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Abstract

Motivation: De novo assembly of reference-quality genomes used to require enormously laborious tasks. In particu-
lar, it is extremely time-consuming to build genome markers for ordering assembled contigs along chromosomes;
thus, they are only available for well-established model organisms. To resolve this issue, recent studies demon-
strated that Hi-C could be a powerful and cost-effective means to output chromosome-length scaffolds for non-
model species with no genome marker resources, because the Hi-C contact frequency between a pair of two loci can
be a good estimator of their genomic distance, even if there is a large gap between them. Indeed, state-of-the-art
methods such as 3D-DNA are now widely used for locating contigs in chromosomes. However, it remains challeng-
ing to reduce errors in contig orientation because shorter contigs have fewer contacts with their neighboring con-
tigs. These orientation errors lower the accuracy of gene prediction, read alignment, and synteny block estimation in
comparative genomics.

Results: To reduce these contig orientation errors, we propose a new algorithm, named HiC-Hiker, which has a firm
grounding in probabilistic theory, rigorously models Hi-C contacts across contigs, and effectively infers the most
probable orientations via the Viterbi algorithm. We compared HiC-Hiker and 3D-DNA using human and worm gen-
ome contigs generated from short reads, evaluated their performances, and observed a remarkable reduction in the
contig orientation error rate from 4.3% (3D-DNA) to 1.7% (HiC-Hiker). Our algorithm can consider long-range infor-
mation between distal contigs and precisely estimates Hi-C read contact probabilities among contigs, which may
also be useful for determining the ordering of contigs.

Availability and implementation: HiC-Hiker is freely available at: https://github.com/ryought/hic_hiker.

Contact: ryonakabayashi@g.ecc.u-tokyo.ac.jp or moris@edu.k.u-tokyo.ac.jp

1 Introduction

High-quality reference genome sequences have been essential in
analyses of organisms over the last two decades; however, due to the
prevalence of repetitive elements in genomes, it is still challenging to
rebuild the original genomes from reads of short DNA fragments.
Specifically, if we use the widely accepted whole-genome shotgun
sequencing strategy (Weber and Myers, 1997) with short reads, we
can collect short reads and assemble overlapping reads into contigu-
ous sequences, named contigs, using genome assemblers (Butler
et al., 2008; Gnerre et al., 2011; Luo et al., 2012; Zerbino and
Birney, 2008). The overlapping step, however, is likely to stop
extending contigs when it hits abundant repetitive regions that make
the extending step ambiguous. Thus, contigs from short reads are
fairly short, i.e. typically < 100 kb in size, such that an alternative
approach is needed for ordering contigs along chromosomes. To this
end, methods for linking neighboring contigs such as bacterial

artificial chromosome (or fosmid) end-sequence pairs
(Edwards et al., 1990; Venter et al., 2001), long reads (Eid et al.,
2009; Loose et al., 2016) and 10� read clouds (Weisenfeld et al.,
2017) have been used to output scaffolds of contigs, although these
methods fail to produce the chromosome-length scaffolds of large
mammalian genomes. To obtain chromosome-length genome
sequences, many projects, including the human and worm genome
sequencing projects (Lander et al., 2001; The C. elegans Sequencing
Consortium, 1998), have attempted to generate genome markers for
anchoring scaffolds on chromosomes; however, this is a time-
consuming and expensive task.

To overcome these issues in genome assembly, many more links
between proximal contigs are needed. A recent promising approach
exploits the fact that long DNA molecules are packed in a small nu-
cleus, where a pair of proximal loci are more likely to interact than
a distal pair. This tendency can be quantified approximately by the
Hi-C method, which allows us to measure the contact frequency
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between pairs of loci in a genome-wide manner (Lieberman-Aiden
et al., 2009). Indeed, the contact frequency between a pair of loci, as
observed by Hi-C, is proven to be correlated with the one-
dimensional distance between the pair (Lieberman-Aiden et al.,
2009), allowing us to use Hi-C data as linking information. This ap-
proach can connect distal positions at distances of over 1 million
base pairs, including regions of low recombination frequency such
as those surrounding meta-centromeres (Dudchenko et al., 2017).
The basic concept was proposed in 2013 (Burton et al., 2013) and
has been improved by subsequent studies (Dudchenko et al., 2017;
Ghurye et al., 2019; Putnam et al., 2016; Zhang et al., 2018, 2019).
The software program 3D-DNA has shown high performance in
producing high-quality chromosome-length scaffolds for human and
Aedes aegypti genomes (Dudchenko et al., 2017). The 3D-DNA
software is used by the DNA-ZOO project, which is aiming to pro-
duce chromosome-length genomes of many non-model organisms at
under $1000 per each organism using short-read sequencing data
and only 7� coverage Hi-C data (Dudchenko et al., 2018).

The 3D-DNA package performs best in terms of accuracy, par-
ticularly for contigs assembled from short reads and without prior
knowledge of the number of chromosomes; however, it can output
scaffolds containing inverted, translocated or misoriented short con-
tigs (Dudchenko et al., 2017, 2018). A larger error is easier to iden-
tify by manual inspection than a smaller one, if the contact
frequency matrix of the focal region is visualized to facilitate manual
revision. To assist such investigation, 3D-DNA is equipped with a
graphical user interface (GUI) to help users interactively identify
large errors in an assembly and fix them manually (Dudchenko
et al., 2018). With this GUI, the user can correct many of the large
errors in genome assemblies, although it remains infeasible to manu-
ally repair a number of misoriented short contigs, which often hin-
der gene prediction and disturb comparative genomic analysis.

Thus, we developed a new method that is capable of correcting
misoriented contigs automatically to improve the output of 3D-
DNA (Fig. 1). The HiC-Hiker package can apply file formats used
by the 3D-DNA and Juicer packages (e.g. assembly files for scaffold
layout and merged_nodups.txt files for Hi-C read alignment), as
well as generic formats (e.g. AGP files for scaffold layout and SAM
or BAM files for Hi-C read alignment), which are used by several
Hi-C-based scaffolding tools. Our probabilistic model of a Hi-C
contact probability considers Hi-C contacts not only between two
adjacent contigs, but also those within k neighboring contigs.

Because the contact probability distribution is dependent on each
sample (Lieberman-Aiden et al., 2009), it is crucial to obtain a bet-
ter, empirical approximation of the distribution from a given Hi-C
dataset.

To calculate an optimal series of oriented contigs with the glo-
bally maximum probability, we here revisit and revise the idea of dy-
namic programing algorithm used by the Chicago library (Putnam
et al., 2016), provide a rigorous mathematical model and extend the
algorithm to the processing of contigs of uneven length. We adapt
the model to be applicable to scaffolds produced by 3D-DNA and
Hi-C data, and achieve better performances compared to previous
methods for real human and worm genome datasets.

2 Materials and methods

2.1 Formalization of the contig orientation optimization

problem
We first present a formal definition of the scaffolding problem. A
scaffold is an ordering of contigs, while a super-scaffold is a scaffold
whose contigs are located in its corresponding chromosome; it is
called a chromosome-level scaffold if it covers most parts of the
chromosome. We here divide the contig scaffolding process into two
steps; namely, approximate layout of contigs along chromosomes and
precise refinement of contig orientations. We assume a situation
where the first step has been done and the relative positions of contigs
on the super-scaffold are determined by state-of-the-art software pro-
grams, such as 3D-DNA. Thus, we focus on the second step of esti-
mating the optimal orientation of each contig. This problem setting is
realistic because 3D-DNA has proven capable of ordering contigs
with a high degree of accuracy (Dudchenko et al., 2018). The one
remaining major issue is reduction of contig orientation errors.

Suppose that we have a chromosome-length super-scaffold in
which n contigs are ordered. For i ¼ 1; . . . ; n, the ith contig is a nu-
cleotide sequence of length Li bp, and its orientation in the super-
scaffold is denoted as hi 2 fþ;�g, where hi ¼ � implies that the
contig is reverse complemented in the scaffold (see Fig. 2). Let Ri;j be
a set of Hi-C contacts that connect the ith and jth contigs. Each con-
tact r 2 Ri;j is a pair of positions on the ith and jth contigs, r � x 2
½0;LiÞ and r � y 2 ½0;LjÞ. The entire set of Hi-C contacts between dif-
ferent contigs is denoted as the disjoint union R ¼ t1� i< j�n Ri;j.
Using these notations, we aimed to estimate the best possible contig
orientations H ¼ fhiji ¼ 1; . . . ;ng from all Hi-C contacts, R.

2.2 Probability of each Hi-C contact read
Next we characterize the contig orientation inference problem from
a probabilistic viewpoint. A Hi-C contact frequency is known to be
largely correlated with the one-dimensional base-pair distance
(Lieberman-Aiden et al., 2009); therefore, let p(d) be the probability
that we observe a contact between two loci separated by the base-
pair length d. There are rare exceptional situations where the con-
tact frequency between two locations at distance d does not follow
p(d) due to the absence of contacts in high-GC content regions, low
sequence mappability in repetitive regions or inherent

Fig. 1. (1) A typical workflow of de novo assembly using 3D-DNA and HiC-Hiker.

HiC-Hiker is used as a post-processing step of the current 3D-DNA pipeline to cor-

rect local orientation errors. (2) (a), (b) and (c) show schematic dot plots (reference

on the x-axis; three scaffolds on the y-axis) in the assembling procedure of an ex-

ample scaffold composed of six mock contigs. The red and blue lines in the dot plots

represent forward- and reverse-complement alignments of scaffolds, respectively.

The arrays of arrows on both axes represent the ordering and orientation of contigs

in the reference and scaffolds. The leftmost dot plot (a) illustrates 3D-DNA chromo-

some-length scaffolds with two major errors; the top-right large inversion that

involves contigs B1–B3 and the misoriented short contig labeled A2. The former

large inversion error can be corrected using Juicebox Assembly Tools (JBAT), since

such large errors are typically apparent in plots of the Hi-C contact frequency ma-

trix (b). In contrast, the latter, minor error is often difficult to detect in the contact

matrix, so we propose the use of HiC-Hiker to fix the small misorientations; (c)

shows revised scaffolds

Fig. 2. (a) A schematic representation of a scaffold and a Hi-C contact in our for-

malization. (b) There are four cases orienting two contigs, i.e. the ith and jth contigs;

in each case, the distance between the contact points of r 2 Ri;j is fixed depending

on hi; hj, as illustrated by the lengths of the red dotted lines
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three-dimensional structures, such as large recurrent CCCTC-
binding factor (CTCF) loops.

Despite these relatively rare exceptions, we are able to estimate
the probability distribution p(d) reliably from real Hi-C contacts, al-
though we must take into account the fact that p(d) can often differ
among samples from different species, cell types and/or cell cycles.
We must predict an accurate probability distribution for each sample
de novo. To this end, we can align pairs of reads to a contig and ob-
tain a profile of p(d) experimentally. Since longer contigs are more in-
formative than shorter contigs, we use the longest contig to generate
a contact frequency distribution between two loci at distance d, and
to estimate p(d) using kernel density estimation. p(d) monotonically
decreases in terms of d, and for a larger value of d, the estimate based
on real data is likely to be unreliable simply because the number of
contacts at distance d can be zero, or very small. Thus, with a proper
threshold K, we set p(d) to a constant p(K) such that we observe ran-
dom contacts when d>K. The choice of threshold K depends on the
size of a given Hi-C dataset. We then examined the effect of the K
value on output accuracy; the third quantile in the histogram of Hi-C
contact separation distances provided nearly optimal accuracy (see
Section 3). Thus, using the HiC-Hiker package, K is determined auto-
matically from the third quantile, if not specified otherwise.

Next, we calculate the probability of each Hi-C contact between
the ith and jth contigs given their orientations hi and hj. Because it is
difficult to predict the size of the gap between adjacent contigs, we
here simply assume that there is no gap between them. Using the Hi-
C contact distribution p(d) created accordingly, we can derive the
probability of a Hi-C contact between the ith and jth contigs,
r 2 Ri;j, for each contig orientation denoted by Pðrjhi; hjÞ (see Fig. 2):

Pðrjhi; hjÞ

¼
(

a

1

Zi;j
pðr � xþDþ r � yÞ ðhi ¼ �; hj ¼ þÞ

1

Zi;j
pðr � xþDþ Lj � r � yÞ ðhi ¼ �; hj ¼ �Þ

1

Zi;j
pðLi � r � xþDþ r � yÞ ðhi ¼ þ; hj ¼ þÞ

1

Zi;j
pðLi � r � xþDþ Lj � r � yÞ ðhi ¼ þ; hj ¼ �Þ

(1)

where D ¼
P

i< s< jLs is the distance between the ith and jth contigs.
Zi;j is a normalization factor satisfying the definition of the probabil-
ity density function. Note that the normalization factors are identi-
cal among the above four cases:

Zi;j ¼
n
Ð Li

x¼0

ÐLj

y¼0 pðxþDþ yÞdxdy ðhi ¼ �; hj ¼ þÞÐ Li

x¼0

ÐLj

y0¼0 pðxþDþ Lj � y0Þdxdy0 ðhi ¼ �; hj ¼ �ÞÐ Li

x0¼0

Ð Lj

y¼0 pðLi � x0 þDþ yÞdx0dy ðhi ¼ þ; hj ¼ þÞÐ Li

x0¼0

Ð Lj

y0¼0 pðLi � x0 þDþ Lj � y0Þdx0dy0 ðhi ¼ þ; hj ¼ �Þ

where x0 ¼ Li � x and y0 ¼ Lj � y.
Finally, because each contact r 2 Ri;j is collected independently,

the probability of a set of Hi-C contacts given the contig orientation
hi and hj can be written as

PðRi;jjhi; hjÞ ¼
Y

r2Ri;j

Pðrjhi; hjÞ

Notably, because the probability of r 2 Ri;j is independent of
contig orientations other than hi; hj, we have

PðRi;jjHÞ ¼ PðRi;jjhi; hjÞ;

where H ¼ fhiji ¼ 1; . . . ; ng. The probability of all Hi-C contacts
between contigs in a dataset is:

PðRjHÞ ¼
Y

1� i< j� n

PðRi;jjHÞ;

where R ¼ t1� i< j�n Ri;j. Thus, our goal is to find an optimal in-
stance of H that maximizes PðRjHÞ:

arg max
H

PðRjHÞ

To design a hidden Markov model (HMM) algorithm for solving
this problem, we here use Bayes’ theorem to derive:

PðR;HÞ ¼ PðRjHÞPðHÞ;

where PðHÞ is Pðh1Þ � � �PðhnÞ. Because the orientations of different con-
tigs, hi, are independent of each other and selected at random, we have

PðhiÞ ¼ 1
2 for each hi 2 fþ;�g, and we can treat PðHÞ as a constant,

1
2

� �n
. Thus, resolving argmaxHPðRjHÞ also solves argmaxHPðR;HÞ. In

the following, we propose an HMM algorithm for solving:

arg max
H

PðRjHÞ ¼ arg max
H

PðR;HÞ

¼ arg max
H

Y
1� i< j�n

PðRi;jjHÞPðHÞ (2)

2.3 Optimization of contig orientations using HMM
Hi-C contacts between more distal contigs are likely to be less in-
formative for estimating contig orientations, because the number of
contacts is small, and the distances between the contacts become in-
dependent of their orientations, which contrasts with the situation
when handling proximal contigs. Our probabilistic model takes this
property into account naturally; that is, since p(d) is constant for
d>K if all contacts between the ith and jth contigs are at distances
greater than K, they have the same probability regardless of their
orientation. In other words, PðRi;jjhi; hjÞ is identical for all hi; hj 2
fþ;�g if

P
i< s< jLs � K.

For better readability, we here assume a simple condition where-
by all contigs are of the same size (Ls ¼ L for all s), although this as-
sumption is not essential and will be removed later. In this case,P

i< s< jLs � K can be simplified to ji� jj � ðK=LÞ þ 1 even in the
absence of orientation information. Thus, we only need to consider
contacts between k neighboring contigs for a given non-negative in-
teger k ¼ ðK=LÞ þ 1; namely, a contact between the ith and jth con-
tigs is used if ji� jj < k.

Given these conditions, we can transform the right side of
Equation (2) into:

¼ arg max
H

Y
1 � i < j � n;
ji� jj < k

PðRi;jjhi; hjÞPðHÞ (3)

Using j as the primary index and expressing the range of i in
terms of j, we rewrite Formula (3):

¼ arg max
H

n Y
2� j�n

� Yj

i¼maxð1;j�kþ1Þ
PðRi;jjhi; hjÞ

�
PðHÞ

o
(4)

We then divide the entire range of j ¼ 1; . . . ;n into j � k and j ¼
kþ 1; . . . ;n so that we can design an HMM algorithm for solving
this optimization problem:

¼ arg max
H

n� Y
1� i< j�k

PðRi;jjhi; hjÞ
�

�
Yn

j¼kþ1

� Yj�1

i¼j�kþ1

PðRi;jjhi; hjÞ
�

PðHÞ
o (5)

In the above formula, note that PðRi;jjhi; hjÞ is independent of
contig orientations other than hi and hj, and is also independent of
other sets of contacts Ri0;j0 where i 6¼ i0 or j 6¼ j0. Finally, we have:

argmaxHPðR;HÞ
¼ argmaxH

n
P
�
t1� i< j�k Ri;jjðhlÞkl¼1

�
�
Yn

j¼kþ1

P
�
tj�1

i¼j�k�1 Ri;jjðhlÞjl¼j�kþ1

�
PðHÞ

o
;

where ðhlÞkl¼1 represents set fh1; . . . ; hkg. We can solve the above op-
timization problem using HMM such that the hidden states are sets
of orientations:
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St ¼ ðhlÞtþk�1
l¼t for t ¼ 1; . . . ;n� kþ 1;

The observations are sets of contacts:

Ot ¼
nt1� i< j�k Ri;j if t ¼ 1
tt� i� tþk�2 Ri;tþk�1 if 1 < t � n� kþ 1;

(6)

The emission probability PðOtjStÞ is defined as:

PðOtjStÞ ¼
nP
�
t1� i< j�k Ri;jjðhlÞkl¼1

�
if t ¼ 1

P
�
tt� i� tþk�2 Ri;tþk�1jðhlÞtþk�1

l¼t

�
if 1 < t � n� kþ 1;

which can be calculated using Formula (1), and the transition prob-
ability is:

PðStþ1jStÞ

¼
(

a
1

2
if orientations htþ1; . . . ; htþk�1 are consistent in St and Stþ1

0 otherwise

Figure 3 illustrates an example of this HMM in the case of k¼3
and n¼5. The most likely path on the above HMM, which can be
found efficiently using the Viterbi algorithm, gives the most prob-
able set of contig orientations, H.

We have so far assumed that contigs are of the same size for bet-
ter readability of the proposed algorithm. More precisely, for deter-
mining the orientation of the ith contig, we use contact information
from the jth contig within k contigs (ji� jj < k) for a given constant
k. In general, however, contigs differ in size. For handling regions
wherein shorter contigs (e.g. < 100 kb in length,) are enriched, con-
tacts from more distal contigs would be informative to determine
the contig orientations. In contrast, to process adjacent large contigs
(e.g. > 1 Mb in size), contacts between the two contigs would be
sufficient. Thus, we must change the neighborhood of the focal ith
contig adaptively, depending on the sizes of the neighboring contigs.
To achieve this, hereafter, we will consider contacts between the ith
and jth contigs within K distance

P
i< s< jLs < K. Recall that K is

the threshold parameter for pairs of distal contigs in the Hi-C con-
tact probability distribution p(d); when all contacts between the ith
and jth contigs are at distance K or more (

P
i< s< jLs � K), they have

the same probability regardless of their orientations.

Thus, the problem can be rewritten by setting k0 ¼
minfjj

P
1< s< jLs � Kg and kðjÞ ¼ minfj� iþ 1j

P
i< s< jLs � Kg:

arg max
H

PðR;HÞ

¼ arg max
H
fP
�

t
1� i< j� k0

Ri;jjðhlÞk0

l¼1

�
Yn

j¼k0þ1

P
�

t
j�1

i¼j�kðjÞþ1
Ri;jjðhlÞjl¼j�kðjÞþ1

�
PðHÞg;

which can be treated as an HMM with corresponding states and
emission/transition probabilities. When determining orientations in
regions with short contigs, the above modification allows us to use a
sufficient number of contig orientations to correct errors. This idea
is novel, and thus not described in the previous dynamic programing
algorithm (Putnam et al., 2016); moreover, it is useful for handling
short contigs.

3 Experimental results

3.1 Datasets and error metrics
To demonstrate how misoriented contigs in 3D-DNA scaffolds are
corrected in the HiC-Hiker package, we used human and worm gen-
ome datasets for benchmarking, since Hi-C and Illumina short-read
data from these species are abundant, and their reference genomes
are nearly complete.

We used the human genome dataset provided in Dudchenko
et al. (2018). The first 300 million read pairs from the Illumina data-
set for NA12878 of the Genome in a Bottle Consortium were
assembled using the w2rap-contigger assembler (Clavijo et al.,
2017a, b). The first 100 million read pairs from the HIC001 in situ
Hi-C library (Rao et al., 2014) were mapped onto the contigs using
the Juicer platform, with approximately 7� coverage. We assembled
Illumina short reads (DRR008443, DRR008444) to create a worm
genome dataset using the SPAdes v. 3.13.0 assembler (Bankevich
et al., 2012). We also used w2rap contigger; however, it output ex-
cessive chimeric contigs, which were not used in further analyses.
The first 10, 20 and 40 million read pairs (7�, 14� and 28� cover-
age, respectively) from the Hi-C library (accession nos.
SRR3105476 and SRR3105477; Gabdank et al., 2016) were
mapped onto the contigs using Juicer.

Fig. 3. A sketch of the hidden Markov model proposed in this study, for the case where k¼ 3 and n¼5. The hidden states and all transitions are shown on the right, and the

corresponding observations are shown on the left. For example, ðh1; h2; h3Þ ¼ ðþ;�;�Þ is chosen because its corresponding observation is the most probable with the minimum

sum of distances between pairs of contacts; therefore, its emission probability is the highest; that is, the product of probabilities of Hi-C contact pairs is the highest among the

eight contig orientation patterns. For the other two hidden states, suppose that ðh2; h3; h4Þ ¼ ð�;�;þÞ and ðh3; h4; h5Þ ¼ ð�;þ;�Þ are selected. The most likely path in this

model, which is shown in red, represents the most probable orientations of the contigs ðþ;�;�;þ;�Þ
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We then ran the entire 3D-DNA pipeline (version 180922) using
these data with the default parameter settings, with the exception of
minimum contig length, which was set to 5, 15 and 50 kb for the
worm genome dataset to determine how its variation affected the ac-
curacy of the results. We also ran two alternative scaffolding algo-
rithms, SALSA2 (Ghurye et al., 2019) and ALLHiC v. 0.9.13
(Zhang et al., 2018, 2019), using the worm dataset. Hi-C reads were
mapped using the BWA-MEM alignment package with the recom-
mended settings of the scaffolding algorithms (Li and Durbin,
2010). We compared SALSA2 orientation corrections using assem-
bly graphs and tested the results against NA12878 unitigs assembled
from Oxford Nanopore reads using the Canu assembler (Koren
et al., 2017) and scaffolds generated by SALSA2 with and without
the assembly graph shared by the creators of SALSA2 (Ghurye et al.,
2019).

We manually corrected large-scale (>1 Mb) errors in the 3D-
DNA human scaffolds using Juicebox Assembly Tools (JBAT), such
that 95 fragmented scaffolds were joined into 23 scaffolds, each of
which corresponded to an individual human chromosome. No
errors in the worm scaffolds were sufficiently large to require man-
ual inspection.

Afterwards, we ran our software, HiC-Hiker, and inferred the
probabilistic distribution p(d) based on the longest contig. To valid-
ate the feasibility of using the longest contig, we compared the distri-
butions calculated from the three longest contigs in the human
dataset and confirmed the consistency among the probability distri-
butions (see Fig. 4). In Figure 4, the red line shows the fitted prob-
ability distribution, which was actually used as p(d). For the fitting,
we used pðdÞ ¼ c1d�c2 as a base function; except for the probability
of the short distance contacts (e.g. d < 3 kb), we used polynomial
fitting to simulate the non-monotonically decreasing distribution ac-
tually observed. We set K to 75 kb, the third quantile of the histo-
gram of Hi-C contact probability distribution. Note that the
probability was unstable and noisy when d exceeded K.

After generating the refined scaffolds, we calculated the error
rates. Given a scaffold with a series of contigs
A1;A2;A3;A4;B1;B2;B3, suppose that these contigs are aligned
with the reference genome according to the following ordering and
orientation:

A1; �A2 ;A3;A4; �B3 ; �B2 ; �B1

where �X represents a situation wherein the reverse complement of
contig X is aligned. This example corresponds to the dot plots in
Figure 1-(2). Our HiC-Hiker fixes A2, a misorientation of a single
contig �A2 , by using the contacts from A2 to A1, A3 and A4. In

contrast, however, �B3 ; �B2 ; �B1 show a large erroneous inversion of
B1;B2;B3. HiC-Hiker is tailored to correct local errors, and is un-
likely to handle this type of large-scale error; this necessitates a pri-
ori manual correction using the 3D-DNA GUI function.

With this example in mind, we here define global and local
orientation errors. The orientation of a contig X is ‘globally errone-
ous’ if �X is aligned with the reference. For example, in the running
example, the orientations of A2;B1;B2;B3 are globally erroneous. In
contrast, the orientation is ‘locally erroneous’ if it is inconsistent
with the orientations of its two neighboring contigs in the reference
genome. According to this definition, only A2 is locally erroneous;
B1;B2;B3 are not. It would be reasonable to focus on correcting
local errors if we assume that global orientation errors of large con-
tig blocks (e.g. B1;B2;B3) can mostly be corrected manually using
JBAT. Thus, to demonstrate the reliability of contig orientations
after refining the orientations of scaffolds with HiC-Hiker, we use
the local error rate, that is, the ratio of contigs whose orientations
are locally erroneous to all contigs.

Specifically, since the definitions of global and local errors differ,
methods for detecting each error type must be designed individually.
To calculate a global orientation accuracy, the researchers who
introduced 3D-DNA randomly sampled 1000-nt regions from the
scaffolds that are uniquely aligned onto the reference, and computed
the ratio of the chunks oriented in agreement with the reference to
the entire set of sampled regions (Dudchenko et al., 2018). In con-
trast, to calculate a local orientation accuracy, we align contigs to
the reference, and select triples of neighboring, uniquely mapped
contigs such that their orderings does not change in the reference,
and compute the ratio of the middle contigs whose orientations
agree with those of their neighboring contigs to the entire set of
sampled contigs, on both sides.

We also calculated the accuracy statistics suggested by
Dudchenko et al. (2018), including anchoring accuracy (i.e. the per-
centage of chunks mapped onto the correct chromosome corre-
sponding to each chromosome-length scaffold), global ordering
accuracy (i.e. the percentage of randomly selected pairs of chunks
mapped onto the correct chromosome in the same order as the refer-
ence sequences), local ordering accuracy (i.e. the percentage of adja-
cent pairs of chunks mapped onto the correct chromosome in the
same order as the reference sequences) and global orientation accur-
acy (i.e. the percentage of chunks mapped onto the correct chromo-
some with the correct orientation). We calculated the average of
each statistic over five different chunks.

As a reference sequence for the NA12878 human genome data-
set, we adopted NA12878 inversions (Shao et al., 2018) to the hg38
reference and modified the hg38 reference accordingly. As a refer-
ence sequence for the worm dataset, we used the latest complete
VC2010 reference genome (Yoshimura et al., 2019).

3.2 Comparison of HiC-Hiker with 3D-DNA
Local contig orientation errors were successfully corrected using our
program. A comparison of dataset and scaffold accuracy metrics be-
fore and after running HiC-Hiker is shown in Table 1. At a min-
imum length threshold of 15 kb and 7� Hi-C coverage, which is the
recommended configuration of the 3D-DNA tool suites, HiC-Hiker
improved the accuracy of local ordering, global orientation and
local orientation in the human and worm datasets. Scaffold accuracy
was dependent on the threshold K value. A threshold of 7.5 kb was
too short to improve scaffold accuracy, as demonstrated in the dis-
tribution plot; however, no significant difference in accuracy was
observed between 75 and 200 kb. Therefore, 75 kb was selected as
the optimal K threshold in terms of computation time and scaffold
accuracy. The minimum length threshold affects the number of short
contigs, which are difficult to order and orient, and are major tar-
gets of HiC-Hiker. Compared to lower (5 or 15 kb) thresholds, there
are few short contigs that can be improved by examining in detail
when with the higher threshold (50 kb), so HiC-Hiker offered only
limited improvement. As the Hi-C coverage increased, the local ac-
curacy of the intact 3D-DNA output improved. Orientation errors
were successfully corrected even at 28� coverage using HiC-Hiker.
The ALLHiC software generated chromosome-length scaffolds with

Fig. 4. Comparison of contact probability distributions among the longest contig

(blue), second longest contig (yellow) and the third longest contig (green). The

smoothed distribution calculated from the longest contig is shown by the red line,

which is actually used as P(d). This distribution appears to represent a good ap-

proximation of the top three distributions. P(d) was set to a constant probability

when d > 75 kb, shown as a gray-colored region
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accuracy values similar to those of 3D-DNA; ALLHiC was more ac-
curate in terms of local layout but less accurate in terms of anchor-
ing and global ordering. Even in this case, the local orientation of
output scaffolds was slightly improved using the HiC-Hiker pack-
age. In the ALLHiC algorithm, the number of chromosomes is sup-
plied beforehand, thus improving chromosome reconstruction, but
limiting the applicability of ALLHiC to organisms with a known
number of chromosomes. The SALSA2 algorithm is designed to han-
dle long-read contigs to output highly accurate chromosome-length
scaffolds. When short-read contigs were supplied, SALSA2 gener-
ated only fragmented scaffolds; thus, accuracy statistics could not be
computed for chromosome-length scaffolds, and the HiC-Hiker al-
gorithm could not be applied under these conditions. Because N50
contig lengths are sufficiently high, only a few short contigs required
orientation correction; therefore, the improvement in accuracy
under the HiC-Hiker package was nominal.

Figure 5 shows the local error rates of scaffolds output by 3D-
DNA and scaffolds refined by HiC-Hiker in human dataset, accord-
ing to different numbers of hidden states, k. The local error rate in
the scaffold generated by 3D-DNA was 4.3%, but was remarkably
reduced to 1.7% after refinement via HiC-Hiker (adaptive). When
we set the parameter k to 2, 3, 4 and 5, which represents how many
contigs are considered in single hidden states, the local error rates
were 1.85%, 1.78%, 1.75% and 1.75%, respectively. Thus, using

contacts between more distal contigs slightly improves the accuracy
of their orientations.

Figure 6 shows dot plots of scaffolds along human chromosome
8, where the dot plots were generated using MUMmer4 (Marçais
et al., 2018). The left and right columns show 3D-DNA and HiC-
Hiker scaffolds, respectively, in comparison with the reference gen-
ome. Blue dots show misoriented contigs, and the decrease in the

Table 1. A comparison of dataset and scaffold accuracy metrics before and after running HiC-Hiker

Species Human (NA12878) Worm (VC2010)

Assembler w2rap þ
Illumina

Canu þ
ONT

SPAdes þ Illumina

Contig N50 (kb) 68.6 4821.0 41.0

Contig maximum

length (kb)

934.6 34 607.7 283.5

Scaffolding software 3D-DNA SALSA2 3D-DNA ALLHiC SALSA2

W/o graph W/ graph

Minimum length

threshold

15k — — 15k 5k 50k 15k 15k 15k

Hi-C coverage 7� 7� 7� 7� 7� 14� 28� 7� 7�
Threshold K 75 kb 75 kb 75 kb 7.5 kb 75 kb 200 kb 75 kb 75 kb 75 kb 75 kb

Raw scaffolds >1 Mb before (after) manual correction

No. of scaffolds 95 (23) 75 81 6 7 6 6 6 6 5

Total bases (Mb) 2391.4

(2392.0)

2624.8 2622.8 77.5 89.8 39.4 77.9 78.0 77.8 7.4

Maximum

length (Mb)

127.7 (205.1) 273.4 188.9 16.0 18.7 8.8 16.1 16.2 16.2 1.8

Anchoring 99.75%

(99.74%)

90.42% 96.76% 99.03% 95.89% 95.31% 98.89% 98.61% 98.24% —

Ordering 98.39%

(89.62%)

90.95% 93.20% 99.79% 99.37% 99.62% 99.82% 99.81% 98.93% —

Local ordering 90.58%

(89.97%)

90.24% 92.41% 85.71% 84.71% 84.25% 89.04% 91.20% 91.57% —

Orientation 91.57%

(90.95%)

90.31% 92.48% 86.31% 85.37% 84.82% 89.72% 91.95% 92.46% —

Local orientation 95.72%

(95.70%)

96.00% 96.34% 88.35% 86.07% 87.24% 89.83% 92.04% 93.01% —

HiC-Hiker output

Anchoring 99.74% 90.44% 96.75% 99.03% 99.00% 99.01% 95.17% 95.32% 98.90% 98.63% 98.23% —

Ordering 89.64% 88.42% 94.74% 99.76% 99.80% 99.81% 99.26% 99.64% 99.82% 99.84% 98.98% —

Local ordering 91.09% 90.42% 92.28% 81.06% 88.89% 89.11% 85.57% 84.65% 92.43% 93.93% 92.28% —

Orientation 92.19% 90.49% 92.36% 81.51% 89.61% 89.85% 86.58% 85.20% 93.28% 94.78% 93.06% —

Local orientation 98.25% 96.67% 96.73% 84.45% 93.75% 93.69% 92.06% 88.78% 95.83% 96.68% 93.80% —

No. of contig flip

True positives 1139 33 39 119 118 115 207 31 125 96 38 —

True negatives 35 157 1124 1122 1179 1323 1325 1962 317 1439 1507 1505 —

False positives 193 30 31 179 35 33 66 25 27 19 25 —

False negatives 453 34 30 60 61 64 122 19 41 36 77 —

Fig. 5. Local error rates of the human scaffolds generated by 3D-DNA and refined

by HiC-Hiker. The error rate was remarkably reduced from 4.3% (3D-DNA) to

1.7% (HiC-Hiker)

HiC-Hiker 3971



number of the blue dots demonstrates the usefulness of refining ori-
entations with HiC-Hiker.

Shorter contigs are likely to be more difficult to orient correctly
than longer contigs, because fewer contacts are available on shorter
contigs. To confirm this tendency, Figure 7 presents another plot
showing the local error rates of contigs according to their lengths. In
this analysis, contigs smaller than 15 kb in length were not consid-
ered because 3D-DNA was set to ignore them. This figure illustrates
that it tends to be difficult to determine the orientations of shorter
contigs, and HiC-Hiker can correct more local orientation errors in
both short and long contigs than 3D-DNA.

For the human dataset, it took 37 min to run the whole pipeline
on our computer, but the loading of contigs and Hi-C read mapping
data spent most of the time. In particular, the HMM optimization
process took 2, 4, 13 and 39 s when we set k to 2, 3, 4 and 5, respect-
ively. Of note, the calculation time of the optimization depends on k
exponentially. When we use adaptive mode, it took 20 s.

To examine why this algorithm can improve the accuracy of con-
tig orientations, we here define the relative orientation probability
matrix M, such that

Mi;j ¼
P

hj2fþ;�gPðRi;jjhi ¼ ĥi ; hjÞP
hi2fþ;�g

P
hj2fþ;�gPðRi;jjhi; hjÞ

;

where ĥi represents the correct orientation of the ith contig. Mi;j

indicates the likelihood that the orientation of the ith contig is

Fig. 6. Four dot plots of scaffolds along human chromosome 8. The top row shows

dot plots where the reference genome is on the x-axis and scaffolds output by 3D-

DNA (left) and HiC-Hiker (right) are on the y-axis. The red-colored dots indicate

correct orientations of contigs (forward alignment with the reference) while the

blue-colored dots show erroneous orientations (reverse-complement alignments).

The dot plots show that the reference is mostly covered by contigs. The total length

of contigs in the scaffolds is 123 011 808 bp, which is close to 145 138 636 bp, i.e.

the length of chromosome 8 in hg38. In the left bottom portions of both of the upper

dot plots, we see large reverse-complement alignments of the reference and scaf-

folds. In the lower dot plots, we enlarged parts of the upper two plots to show the

reference genomic region, which ranges from 65 to 74 Mb. The six orientation

errors of short contigs shown in the lower left plot shown as blue dots are corrected

in the HiC-Hiker scaffold shown in the lower right plot

Fig. 7. Plot of local error rates of contigs according to their lengths. Overall, shorter

contigs are difficult to orient due to insufficient Hi-C contacts, but this plot indicates

that HiC-Hiker outperformed 3D-DNA in repairing the orientations not only of

shorter contigs, but also of longer contigs

(a) (b)

(c) (d)

contig i contig j

reference

:
correct orientation of i is supported by

:

wrong (reverse) orientation of i is supported by

Fig. 8. Relative frequency matrices Mi;j for four typical cases. The identifiers of indi-

vidual contigs, i and j, are shown beside the vertical and horizontal axes, respective-

ly. The red-blue color of each cell shows the relative probability of its orientation.

The schematic figure at the top illustrates that a red-colored cell (Mi;j ¼ 1) means

that contacts between the ith and jth contigs determine the correct orientation of the

ith contig, while a blue-colored cell (Mi;j ¼ 0) shows that contacts between the two

contigs disagree with the correct orientation of the ith contig but support the wrong

orientation erroneously. The top left matrix (a) shows the ideal situation, in which

each contig is long enough to have sufficient contacts with its neighbors to allow its

orientation to be determined before using HiC-Hiker. Since almost all of the contigs

in this region are longer than the threshold of K ¼ 75 kb in the probabilistic model,

their orientations could be determined based only on their adjacent contigs; contacts

with distant contigs were not required. In the top right (b), the row labeled with 806

shows a case where the orientation of contig 806 cannot be correctly determined

according to its contacts with contig 805, which is depicted by the blue-colored cell

of 805 and 806. HiC-Hiker corrected the misoriented contig 806 by considering its

contacts with long contigs 804 and 807. In the bottom left (c), the row labeled with

1248 illustrates a situation where the misoriented contig 1248 is difficult to fix if its

neighboring contigs 1249 is taken into account, but can be fixed using 1247 and

1250, all of which are small contigs (<50 kb). In the bottom right (d), the row

labeled with 1338 shows a case when HiC-Hiker fails to correct the misoriented

contig 1338 labeled with ‘x’, which has short contigs on its right side. The relative

probability of contig 1338 being close to 1/2 (in the row 1338) indicates insufficient

information regarding the orientation of 1338; it is difficult to determine its orienta-

tion based on neighboring contigs
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correct, which in turn informs our confidence in the orientation of
the ith contig, given Hi-C contacts between the ith and jth contigs.
Notably, M is asymmetric. Figure 8 shows typical examples of the
matrix. In this plot, to represent the dependency of orientation ac-
curacy on contig size, the horizontal and vertical lengths of each cell
Mi;j are proportional to the lengths of the ith and jth contigs,
respectively.

Our method has two main advantages with respect to orienting
contigs. First, it estimates the proximity of two contigs more precise-
ly according to the probability of contact, whereas previous studies
simply use absolute values such as a separation distance or a contact
count. Second, since the HMM algorithm is able to find the global
optimum, it is proven to be less prone to errors even in the presence
of local and abnormal contacts than the previous iterative contig-
joining algorithm. These advantages of our proposed method can be
clearly seen in the relative orientation probability matrix plot shown
in Figure 8. The top left matrix (a) presents a case where the contact
information of adjacent contigs is sufficient to determine the orien-
tations of contigs. On the other hand, the top right and bottom left
matrices (b, c) show cases where the probabilistic metric is needed.
We require proximity information from more distal contigs to ob-
tain correct orientations.

4 Discussion

In this article, assuming that most large global errors are corrected
by using 3D-DNA, we demonstrated that HiC-Hiker can further re-
duce the local orientation error rate from 4.3% to 1.7% in real
human datasets, and from 11.7% to 6.3% in worm datasets.

In general, greater coverage of Hi-C contacts may make it pos-
sible to estimate orientations more accurately using a larger number
of Hi-C contacts between contigs, although generating more con-
tacts is more expensive. Instead, we examined a cost-efficient ap-
proach using a Hi-C dataset of shallow 7� coverage, and
demonstrated that our proposed method was effective in refining
scaffolds even if only a shallow coverage Hi-C dataset is available.
In fact, the DNA-ZOO project recommends shallow 7� coverage
Hi-C datasets to create chromosome-length genome assemblies with
3D-DNA at low cost (Dudchenko et al., 2018). Indeed, when
applied to short-read contig datasets with recommended parameters
(i.e. 15 kb minimum length threshold and >7� Hi-C coverage; col-
umns 1, 5, 9 and 10 in Table 1), HiC-Hiker halved the local orienta-
tion error rate with a sufficient average recall (71%) and precision
(82%). Therefore, our software program HiC-Hiker can be used as
a complement to the powerful 3D-DNA program.

We assumed no gaps between adjacent contigs due to the diffi-
culty in reliably estimating the gap distances based on Hi-C con-
tacts. However, this assumption is unrealistic and should be revised
in the future, because gaps are often filled with long repetitive ele-
ments and assemblers are unlikely to extend contigs at repetitive
regions to avoid the ambiguity associated with contig extension.
Despite the assumption, however, the experimental results demon-
strated that our algorithm can refine scaffolds, thus showing the
practical feasibility of the algorithm. Nevertheless, future work
should attempt to eliminate this assumption by making use of prob-
abilistic estimation data or other information, such as assembly
graphs.

Also, in the probabilistic model p(d), we focused only on the
most dominant term, i.e. the separation distances of Hi-C contact
pairs, and did not consider the effects of other factors such as high-
GC content regions, low sequence mappability in repetitive regions
or inherent three-dimensional structures. Although benchmarking
showed that the model was effective when not taking the other fac-
tors into consideration, ignoring these factors may lead to unwanted
biases due to non-uniform coverage of Hi-C contacts; moreover,
considering them may further reduce orientation error rates. Indeed,
models aimed at identifying significant 3D structures in a chromo-
some consider the effect of restriction enzyme sites, GC content and
mappability (Carty et al., 2017). Future work should modify our
model to consider these factors.

Finally, it is useful to take a probabilistic approach to refine con-
tig ordering and automatically correct large inversion errors. A
probability of Hi-C contact seems to be a more precise and theoretic
metric than a separation distance or a contact count, which could
lead to major improvements in scaffolding based on Hi-C data.
Additionally, if we use probabilistic models to calculate the optimal
layout of contigs, the probability, or reliability of the layout and
scaffolds can be calculated. This reliability information of the gener-
ated assembly can be useful when it is used in subsequent analyses.

Acknowledgements

The authors are grateful to Drs Erez Lieberman Aiden and Olga Dudchenko

for motivating us to examine the problem studied in this article and for stimu-

lating discussions.

Funding

This study was supported in part by the Advanced Genome Research and

Bioinformatics Study to Facilitate Medical Innovation and by the Advanced

Research and Development Programs for Medical Innovation from Japan

Agency for Medical Research and Development (AMED) to S.M.

Conflict of Interest: none declared.

References

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Burton,J.N. et al. (2013) Chromosome-scale scaffolding of de novo genome

assemblies based on chromatin interactions. Nat. Biotechnol., 31,

1119–1125.

Butler J. et al. (2008) ALLPATHS: De novo assembly of whole-genome shot-

gun microreads. Genome Research, 18, 810–820.

Carty,M. et al. (2017) An integrated model for detecting significant chromatin

interactions from high-resolution Hi-C data. Nat. Commun., 8, 1–10.

Clavijo,B.J. et al. (2017a) An improved assembly and annotation of the allo-

hexaploid wheat genome identifies complete families of agronomic genes

and provides genomic evidence for chromosomal translocations. Genome

Res., 27, 885–896.

Clavijo,B.J. et al. (2017b) W2RAP: a pipeline for high quality, robust assem-

blies of large complex genomes from short read data.https:

//www.biorxiv.org/content/10.1101/110999v1.abstract).

Dudchenko,O. et al. (2017) De novo assembly of the Aedes aegypti genome

using Hi-C yields chromosome-length scaffolds. Science, 356, 92–95.

Dudchenko,O. et al. (2018) The Juicebox Assembly Tools module facilitates

de novo assembly of mammalian genomes with chromosome-length

scaffolds for under $1000. https://www.biorxiv.org/content/10.1101/

254797v1.abstract).

Edwards,A. et al. (1990) Automated DNA sequencing of the human HPRT

locus. Genomics, 6, 593–608.

Eid,J. et al. (2009) Real-time DNA sequencing from single polymerase mole-

cules. Science, 323, 133–138.

Gabdank,I. et al. (2016) A streamlined tethered chromosome conformation

capture protocol. BMC Genomics, 17, 274.

Ghurye,J. et al. (2019) Integrating Hi-C links with assembly graphs for

chromosome-scale assembly. PLoS Comput. Biol., 15, e1007273.

Gnerre,S. et al. (2011) High-quality draft assemblies of mammalian genomes

from massively parallel sequence data. Proc. Natl. Acad. Sci. USA, 108,

1513–1518.

Koren,S. et al. (2017) Canu: scalable and accurate long-read assembly via

adaptive k-mer weighting and repeat separation. Genome Res., 27,

722–736.

Lander,E.S.L. et al. (2001) Initial sequencing and analysis of the human gen-

ome. Nature, 409, 860–921.

Li,H. and Durbin,R. (2010) Fast and accurate long-read alignment with

Burrows-Wheeler transform. Bioinformatics, 26, 589–595.

Lieberman-Aiden,E. et al. (2009) Comprehensive mapping of long-range inter-

actions reveals folding principles of the human genome. Science, 326,

289–293.

Loose,M. et al. (2016) Real-time selective sequencing using nanopore technol-

ogy. Nat. Methods, 13, 751–754.

HiC-Hiker 3973



Luo,R. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler. GigaScience, 1, 1–6.
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