates the low risk 
group, the red bar indicates the patients with high risk. (b,d) Kaplan-Meier survival plots of low risk and high 
risk neuroblastoma patients based on the hierarchical clustering results of (a,b). The gene expression signature 
in module I of the patients in high risk (red lines) with a significantly increased risk of death when compared to 
low risk group (blue lines).

AML Glioblastoma Neuroblastoma Glioblastoma_seq

Module I Module II Module I Module II Module I Module II Module I Module II

SPC 0.925 0.878 0.987 0.967 0.885 0.922 0.888 0.882

SEN 0.912 0.855 0.996 0.999 0.913 0.850 0.915 0.889

ACC 0.919 0.866 0.991 0.983 0.899 0.886 0.902 0.885

MCC 0.841 0.741 0.984 0.968 0.813 0.785 0.810 0.777

Table 1.   The averaged performance of the 100 times random re-sampling with the SVM models.
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terms and pathways for this module were listed in Supplementary Table S9. In the module about the devel-
opment of nervous system, the enriched GO terms of the ectoderm development (p =​ 8.88 ×​ 10−6) and organ 
development (p =​ 1.26 ×​ 10−8) are the final steps in the development of nervous system. The pathway of neuro-
active ligand-receptor interaction (p =​ 1.11 ×​ 10−5) was associated with the neuronal function50. The pathway of 
cytokine–cytokine interactions (p =​ 1.08 ×​ 10−3) is crucial during immunological and inflammatory responses 
in disease51. The detailed results of the DAVID analysis for this module were listed in Supplementary Table S10. 
Based on the expression profiles of the genes in these two modules, the patients were significantly divided into 
high-risk and low-risk groups by hierarchical clustering analysis (Fig. 3b,d). Note that the difference of survival 
durations of the patients between high- and low-risk groups separated by the gene expression profiles in the mod-
ule related to cell apoptosis and tumor migration was more significant than that separated by the gene expression 
profiles in another module.

For the gene network constructed based on RNA-sequencing data of glioblastoma, one of the functional mod-
ules was mainly about apoptosis and programmed cell death regulation, and the other one was about substance 

Figure 6.  Performance of the 100 times re-sampling for each module of four datasets. (a) The distribution of 
ACC values of the 100 times re-sampling for module I (left, yellow) and module II (right, blue) of four datasets. 
(b) The distribution of MCC values of the 100 times re-sampling for module I (left, yellow) and module II 
(right, blue) of four datasets. ​ is the mean value of the 100 times random re-sampling of each module.

Neuroblastoma SPC SEN ACC MCC

Module I 0.910 0.500 0.865 0.375

Module II 0.886 0.500 0.849 0.333

Table 2.   Performance of the independent testing set of the 237 neuroblastoma patients.

Figure 7.  Network and the functional modules of AML. (a) The visualization of AML gene network. (b) The 
visualization of the functional modules in the gene network.
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biosynthesis and metabolism. Expression of PI3 could be induced by inflammatory mediators such as tumor 
necrosisfactor and the interleukin 1 beta52. The L1CAM could stimulate glioblastoma cells motility and prolif-
eration53. In the module about apoptosis and programmed cell death regulation, GO terms enriched in it were 
tumor necrosis factor (TNF) binding (p =​ 2.71 ×​ 10−2), tumor necrosis factor receptor superfamily binding 
(p =​ 2.90 ×​ 10−2). TNF has been reported involved in the cancers development and progression in preclinical 
models54. The pathways enriched in this modules were cytokine–cytokine interactions (p =​ 4.06 ×​ 10−12), apop-
tosis (p =​ 1.34 ×​ 10−3) (Supplementary Table S11). In the module of substance biosynthesis and metabolism, the 
enriched GO terms were sulfuric ester hydrolase activity (p =​ 6.83 ×​ 10−5), cytokine activity (p =​ 2.07 ×​ 10−4), the 
enriched pathway were ECM-receptor interaction(p =​ 3.86 ×​ 10−5), keratan sulfate biosynthesis (p =​ 3.59 ×​ 10−3), 
and fructose and mannose metabolism (p =​ 2.20 ×​ 10−2). The results of DAVID analysis were shown in 
Supplementary Table S12. Fig. 4b,d showed that the difference of survival durations of the patients between high- 
and low-risk groups separated by the gene expression profiles in the module related to apoptosis and programmed 
cell death regulation was more significant than that separated by the gene expression profiles in another module, 
indicating that the genes involved in the cancers progression were more suitable for the prognosis of patients. Our 
strategy could be applied to both microarray and RNA-sequencing data.

We further investigated the differences and similarities of the modules among three microarray datasets. The 
overlaps of the genes in the modules that related to the cancer initiation and progression and cellular process were 
shown in Supplementary Fig. S6. It can be seen that 789 genes (21.3%) in glioblastoma overlapped with neuro-
blastoma in cancer initiation and progression (Supplementary Fig. S6a), while 353 genes (9.5%) in glioblastoma 
overlapped with AML. Likewise, 109 genes (5.8%) in glioblastoma overlapped with neuroblastoma in cellular 
process (Supplementary Fig. S6b), while 79 genes (4.2%) in glioblastoma overlapped with AML. It indicates that 
the molecular basis of glioblastoma was similar to that of neuroblastoma.

Furthermore, we evaluated the genes predictive ability for the patients’ cohort in the functional modules by 
using SVM modeling. To avoid the overfitting, feature selection was applied to reduce dimension of the genes 
for each dataset. As the models are often not robust, re-sampling is a good manner to test the robustness of 
the models, and Li et al. achieved the high quality cancer signature genes identification by MSS algorithm with 
re-sampling test55,56. According to averaged values of the evaluation parameters in Table 1, the features selected 
from functional modules achieved a good performance for predicting the patients risk group. The ACC and 
MCC distribution of 100 times re-sampling (Fig. 6) suggested that our models were robust to predict the patients’ 
cohorts.

In summary, our strategy can generate the gene network based on the gene expression data and adaptively 
divide the whole network into the functional modules. To facilitate the clinical application, the gene network 
can be constructed only with the gene expression data by using our proposed strategy. Considering the limited 
information of gene expression data, not all the genes in the functional modules are necessarily associated with 
cancers. Therefore, before using these genes for the subsequent analysis and prediction, it is still necessary to 
refine the genes by using the knowledge-based datasets, such as the curated human signaling network (http://
www.cancer-systemsbiology.org/dataandsoftware.htm), which is created by manually collecting the data sources 
from multiple pathway-related databases (signaling network of BioCarta, CST Signaling pathways, Pathway 
Interaction, iHOP) and literatures, and successfully applied in the identification of cancer biomarkers55,57–59. In 
this study, the two modules extracted from the gene networks of three cancers exhibited distinct functions, which 
were associated with the cancer initiation and progression, and cellular process, respectively. The gene expression 
profiles in both two modules were significantly related with the pathogenesis and prognosis of these cancers, and 
can well discriminate the patients with shorter survival durations from the cancer patient cohort.

Material and Methods
Datasets.  The microarray datasets of AML, glioblastoma and neuroblastoma used in this study were avail-
able at the Gene Expression Omnibus (GEO) database and the accession numbers were GSE12417, GSE4271 
and GSE49710, respectively. The RNA-sequencing data was downloaded from the Cancer Genome Atlas 
(TCGA). Neuroblastoma dataset contains 473 samples that are independently profiled with Agilent-020382 
Human Custom Microarray 44 k. AML dataset is consist of 151 samples and profiled with Affymetrix microarray 
HG-U133A&B and HG-133Plus2. Glioblastoma dataset consists of 100 samples and profiled with Affymetrix 
microarray HG-U133A. The RNA-sequencing data of glioblastoma was generated by Illumina HiSeq RNASeqV2. 
The raw count for each of genes (data in level 3) was used as expression value. The RNA-sequencing data of glio-
blastoma dataset consisted of 138 samples. In addition, for the 473 neuroblastoma patients, 236 samples are used 
to construct gene network, and the others are used as the independent testing set.

For the multiple probesets that mapped to the same HUGO gene symbol, we only kept the probeset with 
maximum value as the expression level of this gene. The patients in the datasets of AML, neuroblastoma, and the 
RNA-sequencing data of glioblastoma were divided into two groups according to the survival days. The patients 
of AML with survival days longer than one year were assigned to the low risk group. Otherwise, patients were 
assigned to the high risk group. For the neuroblastoma and RNA-sequencing data of glioblastoma datasets, the 
patients with survival days longer than two years were assigned to the low risk group and the patients with sur-
vival days less than two years were assigned to the high risk group. If a patient with the survival days were less 
than the cut-off days and he/she was still alive, he/she would be removed from the dataset. For the glioblastoma 
patients, the patients belong to ProNeural (PN) subcategory were assigned to the low risk group and the rest were 
assigned to the high risk group60.

After the preprocess of the raw four data sets, 14,894, 14,894, 19,860, and 20,531 genes were included in AML, 
glioblastoma neuroblastoma, and RNA-sequencing data of glioblastoma datasets, too many genes made the con-
struction of gene networks by graphical lasso impossible, thus we need to select a part of genes for following study. 
Student’s t-test was used to identify the DEGs and those with p value <​ 0.05, and the false discovery rate was not 

http://www.cancer-systemsbiology.org/dataandsoftware.htm
http://www.cancer-systemsbiology.org/dataandsoftware.htm
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controlled. As a result, 10,184, 2966, 7373 and 2528 DEGs were selected for neuroblastoma, AML, glioblastoma 
and RNA-sequencing data of glioblastoma, respectively. The overview of this work was shown in Fig. 8.

Gene-gene network construction.  In this work, the most based strategy, i.e. using the inverse of the 
covariance matrix, was used to build the network. However, the number of DEGs for four datasets are all larger 
than the number of samples, thus we got a noninvertible covariance matrix61. To address this problem, we applied 
the graphical lasso, an algorithm of estimation of a sparse inverse covariance matrix using L1 penalty, to learn the 
structure in an undirected graphical model62. Here, we definite P and N as the number of the gene and sample 
respectively, ∑​ is a covariance matrix which size is P×​N.

Let θ​ =​ ∑−1, and let S be the empirical covariance matrix, the problem is to maximize the penalized 
log-likehood

θ − θ − ρ θlog det tr (S ) (1)1

Here tr represents the trace and ρ​ is a nonnegative tuning parameter; ||θ​||1 is the L1 norm, the sum of the absolute 
values of the element θ​.

The sparse of the θ​ is decided by L1 norm, when ρ​ is sufficiently large, the estimation of the inverse covariance 
matrix would be sparse enough, which can help us to find the significant strong interaction among the elements 
input. While the small of the ρ​ value means the covariance matrix that we estimated would better explain the 
model we construct from the data. The topology of the gene networks was estimated by setting the edges to cor-
respond to the nonzero elements of the inverse covariance matrix θ63.

In this study, for each dataset, the penalty values for three datasets should meet the needs of modules partition. 
The penalty parameters were ranking from 0 to 1.0, and the step size was 0.1. The sparsity of the network was 
proportional to the penalty parameter, the time of computation was increasing with the sparsity of the network 
as well as the number of elements of the datasets. The penalty parameters for AML, glioblastoma, neuroblastoma 
and the RNA-sequencing data of glioblastoma were 0.2, 0.7, 1.0 and 0.6, respectively.

Functional module partition based on the network.  For a constructed network (also called graph) 
G =​ (V, E), the vertexes (V) and the edges (E) are defined previously, i.e. genes and their relationships. Firstly, we 
calculated the degree of all the genes and ranked them, the first 20 genes with the largest degree are picked out as 
the hubs H =​ {h}i = 1,…,n ∈​ V. Then the modules U =​ {Ui}i = 1,…n could be initialized based on the hub genes:

∪=U {The nodes in V adjacent with h } h (2)ii i

That is, the genes which adjacent with a hub gene are in an initialized module.
If the intersection of two (or more) initialized modules is null, we defined the two (or more) modules as a seed 

module set. Therefore, the seed modules S =​ {Si}i = 1,..,m could be defined as

∩= = … α| ∀ ∈ = ∅S {s , k 1, , for j, k, s U, s s } (3)i ik ik ij ik

For convenience, we focused on the first seed module set S1, the rest modules could be represented as R1, i.e.

Figure 8.  A schematic view of our work in this article as part of the whole research project for functional 
modules partition. AML: acute myelocytic leukemia. GBM: glioblastoma. NB: neuroblastoma. GBM_seq: 
RNA-sequencing data set of the glioblastoma. DEGs: differentially expressed genes. SVM: support vector 
machine.
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= = … β ∈{ }R r , j 1, , r C S (4)i ij ik U i

Then we could merge the elements in R1 into S1 by calculating the overlaps between each rij and sik:

∩

∪
=overlap

s r

s r (5)

ik ij

ik ij

The symbol ‘||’ means the card of a set, i.e. the number of the elements in a set. Every rij could be merged into a 
sik with the largest overlap. Note that after each merging, the merged sik was updated as the merged set.

After merging, R1 was merged into S1, the merged set is represented as C1. Repeat the steps, all the elements in 
S could be updated as C =​ {Ci}. The elements in Ci could be regard as a candidate of the partitioned modules. To 
find the best partition modules, an evaluation method is needed. In this work, we still evaluated Ci =​ {ci1, …, ciα} 
by calculating the average overlap:

=
∑

α ≠ = … α = … α

∩

( )
E

2

m n, m 1, , and n 1, ,

(6)
i

m,n
c c

min( c , c )
im in

im in

α( )2  is the combination number, namely, Binomial coefficient. In our opinion, if two modules are well divided, the 
average overlap of the modules will be small. Thus, Ci with the smallest Ei is selected as the best partitioned mod-
ules. Moreover, the smallest Ei might be not unique (for instance, two Ci have the same Ei), thus the methods 
might get more than one result based on different seed module sets. However, in this work, even we encounter 
this situation, that is, two different seed module sets, Si and Sj, got the same smallest evaluation number , but the 
updated module sets, Ci and Cj, are completely the same.

Parameter Optimization of the penalty parameter.  Note that seed module set (|S|≥​1) is indispensa-
ble, the constructed network would contain at least two initialized modules which have no any common genes. 
Therefore, the parameter optimization is necessary. Since the limitation of GO analysis, a module which contains 
more genes could get the enrichment result. Thus our strategy in this work is to get the parameter which could 
reserve more edge and ensure the constructed network contain at least one seed module set. In this study, the 
penalty parameters were ranking from 0 to 1.0, and the step size was 0.1. The sparsity of the network was propor-
tional to the penalty parameter, the time of computation was increasing with the sparsity of the network as well as 
the number of elements of the datasets. The penalty parameters for AML, glioblastoma, neuroblastoma and the 
RNA-sequencing data of glioblastoma were 0.2, 0.7, 1.0 and 0.6, respectively.

The pseudocodes of section 2 to section 4 are listed in Table 3. Moreover, to provide easy use of this method, 
the web serve of functional modules partition strategy is available at http://scu-cheminfo.com/GFMP/. The 
MATLAB code of the strategy and the datasets are also included in this website.

GO Term Enrichment and Pathway Enrichment Analysis.  The Gene Ontology (GO) contains three 
categories, namely Biological process (BP), Molecular function (MF) and Cellular component (CC), which can 
consistently describe and annotate gene products64. In our study, the enrichment of GO terms was performed 
by using DAVID (The database for Annotation, Visualization and Integrated Discovery) Functional Annotation 
Chart tool35,65 (http://david.abcc.ncifcrf.gov/). The GO terms are organized as a tree structure, wherein term 
specificity increases and genome coverage decreases as one moves down the tree structure. Level 1 provides the 
highest list coverage with the least amount of term specificity and level 5 provides the least amount of coverage 
with the highest term specificity35,66. Here, in order to avoid very general and uninformative GO terms, we only 
used the GO terms in level 4. The p values were corrected for multiple testing using the Bonferroni procedure and 
transformed by taking the -log10 for easier visualization66.

Based on the DEGs, the pathway enrichment analysis calculates the hypergeometric distribution between 
the DEGs and pathway and gives a p value for each pathway that contains any DEGs. The small p value suggests 
that the DEGs are enriched in the pathway. As DAVID consists of an integrated biological knowledge base and 
analytic tools aimed at systematically extracting biological meaning from large gene lists, we directly used it to 
identify the over-represented KEGG pathway67. To guarantee the statistically significant in this study, we kept the 
enriched GO terms and pathways with the p value less than or equal to 0.05.

Feature selection for binary classification.  As the number of genes in each functional module is larger 
than the number of samples in four datasets, overfitting is a challenge when all genes in modules are used for 
modeling. Thus, the feature selection methods are applied before building modules. 30 genes are selected from 
every functional module. Then grid search is used for parameter optimization, and the built modules are deter-
mined by 5-fold cross-validation. The whole process of the feature selection and modeling are achieved by using 
a Parallel Machine Learning toolbox for data classification and regression (PML) platform (http://cic.scu.edu.cn/
pml/)68. Among the thirteen features used selection methods, SVMAttributeEval (An evaluater which select the 
feature by using an SVM classifier) outperforms other methods. The recursive feature elimination (RFE) evalu-
ates the features by using SVM classifier. Features are assigned a parameter by using the algorithm SVM-train, 
and then the parameter is used to calculate the weight of the feature by a decision function. RFE is the ranking 
criterion of the weight of feature. Feature selection is according to the ranks of the features based on the FRE69.

http://scu-cheminfo.com/GFMP/
http://david.abcc.ncifcrf.gov/
http://cic.scu.edu.cn/pml/
http://cic.scu.edu.cn/pml/
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Machine learning with re-sampling procedure.  To evaluate the robustness, the re-sampling mecha-
nism is used in this work. SVM is a supervised learning method and often used for binary classification70. The 
random re-sampling was repeated 100 times to select training set and valid set from the AML, neuroblastoma, 
and RNA-sequencing data of glioblastoma datasets, and the averaged values were used for estimating the robust 
of the models. The LIBSVM in MATLAB was used for modeling71. The training models were determined by grid 
search and 5-fold cross-validation. The ratio of the positive samples and negative samples was 1:1. The ratio of the 
training set and validation set was 4:1. Here, sensitivity (SEN), specificity (SPC), accuracy (ACC), and Mathew’s 
correlation coefficient (MCC) were used as evaluation parameters. The related formulas are as follow:

=
+

SEN TP
TP FN (7)

=
+

SPC TN
TN FP (8)

=
+

+ + +
ACC TP TN

TP FP TN FN (9)

=
× − ×

+ × + × + × +
MCC (TP TN) (FN FP)

(TP FN) (TN FP) (TP FP) (TN FN) (10)

Input:

    G Network

    H =​ {hi} where i =​ 1, …​,n The hub genes

    Output:

    B =​ {Bi} The best module set(s)

    Intermediate variable:

    U =​ {Ui} where i =​ 1, …​, n All of the modules

    S =​ {Si} where i =​ 1, …​, m Seed modules sets

    R =​ {Ri} where i =​ 1, …​, β The supplementary set of Seed modules sets

    C =​ {Ci} where i =​ 1, …​, m The combined modules

    E =​ {Ei} where i =​ 1, …​, m The evalution values of the combined modules

1.   ∪= = …UFind all the The nodes adjacent with h h where i n{ } , 1, ,i i i

2.   � ∩α= = … | ∀ ∈ = ∅S s s U s sFind all the k for j k{ , 1, , , , , }i ik ik ij ik  
where i =​ 1, …​, m

3.   For i from 1 to m

4.      β= = … | ∈R r r Sj C{ , 1, , }Ui ij ik i

5       For j from 1 to β

6.        For k from 1 to α

7.          =
∩

∪
ok

sik rij

sik rij

8.      end loop k

9.      = = … αk o oinf{o max( , , )}Max
k

k 1

10.      ∪=S S rikMax ikMax ij

11.      Remove rij in Ri

12.   end loop j

13.   Ci =​ Si

14. end loop i

15. For i from 1 to m

16.   Get combined modules Ci =​ {ci1, …​, ciα}

17.    α α= ≠ = … = …

∩

α

∑

( ) m n m and nE , 1, , 1, ,
c c

c cm n
im in

im in
i

, min( , )

2

18. end loop i

19. = = …i inf{E min(E , , E )}
i

mbest i 1

20. =B {C }ibest

Table 3.   The pseudocode of functional modules partition scheme.  Note: The ibest might not unique, Thus the 
|B| could be larger than 1.
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where TP (True Positive) is the number of the correctly predicted positive sample, TN (True Negative) is the 
number of the correctly predicted negative sample, FP (False Positive) is the number of the incorrectly predicted 
positive sample, and FN (False Negative) is the number of the incorrectly predicted negative sample.

Hierarchical Clustering survival analysis and network visualization.  For the hierarchical clustering 
analysis, only genes expression profiles in modules were used for clustering. The whole procedure was conducted 
in MATLAB 8.0. The Kaplan-Meier survival analysis was conducted by using IBM SPSS Statistics 19. The network 
visualization was conducted by Cytoscape 3.2.0.

Data availability.  The web serve of functional modules partition strategy is available at http://scu-cheminfo.
com/GFMP/. The MATLAB code of the strategy and the datasets are also included in this website. We also upload 
the codes and the data to GitHub (https://github.com/limlcic/GFMP).
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