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ABSTRACT

SPOT (http://spot.cgsmd.isi.edu), the SNP prioritiza-
tion online tool, is a web site for integrating biologic-
al databases into the prioritization of single
nucleotide polymorphisms (SNPs) for further study
after a genome-wide association study (GWAS).
Typically, the next step after a GWAS is to
genotype the top signals in an independent replica-
tion sample. Investigators will often incorporate
information from biological databases so that bio-
logically relevant SNPs, such as those in genes
related to the phenotype or with potentially non-
neutral effects on gene expression such as a
splice sites, are given higher priority. We recently
introduced the genomic information network (GIN)
method for systematically implementing this kind
of strategy. The SPOT web site allows users to
upload a list of SNPs and GWAS P-values and
returns a prioritized list of SNPs using the GIN
method. Users can specify candidate genes or
genomic regions with custom levels of prioritization.
The results can be downloaded or viewed in the
browser where users can interactively explore the
details of each SNP, including graphical representa-
tions of the GIN method. For investigators inter-
ested in incorporating biological databases into a
post-GWAS SNP selection strategy, the SPOT web
tool is an easily implemented and flexible solution.

INTRODUCTION

Due to corrections for multiple testing and limited sample
sizes, genome-wide association studies (GWAS) often lack
the statistical power to discover statistically significant

associations between phenotype and genotype (1).
Therefore when a single nucleotide polymorphism (SNP)
shows relatively strong evidence of genetic association,
that is, is among the top signals from the study, the next
step is to genotype the SNP in additional independent
samples in order to prove the association is not simply
due to chance. The strategy for selecting SNPs for add-
itional genotyping could be simple, such as ranking the
SNPs by their P-values from statistical tests for associ-
ation, or somewhat complex if certain biological consid-
erations are taken into account (2). Once a set of SNPs has
been confirmed to be associated with the phenotype, the
next logical steps include functional experiments that
attempt to isolate the precise molecular genetic mechan-
ism, such as the effect of the genetic variant on transcrip-
tion, which may act by a direct modification to the amino
acid sequence or structure of the protein product, or by an
effect on a regulatory mechanism. Functional experiments
can be very costly, raising the question of how to prioritize
SNPs to maximize returns.
Even when there is only a single confirmed SNP, linkage

disequilibrium (LD) with other SNPs can make it very
difficult to isolate the true causal polymorphism. When a
single SNP is confirmed to be associated with a phenotype
and is in strong LD with several other SNPs, the geno-
types at these so-called ‘LD proxies’ will be very similar.
While this property is often exploited by manufacturers of
commercial SNP microarrays (3) to reduce the number of
SNPs required for genotyping, in this case it proves to be a
serious problem because all the LD proxies show the same
evidence for association and no amount of further
genotyping will resolve this ambiguity. Instead, expensive
and time-consuming functional experiments, possibly
involving model organisms, must be conducted in an
effort to identify the true causal variant.
In these scenarios, the known biological properties of

the variants can prove to be useful in formulating a
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prioritization strategy. When selecting SNPs for further
study after a GWAS, such as genotyping in a replication
sample, investigators may choose to prioritize solely based
on the statistical evidence for genotype–phenotype correl-
ation; in other words use a single P-value threshold. If
there are sufficient resources to select all SNPs above a
maximum desired P-value, which could be determined
by the combination of a minimum desired effect size and
specification of statistical power under some reasonable
transmission models, then prioritization by P-value
alone is logical. When resources are limited, certain
genes and genomic regions may be given higher priority,
such as selecting all SNPs with P< 10�4 and SNPs in
certain genes with P< 10�2. Because these ranges of P-
values may involve many false positives, care should be
used in determining the thresholds, and a careful evalu-
ation of statistical power should be used to determine the
goals of the study, such as specifying a desired minimum
effect size. When the evidence for association boils down
to a single SNP and all its LD proxies, the P-values are all
nearly identical and so biological prioritization becomes
particularly attractive. This kind of prioritization strategy
allows investigators to maximize the return on resources
while implementing their specific biological priorities.
We recently introduced the genomic information

network (GIN) model for systematically incorporating
biological databases into the prioritization of SNPs after
a GWAS (4). SPOT implements the GIN prioritization
method using a secure, interactive web-based approach.
The user uploads a list of SNPs and may optionally
include P-values from statistical tests of genotype–pheno-
type correlation. The user may also upload a list of genes,
genomic regions or specific SNPs with custom prioritiza-
tion scores that determine how SPOT uses the GIN
method to prioritize the SNPs. The results may be
viewed directly in the web browser or downloaded in
various formats. The GIN prioritization method is not
designed to predict causal variants, and the prioritization
results are not intended to be used to interpret the statis-
tical significance of the GWAS results. Rather, it is
intended to assist users in incorporating a broad range
of biological hypotheses into the prioritization process
using a transparent method of specifying their specific bio-
logical priorities and to provide results that are easily in-
terpreted in terms of what went into the model and exactly
how that information was used to prioritize the SNPs.

METHODS

Genomic Information Networks

Given a list of SNPs and P-values from a statistical test for
genetic association, the goal of the GIN prioritization
method (4) is to combine biological information with
evidence for genetic association to prioritize SNPs for
further study so that SNPs with biologically relevant
properties receive higher priority. This is done by first spe-
cifying a non-negative prioritization score for each SNP. If
S is the GIN prioritization score, the weighted P-value Pw

is defined by Pw=P/10S (4–5). SNPs are ranked for

further study by Pw where smaller values of Pw have
higher priority.

A GIN prioritization score represents an order of mag-
nitude change in P-value from a test for association. For
example, a SNP with an overall score of 1 and a P-value of
0.01 has the same priority in the GIN model as a SNP with
a score of 0 and P-value of 0.001. This allows the user to
specify their priority for testing certain biological
hypotheses by weighing that priority against evidence for
genotype–phenotype correlation. Typically there are few
P-values from a GWAS <10�8, so a score of �8 essential-
ly guarantees a SNP will have extremely high priority after
GIN prioritization. The effect of a score on rank, however,
depends on the overall distribution of scores the user has
specified for their set of SNPs. For example, there is no
effect on rank if all SNPs receive a score of 8; the rankings
are the same as by P-value alone [for more information see
the discussion of normalized weights in (4)]. When
deciding on a score, it is helpful to use a frame of refer-
ence. By default, we prioritize SNPs in genes one order of
magnitude higher than those not in or near genes, and
missense SNPs one order of magnitude higher than
those in introns. In Saccone et al. (4), we conducted a
sensitivity analysis to demonstrate that the GIN prioritiza-
tion results are not sensitive to small changes in prioritiza-
tion scores.

Figure 1 shows a screenshot from SPOT displaying the
GIN diagram for the SNP rs3762611, which is in the
example data provided on SPOT’s main page. The
diagram, created dynamically by SPOT using GraphViz
(http://www.graphviz.org), shows how the overall GIN
prioritization score was determined for rs3762611. When
determining the score, SPOT takes into account all
possible LD proxies—SNPs with r2 above a certain thresh-
old in a specific HapMap (6) sample. We used genotype
data from HapMap Public Release 27 (http://hapmap.
ncbi.nlm.nih.gov) and the program Haploview (7) to
estimate the r2 LD coefficients in each of the 11 popula-
tions from this release. Figure 1 shows the GIN calcula-
tions for the LD proxy rs16859826, which was determined
using the HapMap European American sample. The
overall prioritization score is computed by traversing the
network diagram from left to right and adding up scores
from the different nodes as described in (4). SNPs with
higher biological relevance, such as those in genes, par-
ticularly user-specified priority genes, and in conserved
regions, receive higher scores.

The process is repeated for all LD proxies. The highest
scoring LD proxy is used to determine the overall score of
the original SNP, rs3762611, provided the score of the
proxy is greater than the score of the original. In this
case, the LD proxy rs16859826 was used to determine
the overall score of rs3762611. This computation takes
into account the strength of the LD proxy, so that
proxies with smaller values of r2 have smaller scores and
are less likely to be used. Also, a fixed penalty is applied to
the score of the proxy in order to ensure LD proxies are
only used when they have better scores than the original,
even when r2=1. The default LD penalty of 0.9 is
moderate so that LD proxies will be given significant
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attention when prioritizing SNPs. This parameter can be
configured on SPOT’s main page.

Following the convention introduced in (4), the ‘Gene’
node has a score of 1 for all genes and its contribution to
the overall score takes into account SNP/gene functional
properties using a mechanism called the ‘link index’. In
general, the link index is used to describe the strength or
the manner in which a connection is made to a node.
Missense mutations, for example, have a default link
index of 2 and so the contribution of the ‘Gene’ node
becomes 2*1=2. The overall score is the sum of the con-
tributions S =

P
LiSi over the link indices Li and scores Si

of the nodes. The link index of the gene node is completely
determined by the user for SNP/gene transcript functional
properties. These include nonsense, frameshift, missense
and 50and 30-UTR designations. The SNP/gene transcript
functional properties we used are from dbSNP build 130
(8). The 50- and 30-UTR specifications imply only that
SNPs are located in these ends of the transcribed region;
there is currently no additional information on putative
promoters, transcription factor binding sites or other
regulatory data.

We have incorporated information from the PolyPhen
method of predicting the effect of an amino acid substitu-
tion on the properties of the protein product (9–10).
PolyPhen predictions for SNPs in dbSNP build 126 were
downloaded from the PolyPhen web site (http://genetics.
bwh.harvard.edu/pph/data; the PolyPhen 2 tool is now
available at http://genetics.bwh.harvard.edu/pph2 but at
the time of writing did not yet appear to provide a com-
prehensive set of predictions for download). When
PolyPhen predictions are enabled by the user on the
main page, the SNP/gene functional property will be
replaced by the PolyPhen prediction when a prediction
for that SNP exists. The prediction can be ‘benign’,
‘possibly damaging’ or ‘probably damaging’, and users
may specify a different prioritization score for each pre-
diction. By default, these are 1, 2 and 3, respectively,
which correspond to the default values for intron,
missense and frameshift, so that the PolyPhen prediction
may increase or decrease the prioritization score compared
to the default value of 2 for missense SNPs.

The user may prioritize specific genes by providing gene
symbols and prioritization scores as input to SPOT. This
information is represented by the ‘User Gene’ node.
Similarly, the user may prioritize genomic regions and
single SNPs in the ‘User Region’ and ‘User Special SNP’
nodes, respectively. When a gene is specified two different
ways, or when two user-specified regions overlap, SPOT
will combine the prioritization scores according to the
user-specified option ‘Multiple Query Method’, which

may be maximum (the default), minimum, sum or
average. When a SNP is in an evolutionary conserved
region (ECR) with fractional conservation P (0�P� 1),
the corresponding ECR node contributes F*P to the
overall score where F is a factor currently set to 0.75.
We used ECRBase for data on human/mouse ECRs (11).
The final results of the GIN prioritization process may

be viewed in an interactive table within the web browser
(see the SPOT User’s Guide, https://spot.cgsmd.isi.edu/
doc/user_guide.pdf, for screenshots and additional
details). The table shows the original P-values and their
ranks in the column ‘Rank: p-value’, and the SPOT
rankings from the GIN prioritization method in ‘Rank:
SPOT’ which are determined by the ‘GIN weighted
p-value’ column. The ‘Rank: SPOT’ column is the most
important item in the table as it reflects the priority of the
SNP from the GIN prioritization method. A graphical
column selection tool shown can be used to configure
the output tables. The user may select which columns
are displayed and their order. This allows the
user to view additional information such as detailed
gene/mapping properties, HapMap allele frequencies and
commercial SNP microarray LD tagging properties.
Columns labeled with an asterisk refer to the LD proxy
when one is being used, and information about the
original or ‘source’ SNP may be viewed using the
column selection tool.

Using SPOT

The main page consists of a web form for the primary user
input. Users must first either upload a list of numeric SNP
identification numbers as a file or enter the list directly
into a web form. The user may optionally provide
P-values from statistical tests for genotype–phenotype
correlation. In the section labeled ‘Prioritization of
specific genes and other genomic regions’, the user can
specify a list of genes and prioritization scores to be
used in the ‘User Gene’ node of the GIN model.
A number of methods can be used to specify genes and

genomic regions. For example, the query ‘ENTREZ_
GENE_QUERY=Dopamine and Receptor,1.0’retrieves
all genes from the Entrez Gene database (http://www.ncbi
.nlm.nih.gov/sites/entrez?db=gene) that match the
terms ‘dopamine’ and ‘receptor’ and assigns them all
a prioritization score of 1.0. SNPs from an entire re-
gion can be prioritized with a query of the form
‘REGION=Chr15:76600000.76700000, 1.250, which
would add a score of 1.25 to all SNPs in this 100Kb
region on chromosome 15 via the ‘User Region’ node of
the GIN model. More information on the different kinds

Figure 1. A screenshot from SPOT showing a graphical representation of the GIN for rs3762611.
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of queries is provided in the ‘User’s Guide’ (https://spot
.cgsmd.isi.edu/doc/user_guide.pdf).

Programmatic architecture

MySQL (http://www.mysql.com) is used via the Perl DBI
module (http://dbi.perl.org) to process and store user
input and implement the GIN prioritization method.
During this execution, biological information is integrated
from a local MySQL relational database. All results are
stored as tables in a MySQL relational database which is
then accessed by the web interface.
SPOT’s web interface makes use of different

technologies and programming languages. From the user
perspective, it only requires any modern web browser such
as Firefox, Internet Explorer, Chrome, Safari or Opera.
Mainly it is a web application developed with XHTML,
JavaScript and CSS at the client-side (AJAX) and PHP/
Perl at the server-side. It respects the model view control-
ler paradigm and isolates the user interface from the logic
and the data of the application. The JavaScript codes
reuse and take advantage of several JavaScript libraries
such as jQuery (http://jquery.com), Prototype (http://
prototypejs.org), jqGrid (http://www.trirand.com/blog)
and their plug-ins. Then the web user interface allows
the user to navigate through the MySQL database
created by the Perl script. We have created a Wiki for
SPOT (http://confluence.pegasus.isi.edu/display/CGSMD
/Howto+install+SPOT) with detailed technical informa-
tion and resources for downloading and installing a
local copy of SPOT, including the underlying MySQL re-
lational database of biological information.

Execution time

In the following runs of SPOT, the default LD settings
were used so that LD proxies from the HapMap CEU
(European–American) sample are used with a threshold
of r2� 0.8. The default setting of a maximum of 1000
SNPs limits the number of SNPs sent to the output
tables, but does not limit SNPs used as input, and the
P-value threshold is set to 0.05 so that only SNPs with
P� 0.05 are used in the GIN model. The example data
provided on the main page (10 SNPs and 4 queries
retrieving 10 genes) took 3 s to run, and a more typical
run of 1 million SNPs with randomly selected, and there-
fore uniformly distributed, P-values and 1000 prioritized
genes took 57 s (in this case, about 50 000 SNPs were used
for prioritization given the P� 0.05 filter). A more ambi-
tious run of 1 million SNPs and 10 000 prioritized genes
took 3min and 13 s.

Security

The results of a GWAS are sensitive information and
SPOT takes several steps to ensure this information is
protected during a session and is destroyed when the
session is complete. SPOT uses a DigiCert encryption cer-
tificate (http://www.digicert.com) so that all communica-
tion between the user and the server are secure. Any
information the user uploads is destroyed after 3 h or im-
mediately at the user’s request. Since the results depend
only on the relative order of the SNPs, the user may scale

the P-values by a fixed factor prior to uploading them so
that the true values are never transmitted. Nevertheless, if
the user does not wish to upload P-values they may select
the option ‘SNPs only, no p-values’ on the main page. In
this case, SPOT provides an Excel file with the prioritiza-
tion scores into which the P-values can be pasted. SPOT
includes a calculated column in the Excel file that
computes the weighted P-values (Pw=P/10S where S is
the overall prioritization score) which are used to deter-
mine the prioritized rankings from the GIN method. This
process takes place on the user’s computer so that the
results are obtained without ever transferring P-values to
the SPOT server.

FUTURE DEVELOPMENT

The GIN prioritization method is designed to be flexible
and allow a variety of biological databases to be
incorporated while remaining viable and interpretable.
Future iterations of SPOT will include additional biologic-
al information such as expression quantitative trait loci
(12), transcription factor binding sites, micro RNA
target sites and other GWAS results [see (13) and (14)
for some proposed methods on implementing these kinds
of data]. A useful feature would be to add predefined gene
sets to SPOT’s query tool. For example, the NeuroSNP
database (3) (http://nidagenetics.org/neurosnp/index.htm)
consists of genes related to addiction-related diseases.
Future iterations will allow the user to specify such a
database, either with predefined prioritization scores or
a user-defined score for the entire set. This feature
would be added for convenience only as users can current-
ly accomplish this by directly entering these gene lists into
SPOT. Similar to the idea behind disease-related gene
databases is the Human Variome Project (15) that aims
to develop novel methods of cataloging human genetic
variation and its relation to disease, and like gene data-
bases the results of this project could be incorporated
directly into SPOT. As next generation sequencing
becomes the standard in following up on GWAS, the dis-
covery and analysis of numerous and possibly very im-
portant rare variants (16) may require biological
prioritization to design follow-up studies, and we will be
studying ways of modifying SPOT to deal with this
challenging problem.

DISCUSSION

SPOT is designed to provide investigators with a tool for
systematically incorporating their specific biological
hypotheses into the post-GWAS prioritization process.
The testing of biological hypotheses is a reasonable
study design, even if there is no clear evidence of a pre-
dictive mechanism. While a GWAS is often touted as
being ‘hypothesis free’, this is not exactly the case.
Typically a GWAS tests only a particular subset of
variants, and designs differ from array to array with
some arrays taking into account biological information
(3,17). Prior to the availability of GWAS technology, re-
searchers tested candidate genes—a logical and reasonable
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experiment given the available resources whose success or
failure moves the field closer to the goal of testing all
known variants with acceptable statistical power. Other
examples of biological study designs are GWAS using
only non-synonymous SNPs (18,19) and exome
sequencing (20). One of the advantages of studying
variants with clear biological, although possibly not
phenotypically causal, consequences, such as missense
SNPs as compared to SNPs not in or near genes, is the
potential for conducting functional studies such as knock-
outs in animal models (21). SPOT mimics these study
designs by allowing researchers to specify the particular
biological hypotheses they wish to test so that SNPs
related to these hypotheses receive additional priority
when resources are limited. As has been submitted else-
where in the literature (1,5,22), this strategy is reasonable
with the stipulation that biological priorities should be
established a priori in order to avoid post hoc arguments
for biological plausibility, because given a gene it is not
difficult to use Internet databases to mine connections
between that gene and a phenotype. As we described in
(4), the GIN prioritization method is well suited for estab-
lishing a specific, quantitative a priori plan for implement-
ing biological hypotheses into the post-GWAS
prioritization process, and this method is now imple-
mented in SPOT.

SPOT is a useful tool for GWAS investigators because
it allows them to test these reasonable biological
hypotheses by defining specific biological priorities as a
way of pursuing the ‘high hanging fruit’ in a GWAS. A
GWAS often has limited statistical power and must rely
on replication genotyping to establish the statistical sig-
nificance of any remaining non-significant associations
that appear promising. Even when GWAS experiments
successfully replicate SNP associations, the totality of
these variants often explain only a fraction of the genetic
variance (23). We then look to the ‘high hanging fruit’ for
answers—variants with smaller effect sizes that require
greater power to be confirmed as a statistically significant
association (23). These may require substantial further in-
vestigation such as large meta-analyses conducted by
consortia with sample sizes often in the hundreds of thou-
sands (24–26). It has also been argued that even with
missing variance, one of the benefits of GWAS is, in
addition to predicting individual risk, their ability to
expose biological pathways that underlie human disease
(2,27). Given the extremely high resource-consuming
nature of these follow-up studies, a clear and precise
plan for the prioritization of variants is critical. Clearly
those variants with the strongest statistical evidence of
association will be pursued first, but as that evidence
dwindles, some signals with no evidence of biological rele-
vance may be traded for those meeting the biological
priorities of the study when the difference in evidence for
genotype–phenotype correlation is modest. As shown by
Saccone et al. (4), this is what occurs when the GIN pri-
oritization method is implemented after a GWAS: the dif-
ference between the set of SNPs selected by the GIN
prioritization and straight P-value methods is roughly
only one order of magnitude in association with P-value.
The difference applies mainly to SNPs with moderate

evidence for association—the potential ‘high hanging
fruit’.
An example of biological prioritization that could be

interpreted as a ‘success’ is the following discovery of a
novel genetic association with nicotine dependence. In
Saccone et al. (28) the investigators conducted a large can-
didate gene study of nicotine dependence. Although there
were no statistically significant results after correcting for
multiple testing, the fifth smallest P-value was the
missense SNP rs16969968 in the nicotinic receptor gene
CHRNA5 and was highlighted as the most promising
signal. A GWAS of nicotine dependence (29) was con-
ducted in conjunction with the candidate gene study,
and although the missense SNP ranked 199 in the
combined GWAS/candidate gene results, it was the top
priority for further study in the overall project. It has
since been replicated in numerous studies of nicotine de-
pendence, heavy smoking, lung cancer and COPD
(30–36), including three very large meta-analytic studies
(24–26). Furthermore, there have been very few replicated
associations other than the original SNP and some SNPs
in nearby genes. Clearly this example alone is not evidence
of the general predictive power of biological information,
in this case a missense SNP in a gene whose protein
product binds to the drug of interest, to predict true
genetic association. Nevertheless, the results from a
study by Saccone et al. (3) show that commercial SNP
microarrays may miss a significant amount of coverage
in some genes. The fact that an overall GWAS could be
negative due to the omission of a single SNP that could be
discovered by another study targeting a small number of
highly biologically relevant SNPs [rs16969968 was in the
top 10 over all of dbSNP when we used the GIN method
to prioritize for nicotine dependence (4)] is something for
GWAS researchers to consider, both for the post-GWAS
selection of SNPs for further study and for the pre-GWAS
supplementation of commercial arrays (3).
SPOT is not intended to be used to predict true causal

variants or to statistically interpret the results of GWAS.
Furthermore, the problem of establishing such predictive
properties for SPOT, such as through assessments of
false-positive rates and receiver operating characteristics,
is ill posed due to the fact that one of the core features of
SPOT is that it allows the investigator to prioritize specific
genes and genomic regions. Since these parameters depend
on the particular biological priorities of the investigator,
the general predictive properties of SPOT cannot be es-
tablished. Another issue is the extreme diversity of pheno-
type and disease. For example, few genetic associations for
psychiatric disease have been validated by replication in
independent samples (37). Therefore, in order to conclude
that any evidence of correlation between the biological
information used by SPOT and existing confirmed
genotype–phenotype associations would transfer to the
prediction of true genetic associations for psychiatric
disease, one would have to make the unlikely assumption
that the underlying genetic structure of psychiatric disease
shares substantial common elements with other types of
human disease in general.
A third problem in assessing the predictive properties of

SPOT is the extraordinary challenge of assembling a
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sufficiently sized collection of validated ‘true’ causal
variants for common complex disease on which an assess-
ment of prediction must be based. Even after ‘true’
genotype–phenotype correlations have been validated
using the rigorous standards initiated by the onset of
GWAS, including statistical significance after correcting
for genome-wide multiple testing (1), proper adjustment
for population stratification verified by an acceptable
genomic inflation factor (18) and replication in independ-
ent studies (1), a critical issue that remains is distinguish-
ing the actual causal variants from a potentially large
number of LD proxies (1,38). Association statistics are
virtually indistinguishable for SNPs in strong LD so that
the actual causal variants must be identified by other
means such as functional studies. The problem is that
the result of a prediction algorithm could be ‘positive’
for an associated non-causal SNP and ‘negative’ for a
causal LD proxy. This could artificially inflate the
estimate of prediction. The confirmation of pathogenesis
may be more straightforward for highly penetrant muta-
tions causing rare Mendelian disorders. Tools that predict
the effect of amino acid substitutions, such as PolyPhen
(10) and SIFT (9,39), have been shown to have predictive
power for Mendelian disorders. PolyPhen predictions
have been incorporated into SPOT and their influence
on priority can be configured by the user. GWAS,
however, are more directly aimed at common complex
disease (40,41), and it is an enormous challenge to
assemble a collection of causal variants for common
complex disease that meets these rigorous criteria for val-
idation, in particular the disambiguation of LD proxies,
that is of sufficient size to assess predictive power. While
projects such as GEN2PHEN (http://www.gen2phen.org)
and the Human Variome Project (15) aim to solve this
problem [see (42) for a general review], it would appear
that currently the resource closest to meeting these valid-
ation criteria is the database maintained by the National
Human Genome Research Institute containing published
GWAS associations with P< 10�5 from the statistical test
for association (http://www.genome.gov/gwastudies/)
(38), although this information does not resolve the LD
disambiguation issue.

Since the SPOT prioritization results are not intended to
predict causal variants, we recommend that the statistical
significance of GWAS results be evaluated based on
genotype–phenotype correlation data alone and be cor-
rected for genome-wide multiple testing in accordance
with current standards (1). In particular, this practice
will help to guard against bias from reports of positive
association in the literature, as well a bias from the bio-
logical priorities of the investigators which may lead to a
misinterpretation of the results of the GWAS.

At the time of writing, there are very few publicly ac-
cessible web-based tools that perform the same function as
SPOT, namely taking GWAS results as input and as
output providing a table with rankings that take into
account user-defined measures of biological relevance. A
number of web tools dealing with SNP biological
properties are shown in Table 1. GenePipe (43) is the
closet to SPOT in purpose and functionality. It takes as-
sociation results as input, as well as user-defined weights
for various forms of genomic annotation, and provides an
annotated table as output. Currently, GenePipe incorpor-
ates more databases while SPOT offers greater transpar-
ency in conveying the prioritization method by providing
side by side GIN versus P-value rankings, graphical rep-
resentations of the GIN calculations and tables showing
the details of the prioritization process step by step, all
presented interactively in the web browser.

In addition to GenePipe, there are a number of other
web tools such as F-SNP (44), FastSNP (45), Panther (46),
PolyPhen2 (9–10), SIFT (39) and SNPs3D (47) which
assess the biological relevance of a SNP independently
of genotype–phenotype correlation results (Table 1).
Half of the eight tools shown in Table 1 deal exclusively
with non-synonymous SNPs. Of the remaining four, only
SPOT and FastSNP attempt to combine evidence from
multiple sources of information and return a single
measure of biological relevance suitable for systematically
prioritizing GWAS results. FastSNP, while providing a
great deal of information in very informative diagrammat-
ic format, does not account for LD proxies. The evidence
that the tools in Table 1 can be used to predict causal
variants that influence general common complex disease,

Table 1. Some web tools dealing with SNP biological properties and their characteristics related to the prioritization of GWAS results

Web tool Exclusively
for non-synonymous
SNPs

Accepts
multiple
SNPs

Accepts
P-values

Performs
customizable
GWAS
prioritization

Incorporates
LD proxies

Some external
data sources
used (Table 2)

F-SNP (44) No No No No No 1,4,5,6,9–20
FastSNP (45) No Yes No No No 2,4,5,7,8,13,14,19
GenePipe (43) No Yes Yes Yes Yes 2,8,13,14,17,20
Panthera (46) Yes Noa No No No 4
PolyPhen2 (9–10) Yes Yes No No No 2
SIFT (39) Yes Yes No No No 2
SNPs3Db (47) Yes Noc No No No 2
SPOT (4) No Yes Yes Yes Yes 2,3,8,13

The values in the column ‘External data sources used’ refer to the ‘Number’ column in Table 2; this list of external data sources used may not be
complete.
aThis is the cSNP web tool on the Panther site. The site states that a tool can be downloaded for analyzing multiple SNPs.
bWe studied the tool labeled ‘Impact on Protein Structure and Function’ on the SNPs3D main page.
cSNPs3D does offer an ‘annotate SNPs’ feature that apparently requires registration and we did not explore this.
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subject to the aforementioned validation criteria for causal
variants, is limited. PolyPhen (10) and SIFT (39), which
deal exclusively with non-synonymous SNPs, have found
evidence of prediction using information on
disease-related variants from the UniProt database (60)
for Mendelian disorders flagged by terms such as ‘lethal’
and ‘complete loss of function’ (PolyPhen is incorporated
into SPOT). FastSNP and GenePipe, which can be used
for arbitrary SNPs, each tested the predictive properties
based on a single disease study. A feature of some of these
other tools that may be significantly appealing to investi-
gators when compared to SPOT is the fact that they offer
substantially more biological information, as shown in
Tables 1 and 2. However, with the exception of
GenePipe, due to limited input features these tools
appear to be more geared towards assessing the biological
plausibility of a small number of SNPs and perhaps their
LD proxies (although these would have to be obtained
from a different source, such as the LD web tool SNAP
(61), and submitted manually). This could be applied to a
small number of ‘top hits’ from a GWAS, as opposed to
incorporating biological information into a full-scale
GWAS for the purpose of prioritizing a large number of
replication experiments, which is the purpose of SPOT.
We are currently exploring ways of integrating additional
biological information, such as from the sources in
Tables 1 and 2, in order to provide users with a more
comprehensive palette for establishing biological
hypotheses.

In Saccone et al. (4), we conducted a sensitivity analysis
of how changes in the user’s prioritization scores effect the
rankings, and we performed simulations to assess the dif-
ference between selecting SNPs after a GWAS using just
P-value rankings and using the GIN method. Neither of

these analyses was designed to use a ‘training set’ to es-
tablish predictive properties. We found the rankings are
not very sensitive to changes in the scores and that in
general with default scoring parameters there is about a
one order of magnitude difference between SNPs selected
by P-value and those selected by the GIN method.
The SNP/gene transcript properties used by our algo-

rithm are currently limited to a sophisticated prediction
provided by the PolyPhen (9–10) algorithm on the impact
of an amino acid substitution, and those that can be
observed directly from DNA and RNA sequence such as
coding regions, untranslated regions, missense and
nonsense amino acid substitutions and frameshifts.
Given the amount of experimental human genomic data
available, this is a relatively limited amount of informa-
tion. However, when integrating biological information
into a GWAS, even with this relatively limited set, there
are several aspects to consider. First, a SNP may be
associated with many genes, whether it be in one gene
and near another, or in the intersection of multiple
genes or perhaps in a gene with several known transcripts
due to alternative splicing and having different functional
consequences of the SNP on each transcript. SPOT con-
siders all known SNP/gene transcript associations, and
selects the one with the highest priority to ensure no bio-
logically promising association signal is missed.
Furthermore, when genes overlap, SPOT will take into
account specific genes prioritized by the user. Finally,
the task of checking for LD proxies while taking into
account all of the previous elements is not only a
complex algorithm to implement, but requires the process-
ing of an enormous amount of information (our LD
database alone contains data on 343 million pairs of
SNPs) that must be implemented on a genome-wide

Table 2. Some data sources used by the web tools in Table 1 based on the latest documentation from their web sites and the corresponding bib-

liographic citations

Number Name Description

1 Consitea (48) Conserved transcription factor binding sites
2 dbSNP (8) General SNP/gene transcript properties
3 ECRBasea (11) Evolutionary conserved regions
4 Ensembl (49) Extensive genomic database including SNPs and gene transcripts
5 ESEfindera (50) Exonic splice sites
6 ESRSearch (51) Exonic-splicing regulatory (ESR) sequences
7 FAS-ESSa (52) Predicts exonic splicing silencer for each SNP allele
8 HapMap (6) Dense genotyping on multiple populations, useful for LD estimates
9 KinasePhosa (53) Phosphorylation sites
10 LS-SNP (54) SNP annotation tool
11 OGPETa,b Prediction of O-glycosylation sites in proteins
12 PESXa (55) Exon splicing enhancers/silencers
13 PolyPhen (9–10) Prediction of amino acid substitution effects
14 RescueESEa (56) Exonic splice sites
15 SIFT (39) Prediction of amino acid substitution effects
16 SNPeffect (57) SNP annotation with human disease
17 SNPs3D (47) Impact of nsSNPs on protein function
18 Sulfinatora (58) Tyrosine sulfination sites
19 TFSearcha,b Transcription factor binding sites
20 UCSC (59) Extensive genomic database including SNPs and gene transcripts

aAt the time of writing, this site did not accept dbSNP reference SNP, or ‘rs’, identification numbers as input.
bAt the time of writing, we were unable to locate a publication related to this resource. See the ‘Acknowledgements’ Section for more information.
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scale when applied to GWAS data. While we are planning
to incorporate additional biological information into
future implementations of SPOT, researchers should find
SPOT useful even with this relatively limited amount of
information.
The problem of interpreting the results of a GWAS and

planning follow-up experiments is formidable. Integrating
information from biological databases can aid the decision
making process in order to maximize resources. SPOT is
an easily implemented and flexible tool that will aid re-
searchers in applying a biological prioritization strategy
when selecting SNPs for further study after a GWAS
and is designed to remain an interpretable and viable
solution as additional sources of biological information
are integrated.
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