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Simple Summary: Detecting horse state after exercise is critical for maximizing athletic performance.
The horse’s response to fatigue includes exercise termination or exercise continuation at a lower
intensity, which significantly limit the results achieved in races and equestrian competition. As
conventional methods of detecting and quantifying exercise effort have shown some limitations,
infrared thermography was proposed as a method of contactless detection of exercise effect. The
promising correlation between body surface temperature and exercise-dependent blood biomark-
ers has been demonstrated. As the application of conventional thermography is limited by low
specificity, advanced thermal image analysis was proposed here to visualize the link between blood
biomarkers and texture of thermal images. Twelve horses underwent standardized exercise tests
for six consecutive days, and both thermal images and blood samples were collected before and
after each test. The images were analyzed using four color models (RGB, red-green-blue; YUV,
brightness-UV-components; YIQ, brightness-IQ-components; HSB, hue-saturation-brightness) and
eight texture-features approaches, including 88 features in total. In contrast to conventional tempera-
ture measures, as many as twelve texture features in two color models (RGB, YIQ) were linked with
blood biomarker levels as part of the horse’s response to exercise.

Abstract: As the detection of horse state after exercise is constantly developing, a link between
blood biomarkers and infrared thermography (IRT) was investigated using advanced image texture
analysis. The aim of the study was to determine which combinations of RGB (red-green-blue), YUI
(brightness-UV-components), YIQ (brightness-IQ-components), and HSB (hue-saturation-brightness)
color models, components, and texture features are related to the blood biomarkers of exercise effect.
Twelve Polish warmblood horses underwent standardized exercise tests for six consecutive days.
Both thermal images and blood samples were collected before and after each test. All 144 obtained
IRT images were analyzed independently for 12 color components in four color models using eight
texture-feature approaches, including 88 features. The similarity between blood biomarker levels and
texture features was determined using linear regression models. In the horses’ thoracolumbar region,
12 texture features (nine in RGB, one in YIQ, and two in HSB) were related to blood biomarkers.
Variance, sum of squares, and sum of variance in the RGB were highly repeatable between image
processing protocols. The combination of two approaches of image texture (histogram statistics and
gray-level co-occurrence matrix) and two color models (RGB, YIQ), should be considered in the
application of digital image processing of equine IRT.
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1. Introduction

Detecting animal fatigue after exercise is critical to ensure maximal performance in
athletes [1]. Horses are considered the most utilized athletes within the animal kingdom.
Thus, huge investments of time and money are made to increase their exercise capacity and
improve their overall performance during training [2–4]. Exercise-induced fatigue occurs
after repeated exercise with insufficient recovery [5,6] and/or prolonged [7,8] or high-
intensity exercise [4,9]. Exercise-induced fatigue results in temporary loss of strength and
energy, leading to decreased capacity for physical activity and a decline in the execution of
horses’ athletic skills [2,10]. A horse’s response to fatigue can include exercise termination or
exercise continuation at a lower intensity [4,11], both of which significantly limit the results
achieved in races [4,9] and the equestrian Olympic games [12–14]. Hence, exercise should
include evaluation of horse state in order to avoid fatigue [2–4]. Performance decrease is
associated not only with a decrease in energy source in muscles but also hormonal changes
causing mental stress and welfare disturbance [12,15].

Conventional methods of detecting and quantifying exercise effort and intensity in-
clude measuring blood biomarkers [4,16], heart rate (HR), heart rate variability (HRV) [5,17],
and other non-invasive techniques [18,19]. Equine blood biomarkers are categorized as
follows: ATP metabolism biomarkers, such as lactate concentration (LAC); muscle dam-
age biomarkers, such as creatine phosphokinase (CPK) and aspartate aminotransferase
(AST) activity; and inflammatory biomarkers, such as white blood cell count (WBC) [4,16].
Non-invasive measures typically involve surface electromyography (EMG) [18]; infrared
thermography (IRT) [15,19]; telemetric monitoring of speed, gait, and HR [9,20]; as well as
kinematic monitoring of gait [20]. Although these methods are used in equine veterinary
practice, advanced applications as a non-invasive, contactless method of detecting exercise
effect after repeated exercise are limited. Biomarkers require blood sampling, and the
results are not instantaneously available, as processing and analysis are required [4,6,7]. HR
is highly susceptible to the effect of a horse’s emotional response, especially stress [21,22].
Equine EMG, recording site-specific stimulation via electrodes placed on the muscle [18], re-
quires application of surface electrodes, which is challenging during movement [20], or the
insertion of a hypodermic needle, which makes EMG invasive and causes discomfort [23].
Both surface and needle/fine-wire EMG require specialist equipment and training in how
to collect and/or analyze recorded data [18,20]. Despite equine IRT being susceptible to
environmental effects [19,24,25], it appears to be the most accessible method, as it allows for
contactless quantification of radiant energy emitted by the body surface, which is propor-
tional to the horse’s effort intensity [26,27]. Promising correlations have been demonstrated
between body surface temperature and exercise-dependent blood biomarkers after a single
training session [15,27]. However, the long-term relations after repeated exercise have
hitherto been unstudied.

Images directly acquired from IRT have limitations, especially considering their speci-
ficity. Images without processing do not differentiate between influences that produce dif-
ferent surface temperatures [28]. Fortunately, in recent times, digital image processing has
been developed for more comprehensive IRT image analysis. Such image processing pro-
vides quantified, objective data considered to be more informative than conventional tem-
perature measures in the fields of material mechanics [29–31] and human medicine [32–37].
Digital image processing has been applied successfully in the detection of damage to com-
posite materials [29], aerospace structures [30], and building elements [31], thus increasing
the efficiency of non-destructive material testing. Similarly, increased efficiency has been
reported in the detection of diabetes [32], skin cancer [33], and breast tumors [34]. Digital
image analysis of thermal images is an innovative and favorable approach in many dis-
ciplines. However, to the best of our knowledge, to date, our preliminary work has been
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the only application in equine medicine [38,39]. Recent use of digital image processing in
equine research is based on gray-level matrices (GLM), which has been used to detect the
influence of a rider’s body weight on the thermography of the thoracolumbar region [39].
Technological developments allow for the evaluation of relationships between recognized
biomarkers of exertion and IRT advanced image texture analysis. This would provide a
contactless method for the detection of exertion levels in horses.

In the current study, eight digital image-processing approaches in four color models
were applied to evaluate exercise effort and intensity after repeated exercise. Thermal
images of horses’ thoracolumbar region were reproduced in red/green/blue (RGB), bright-
ness/U component/V component (YUV), brightness/I component/Q component (YIQ),
and hue/saturation/brightness (HSB) color models to carry out histogram statistics (HS),
gradient map (GM), autoregressive model (AM), Gabor transform (GT), histogram of
oriented gradients (HOG), and gray-level matrices (GLM) approaches. GLM is repre-
sented here by three detailed approaches: gray-level run-length matrix (GRLM), symmetric
gray-level co-occurrence matrix (GLCM), and asymmetric gray-level co-occurrence matrix
(GLCH). GLM describes a group of texture operators that map image function, image com-
plexity, and statistics of pixels distribution [35]. The GLM approach has been reported to
provide the best description of image texture [35,36]. It has previously been used for extrac-
tion of features of medical images, e.g., ultrasound images [37], radiographic images [40,41],
magnetic resonance images [36,42], and thermal images [39].

In this study, we aimed to determine color-model component combinations and image
texture features that correlate with conventional measures (bloodborne biomarkers) of
exercise-induced changes over multiple exercise trials. The identified features are to be
used in future research investigating the application of digital IRT image processing in
equine veterinary medicine.

2. Materials and Methods
2.1. Animals

Twelve horses (n = 12) (mean ± SD: age 9.3 ± 1.8 years, body weight 566.7 ± 13.7 kg,
height at the withers 160.3 ± 3.9 cm; 6 geldings, 6 mares) stabled at the Didactic Stable
of the Horse Breeding Division at Warsaw University of Life Sciences were used for the
study. The horses represented three Polish warmblood breeds: Polish Halfbred horse
(n = 7), Wielkopolska (n = 3), and Malopolska (n = 2) breeds. All horses were housed in
individual stalls with the same management. Horses were fed an individually calculated
ration of hay, oats, and concentrate according to their nutritional requirements, distributed
over three feedings per day. A mineral salt block and freshwater were constantly available.
All horses were physically fit as, general riding-school horses taking part in leisure riding
for up to 2 h per day, 6 days a week. None of the horses was on any medication during
sampling and for the 2 weeks prior to sampling. To exclude unhealthy horses from the
study, clinical examinations were conducted before sampling. Basic clinical examinations
included measurement of heart rate, respiratory rate, capillary refill time, and rectal tem-
perature, as well as inspection of mucous membranes and lymph nodes. Examinations
were conducted according to international veterinary standards [43]. Detailed examination
of the musculoskeletal system was performed following guidelines for lameness evaluation
of the athletic horse [44]. Only horses showing no clinical signs and those of similar athletic
ability were included in the research. None of the horses was excluded. This study was
approved by the II Local Ethical Committee on Animal Testing in Warsaw on behalf of the
National Ethical Committees on Animal Testing (No WAW2/034/2018, day 27 April 2018).

2.2. Study Design

Data were collected directly after exercise to measure its effect following a protocol
adapted from Munsters et al. [45] whereby horses were subjected to standardized exercise
tests (SETs) repeated daily for six days as six repetitions of exercise (REs). During each
RE, heart rate (HR), velocity (v), and blood lactate concentration (LA) were measured
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to achieve a repeatable level of effort. During REs, horses were equipped with an HR
monitor (Polar-RS800, Polar Electro Oy, Kempele, Finland) that simultaneously recorded
HR (beats/min) and speed (m/s). A first electrode was placed under the girth behind the
left elbow, and the second was placed cranially to the withers and saddle.

Each RE comprised a warm-up walk (5 min; up to 1.5 m/s), trot (10 min; up to 4.0 m/s),
and four incremental exercise steps in canter (2.5 min, 5 min, 7.5 min, and 10 min; up to
6.0 m/s). After each exercise step, horses were slowed down and walked for 5 min. Within
1 min of the walk, horses were briefly stopped, and blood samples were collected from
the jugular vein at rest to confirm the level of effort during RE. Plasma LA (mmol/L) was
measured immediately with a portable handheld lactate measurement device (Accusport®,
Roche Diagnostics, Basel, Switzerland). As lactate concentrations <1.0 mmol/L were
under the detection limit, these values were all set at 1.0 mmol/L. The SET was deemed
completed when HR reached 140 beats/min and the blood lactate concentration was at or
above 4 mmol/L. After completion of each RE, horses did a rope-led walking cool-down
until complete recovery was achieved at a HR level of 40–50 beats/min.

Data collection included blood sampling (BS) and IRT imaging (II). Both data col-
lections were jointly marked with the BS abbreviation for standardization of research
transparency. BSs were repeated twice during each RE; the first sample was collected at
rest before the RE (BS 0), and a second sample was taken immediately after completion of
the RE and before the cool-down walk (BS 1). After BS 0, horses were saddled, and the RE
was started. Before BS 1, horses were unsaddled, and the second thermographic image
was taken. Before starting the research, the saddles were fitted to each horse following
the protocol of Greve and Dyson [46]. The panels of the saddle, the type of flocking, and
the balance of the saddle were determined. Only saddles considered to fit properly were
approved for use in the research. In an effort to limit bias, only two female riders (body
weight: 55.5 ± 0.7 kg; height: 163.0 ± 1.4 cm) with 6 years of riding experience in the
upper-intermediate rider-training level participated in the study. Riders were members of
the Animal Sciences Students Riding Association.

All REs and BSs were performed in an indoor riding hall with constant environmental
conditions and protection from solar radiation and wind. Ambient temperature (◦C) and
relative humidity (RH; %) were continuously measured and, during Res, maintained at
20.1 ± 0.9 ◦C and 50.5 ± 2.8%, respectively. The riding surface was composed of silica
sand and fiber fleece and was regularly watered by an automatic floor-watering facility
to maintain the right level of moisture. The hall was directly connected with the horses’
stable; therefore, horses could participate in the research without having contact with the
outside environment.

2.3. Blood Sampling and Biomarker Measurement

Blood samples were acquired by jugular venipuncture using a BD Vacutainer® sys-
tem into K2-EDTA tubes for hematological tests and dry tubes for biochemical analyses
(Plymouth, UK). K-2 EDTA blood samples were kept at +4 ◦C and examined within 5 h in
an automated analyzer calibrated for equine species (ABC Vet, Horiba ABX). The following
eight hematological parameters were considered: white blood cell count (WBC, ×109/L),
red blood cell count (RBC, ×1012/L), hemoglobin concentration (HGB, mmol/L), hema-
tocrit (HCT, %), mean corpuscular volume (MCV, fL), mean corpuscular hemoglobin
(MCH, gL), and mean corpuscular hemoglobin concentration (MCHC, mmol/L). The dry
tubes were centrifuged (2000× g, 5 min), and serum free from any apparent hemolysis was
aspirated and frozen at −20 ◦C for further analyses. After all BS collection, serum samples
were defrosted and examined in an automated clinical biochemistry analyzer (Miura One,
ISE. S.r.l., Rome, Italy) using Pointe Scientific (5449 Research Dr, Canton, MI, USA) reagents,
standards, calibrators, and controls. The following five biochemical parameters were con-
sidered: blood lactate concentration (LAC, mmol/L), total serum protein concentration
(TSP, g/L), creatine phosphokinase activity (CPK, U/L), alanine aminotransferase activity
(ALT, U/L), and aspartate aminotransferase activity (AST, U/L).



Animals 2022, 12, 444 5 of 24

2.4. IRT Data Collection and Analysis

The imaged area of the thoracolumbar region was brushed 30 min before imaging so
as to remove dirt and mud. The horses were then led to an enclosed, indoor riding hall to
acclimatize to imaging conditions. Images were taken using a non-contact thermographic
camera (FLIR Therma CAM E25, FLIR Systems Brasil, Sorocaba, Brazil; emissivity (e) 0.99;
temperature range between 10.0 and 50.0 ◦C) (Figure 1A). The camera was placed approx-
imately 1.2 m above the imaging area, directly above the L5 dorsal spinous process. All
thermographic images were obtained by the same researcher (M.M.). The thermal image
processing steps for conventional analysis of IRT measures included image acquisition,
segmentation of regions of interest (ROIs), and extraction of the maximal temperature
(Tmax) and average temperature (Taver) from given ROIs. Professional software (FLIR
Tools Professional, FLIR Systems Brasil, Sorocaba, Brazil) was used for evaluations. Tmax
represented the values of the highest temperatures recorded in consecutive ROIs, whereas
Taver reported the value of the mean temperature calculated for the entire ROI area. The
imaged thoracolumbar region was segmented into four ROIs representing the withers area
(ROI 1), the thoracic spine area (ROI 2), the left area of back muscles (ROI 3), and the right
area of back muscles (ROI 4), as displayed in Figure 1B.
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Figure 1. Thermal image processing steps for the analysis of image texture. The first step—image
acquisition (A); the second step—segmentation of ROIs (B); the third step—mathematical transfor-
mation to color models (C); the fourth step—feature extraction during analysis of image texture (D).
ROI—region of interest; WLI—white-light image; IRT—infrared thermography; IRI—infrared image;
RGB—red/green/blue color model; YUV—brightness/U component/V component color model;
YIQ—brightness/I component/Q component color model; HSB—hue/saturation/brightness color
model; GRLM—gray-level run-length matrix; GLCM—symmetric gray-level co-occurrence matrix;
GLCH—asymmetric gray-level co-occurrence matrix.
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2.5. Image Texture Analysis

The steps for thermal image processing of the image texture analysis include image ac-
quisition, segmentation of ROIs, transformation to color models, and extraction of features
using eight analytical approaches (Figure 1). The first and second steps were the same for
the conventional analysis of IRT measures and image texture analysis. The third and fourth
steps were those of digital image processing, leading to quantification of data from IRT
images. The image texture features were extracted using eight computer-aided approaches
in each of four annotated ROIs by QMazda Software [47,48].

2.5.1. Color Models

The extraction of image texture features using QMazda Software requires a grayscale
image as input. IRT images are colorful, and temperature is determined by color changes.
Hence, the color analysis included the analysis of IRT image red (R), green (G) and blue (B)
components in the RGB color model, as well as analysis of IRT image brightness (Y),
U component (U), V component (V), I component (I), Q component (Q), hue (H), saturation (S),
and brightness (B) components after transformation to YUV, YIQ, and HSB color models,
respectively. IRT image features were calculated independently for individual components.
In the RGB color cube, each of the RGB components depends proportionally on the intensity
of the illumination and thus on the distance between the imaged object and the source
of illumination. In other color spaces, chrominance components are separated, carrying
information about the color (independent of brightness) and luminance (determining the
brightness level). Spaces with separate luminance and chrominance components were
obtained by transforming RGB spaces following the formulas in Figure 1C. Q-Mazda Soft-
ware was used to extract the features from the selected component of each color model
after transformation to grayscale by conversion to R, G, B, Y, U, V, I, Q, H, and S channels
(Figure 2).
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Figure 2. Sample imaging of a horse’s thoracolumbar region after conversion to red channel (A),
green channel (B), and blue channel (C) in the RGB color model; brightness channel (D), U-component
channel (E), and V-component channel (F) in the YUV color model; brightness channel (G),
I-component channel (H), and Q-component channel (I) in the YIQ color model; as well as hue
channel (J), saturation channel (K), and brightness channel (L) in the HSB color model. RGB—
red/green/blue color model; YUV—brightness/U component/V component color model; YIQ—
brightness/I component/Q component color model; HSB—hue/saturation/brightness color model.
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2.5.2. Normalization

Brightness and contrast of IRT images were normalized, as feature variation may have
an undesirable effect on the values of the extracted feature. Procedures for normalizing
the gray level of the image were performed using Q-Mazda Software. Normalization
procedures were carried out as follows: no normalization, using the mean, µ, and standard
deviation, σ, of the gray levels (the range of computation is 〈µ− 3σ; µ + 3σ〉), using the
minimum (min) and maximum (max) gray levels in the region of interest (the range of
computation is 〈min; max〉), using the histogram percentiles (the range of computation is
〈p1; p99〉). Normalization was conducted according to the formula:

IOUT = 2n IIN −MIN
MAX−MIN + 1

(1)

where IIN is an original image, <MIN; MAX> defines a new range due to the chosen
standardization procedure, and n defines the number of bits per pixel. The channels
normalized in Q-Mazda Software were annotated using lowercase letters: r, g, b, y, u, v, i, q,
h, and s. These were used to extract the features from the selected component independent
of un-normalized channels.

2.5.3. Image Texture Analysis

The extraction of image texture features was conducted by QMazda Software using
eight approaches (Figure 1D), as follows:

• Histogram statistics (HS) use first-order histogram analysis, i.e., a function determined
in the domain of image brightness without taking into account the spatial dependence
of the brightness distribution [49]. The fourteen features obtained from histogram
analysis are: area (HistArea), mean (HistMean), variance (HistVariance), skewness
coefficient (HistSkewness), kurtosis (HistKurtosis), percentiles (HistPerc01, HistPerc10,
HistPerc50, HistPerc90, and HistPerc99), dominants (HistDomn01 and HistDomn10),
and maximum of moments (HistMaxm01 and HistMaxm10).

• Gradient map (GM) evaluates the spatial relationships present in the image by its
transformation, i.e., by calculating the absolute value of the brightness gradient at each
point in the image [49]. In the resulting image, local brightness variations between
homogeneous areas of the original image are visible. The gradient is calculated as the
root of the second degree of the sum of the squares of light derivatives in perpendicular
directions, e.g., horizontal and vertical. Based on the histogram of the absolute value of
the gradient, six statistical features are calculated: absolute gradient area (GradArea),
absolute gradient mean (GradMean), absolute gradient variance (GradVariance), abso-
lute gradient skewness (GradSkewness), absolute gradient kurtosis (GradKurtosis),
and percentage of pixels with nonzero gradient (GradNonZeros).

• Autoregressive model (AM) assumes interaction between image pixels. The image is
transmitted in lines from top to bottom, and each line is sent pixel by pixel from left to
right. That pixel brightness can be predicted based on the brightness of previously
transmitted pixels [50]. The algorithm returns five features relating the brightness of a
pixel to its neighbors from the left (Teta1), top left (Teta2), top (Teta3), and top right
(Teta4), as well as the minimum mean square error between the predicted and actual
brightness (sigma).

• Gabor transform (GT) is image transformation consisting of local signal decompo-
sition into frequency components [51]. Frequency components are calculated by
convolution of the image with a Gaussian kernel. The features obtained from GT are
defined using a combination of frequency, orientation (horizontal, vertical, 22.5◦, 45◦,
67.5◦, 112.5◦, 135◦, and 157.5◦), standard deviation of the Gaussian envelope (σ), and
magnitude. The algorithm returns twenty-four features: Gab4H2Mag, Gab4V2Mag,
Gab4N2Mag, Gab4Z2Mag, Gab6H3Mag, Gab6V3Mag, Gab6N3Mag, Gab6Z3Mag,
Gab8H4Mag, Gab8V4Mag, Gab8N4Mag, Gab8Z4Mag, Gab12H6Mag, Gab12V6Mag,
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Gab12N6Mag, Gab12Z6Mag, Gab16H8Mag, Gab16V8Mag, Gab16N8Mag, Gab16Z8Mag,
Gab24H12Mag, Gab24V12Mag, Gab24N12Mag, and Gab24Z12Mag.

• Histogram of oriented gradients (HOG) counts occurrences of gradient orientations.
HOG is constructed using the gradient magnitude and orientation around the image
pixel [52]. The algorithm returns eight features identified by the number of angular
bins: 4b (HogO8b0, HogO8b1), 8b (HogO8b2, HogO8b3), 16b (HogO8b4, HogO8b5),
or 32b (HogO8b6, HogO8b7).

• Gray-Level Run-Length Matrix (GRLM) gives the information about the number
of pixel strings with the same brightness and specified length based on the pixel
string length matrix [53]. The GRLM is computed for four different directions of the
horizontal, vertical, 45◦, and 135◦ pixel strings. The following basic seven features
are calculated from this matrix: run-length nonuniformity (RLNonUni), gray-level
non-uniformity (GLevNonUn), moment of long string emphasis (LngREmph), reverse
moment of short string emphasis (ShrtREmp), fraction of image in runs (Fraction),
run-length nonuniformity moment (MRLNonUni), and gray-level non-uniformity
moment (MGLevNonUn).

• Gray-level co-occurrence matrix (GLCM) uses the second-order histogram of the
image brightness distribution to determine the mutual spatial relationship between
pairs of image pixels with specific brightness levels in different directions (horizontal,
vertical, 45◦, and 135◦) and at different distances of pixel pairs (d = 1, . . . , 9) [54].
The feature name for gray-level co-occurrence matrix consists of GLCM (features
are derived from the symmetric matrix) or GLCH (features are derived from the
asymmetric matrix). The following twelve basic features are calculated from each
symmetric and asymmetric matrix: area (Area), angular second moment/energy
(AngScMom), contrast (Contrast), correlation (Correlat), sum of squares (SumOfSqs),
inverse different moment/homogeneity (InvDefMom), summation mean (SumAverg),
summation entropy (SumEntrp), summation variance (SumVarnc), entropy (Entropy),
differential variance (DifVarnc), and differential entropy (DifEntrp).

2.6. Statistical Analysis

Statistical analysis was performed using GraphPad Prism6 software (GraphPad Soft-
ware Inc., San Diego, CA, USA). The 144 IRT images obtained from twelve horses (n = 12)
during the six repetitions of exercise (REs; n = 6) and two sampling times (BS 0, BS 1; n = 2)
were analyzed. Data of blood biomarker levels (12 parameters), temperatures (2 features),
and image texture features (88 features) were presented in the form of data series, where
each horse represented one realization. Values in Supplementary Tables are presented as
mean ± standard deviation (SD). Data series were tested independently for univariate
distributions using a Shapiro-Wilk normality test. The comparisons between BSs were
assessed using a paired t-test for Gaussian data and the Wilcoxon matched-pairs signed
rank test for non-Gaussian data. The comparisons between REs were assessed using a
repeated-measures one-way ANOVA with Geisser-Greenhouse correction, followed by
Tukey’s multiple-comparisons test for Gaussian data and the Friedman test, followed
by Dunn’s multiple-comparisons test for non-Gaussian data. The significance level was
established as p < 0.05.

Linear regressions were calculated for the selected blood biomarkers (3 parameters)
and 90 IRT image features (2 features of temperature and 88 features of image texture)
independently for each ROI. There were four regression equations for a given data series
(CPK, AST, WBC, each IRT image feature) and three measures of differences of linearity
for given data pairs (CPK and each IRT image feature; AST and each IRT image feature;
WBC and each IRT image feature) presented on each plot. Only plots with evidence of
linearity were included in the results. All the slopes were significantly non-zero (p < 0.0001).
Slopes within data pairs were also compared. If the difference between slopes was not
significant (p > 0.05), a single slope measurement was calculated for all the data, and then
the intercepts within data pairs were compared. When differences between the intercepts
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were not significant (p > 0.05), one intercept was calculated for all the data. The features
found to have parallel slopes to selected blood markers (WBC, CPK, ALT) were summarized
and marked by colors (red, blue, gray) and by letters (R, r, B, Q, H).

3. Results

The initial experiment showed that among 2112 returned combinations of color com-
ponents and features of image texture in the first region of interest (ROI 1), 672 features
(31.82%, p < 0.05) differed between thermal images obtained before and after a single bout
of exercise. To explore further, repeated exercise was evaluated to determine which features
of image texture are related to blood biomarkers of exercise effect.

3.1. Selection of Blood Biomarkers

The mean± SD values of hematological and biochemical blood biomarkers are summa-
rized in Supplementary Table S1 (available online). RBC, HGB, HCT, and LAC were signifi-
cantly higher (p < 0.05) after exercise (BS 1) than before exercise (BS 0) for each of the six rep-
etitions of exercise (REs). However, no differences were found for these biomarkers between
REs. Significant differences between REs after exercise were noted for WBC, CPK, and
AST. WBC in BS 1 was significantly higher (p = 0.006) in the sixth RE (10.2 ± 1.76 × 109/L)
as compared to the first RE (8.0 ± 1.28 × 109/L). WBC was also significantly higher
after exercise when compared to before exercise in the fourth (BS 1: 9.9 ± 1.70 × 109/L,
BS 0: 8.5 ± 1.21 × 109/L, p = 0.032), fifth (BS 1: 9.9 ± 1.76 × 109/L, BS 0: 8.5 ± 1.21 × 109/L,
p = 0.011), and sixth (BS 1: 10.2 ± 1.76 × 109/L, BS 0: 7.8 ± 1.29 × 109/L, p = 0.001) REs,
respectively. Similarly, CPK in BS 1 was significantly higher (p = 0.048) in the sixth
RE (294 ± 70.9 U/L) as compared to the first RE (202 ± 85.3 U/L). CPK was signif-
icantly higher after exercise than before exercise in the second (BS 1: 209 ± 65.5 U/L,
BS 0: 148 ± 40.2 U/L, p = 0.008), third (BS 1: 211 ± 50.8 U/L, BS 0: 154 ± 54.5 U/L, p = 0.022),
fourth (BS 1: 239 ± 102.0 U/L, BS 0: 176 ± 30.8.5 U/L, p = 0.025), fifth (BS 1: 245 ± 65.2 U/L,
BS 0: 134 ± 30.9 U/L, p = 0.0001), and sixth (BS 1: 294 ± 70.9 U/L, BS 0: 148 ± 45.3 U/L,
p < 0.0001) REs. Moreover, AST was significantly higher (p = 0.022) in the sixth RE (309± 51.8 U/L)
as compared to the first RE (238 ± 47.3 U/L). However, AST was only significantly higher
after exercise in the fifth (BS 1: 282 ± 33.8 U/L, BS 0: 263 ± 19.1 U/L, p = 0.049) and sixth
(BS 1: 309 ± 51.8 U/L, BS 0: 244 ± 43.9 U/L, p = 0.018) REs. Therefore WBC, CPK, and
AST were selected as the representative blood biomarkers of exercise effect in the investi-
gated model. These biomarkers were further compared with analyzed features of image
texture, as well as IRT measures.

3.2. Relation of Image Texture with Conventional Blood Biomarkers

Twelve features of image texture in thermal images of the thoracolumbar region
were found to have parallel slopes to blood biomarkers in a linear regression model.
These features included nine features in the RGB color model, one feature in the YIQ
color model (Q.HS.Variance), and two features in the HSB color model (H.HS.Perc99,
B.HS.Perc99). Within the RGB color model, eight features were associated with the
red component (R.HS.Variance, r.HS.Variance, R.GLCM.SumOfSqs, r.GLCM.SumOfSqs,
r.GLCH.SumOfSqs, R.GLCM.SumVarnc, r.GLCM.SumVarnc, r.GLCH.SumVarnc) and one
feature with the blue component (B.GLCM.SumVarnc). These features were then compared
against IRT measures.

3.2.1. Selection of Features in RGB Color Model

The slopes of the linear regression equations for CPK (p = 0.0527) and AST (p = 0.1867),
compared to the slope of the red component variance in the RGB color model (R.HS.Variance),
were not significantly different in the first region of interest (ROI 1). However, these dif-
ferences were significant in all other ROIs. One slop values for CPK vs. R.HS.Variance
and AST vs. R.HS.Variance were 11.639 and 8.913, respectively (Figure 3A–D). With re-
spect to the slope of the sum-of-squares values for the gray-level co-occurrence matrix
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of the red component in the RGB color model (R.GLCM.SumOfSqs), the slopes of CPK
(p = 0.0519) and AST (p = 0.1836) were not significantly different in ROI 1. However,
these differences were significant in all other ROIs. One slop values were 11.622 (CPK vs.
R.GLCM.SumOfSqs) and 8.896 (CPK vs. R.GLCM.SumOfSqs) (Figure 3E–H). With respect
to the sum of variance values of the gray-level co-occurrence matrix of the red component
in the RGB color model (R.GLCM.SumVarnc), no significant differences in the slopes for
CPK and AST were noted in ROI 1 (CPK p = 0.3161, one slope: 21.127; AST p = 0.0663, one
slope: 18.400), ROI 2 (CPK p = 0.1509, one slope: 12.564; AST p = 0.4917, one slope: 9.838),
ROI 3 (CPK p = 0.9012, one slope: 16.392; AST p = 0.5235, one slope: 13.666), and ROI 4
(CPK p = 0.4015, one slope: 13.831; AST p = 0.9155, one slope: 11.104) (Figure 3I–L).
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Figure 3. Comparison of image texture features with conventional blood biomarkers in repeated
exercises. Features derived from the un-normalized red component in the RGB color model were
visualized for ROI 1 (A,E,I), ROI 2 (B,F,J), ROI 3 (C,G,K), and ROI 4 (D,H,L). ROI—region of interest;
CPK—creatine phosphokinase activity; AST—aspartate aminotransferase activity; WBC—white blood
cell count; R.HS.Variance—variance of histogram statistics, red component in RGB color model (A–D);
R.GLCM.SumOfSqs—sum of squares of gray-level co-occurrence matrix, red component in RGB
color model (E–H); R.GLCM.SumVarnc—sum of variance of gray-level co-occurrence matrix, red
component in RGB color model (I–L). Similarity was tested using linear regressions, and a p-value of
less than 0.05 was considered significant. If the difference between slopes was not significant, a single
slope measurement was calculated for all the data.

The slopes of the linear regression were not significantly different for either CPK
or AST when compared to the slopes of the normalized variance (r.HS.Variance) or the
normalized sum of squares of the gray-level co-occurrence matrix (r.GLCM.SumOfSqs)
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of the red component in the RGB color model in ROI 1 (CPK vs. r.HS.Variance p = 0.0713,
one slope: 11.795; AST vs. r.HS.Variance p = 0.2530, one slope: 9.068; (Figure 4A))
(CPK vs. r.GLCM.SumOfSqs p = 0.0709, one slope: 11.788; AST vs. r.GLCM.SumOfSqs
p = 0.2520, one slope: 9.062; (Figure 4E)). In all other ROIs, the slopes were not signifi-
cantly different (p > 0.05) for WBC vs. r.HS.Variance (Figure 4B–D), as well as WBC vs.
r.GLCM.SumOfSqs (Figure 4F–H). Moreover, the normalized sum of variance of gray-level
co-occurrence matrix of the red component in the RGB color model (r.GLCM.SumVarnc)
did not yield any significant differences for any blood biomarkers in ROI 3 (p = 0.0795,
one slope: 10.206; (Figure 4K)) or ROI 4 (p = 0.1668 one slope: 9.971; (Figure 4L)). In ROI 1,
the slopes were not significantly different for either CPK (p = 0.3889, one slope: 21.317)
or AST (p = 0.1350, one slope: 18.591) when compared to the slope of r.GLCM.SumVarnc
(Figure 4I). In ROI 2, neither the slope of AST (p = 0.0563, one slope: 7.085) nor WBC
(p = 0.4457, one slope: 1.601) was significantly different when compared to r.GLCM.SumVarnc
(Figure 4J).
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Figure 4. Comparison of image texture features with conventional blood biomarkers in repeated
exercises. Features derived from the normalized red component in the RGB color model were
visualized for ROI 1 (A,E,I), ROI 2 (B,F,J), ROI 3 (C,G,K), and ROI 4 (D,H,L). ROI—region of interest;
CPK—creatine phosphokinase activity; AST—aspartate aminotransferase activity; WBC—white
blood cell count; r.HS.Variance—normalized variance of histogram statistics, red component in RGB
color model (A–D); r.GLCM.SumOfSqs—normalized sum of squares of gray-level co-occurrence
matrix, red component in RGB color model (E–H); r.GLCM.SumVarnc—normalized sum of variance
of gray-level co-occurrence matrix, red component in RGB color model (I–L). Similarity was tested
using linear regressions. A p-value of less than 0.05 was considered significant. If the difference
between slopes was not significant, a single slope measurement was calculated for all the data.
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The slopes of linear regression were not significantly different for either CPK (p = 0.710,
one slope: 11.789) or AST (p = 0.2521, one slope: 9.062) when compared to the slope of the
normalized sum of squares of the asymmetric gray-level co-occurrence matrix of the red
component in the RGB color model (r.GLCH.SumOfSqs) in ROI 1 (Figure 5A). The only sig-
nificant differences were found with WBC (p > 0.05) in other ROIs (Figure 5B–D). Similarly,
the slopes were not significantly different for either CPK (p = 0.3889, one slope: 21.317) or
AST (p = 0.1350, one slope: 18.591) as compared to the normalized sum of variance of the
asymmetric gray-level co-occurrence matrix of the red component in the RGB color model
(r.GLCH.SumVarnc) in ROI 1 (Figure 5E). The slopes in ROI 3 (p = 0.0795, one slope: 10.206;
(Figure 5G)) and ROI 4 (p = 0.1668 one slope: 9.971; (Figure 5H)) were not significantly
different for any selected blood biomarkers. In ROI 2, the slopes were not significantly
different for either AST (p = 0.0563, one slope: 7.083) or WBC (p = 0.4457, one slope: 1.601)
when compared to the slope of r.GLCH.SumVarnc (Figure 5F). In contrast to the eight fea-
tures of the red component in the RGB color model, only the slope of one feature of the blue
component, the sum of variance of gray-level co-occurrence matrix (B.GLCM.SumVarnc),
was found not to be significantly different from that of the blood biomarkers in all ROIs. In
ROI 1, slopes were parallel for linear regressions of CPK (p = 0.0605, one slope: 11.646) and
AST (p = 0.2154, one slope: 8.948) (Figure 5I), whereas in other ROIs, only WBC (p > 0.05)
(Figure 5J–L) was found to have a parallel slope. All the remaining slopes from the 528
feature/CPK pairs, 528 feature/AST pairs, and 528 feature/WBC pairs in the RGB color
model were significantly different (p < 0.05).

3.2.2. Selection of Features in YUV and YIQ Color Models

Only for one feature of the YIQ color model, variance of the Q component (Q.HS.Variance),
were the slopes found not to be significantly different when compared to blood biomarkers
in three out of four ROIs. In ROI 1 (p = 0.1261, one slope: 18.369), ROI 3 (p = 0.8372,
one slope: 11.103), and ROI 4 (p = 0.1321, one slope: 17.454), the combined slope for all
data was not significantly different. In ROI 2, only the slopes of CPK (p = 0.1137, one
slope: 32.639) and AST (p = 0.0614, one slope: 29.913) were found not to be significant
(Figure 6A–D). All the remaining slopes from the 528 feature/CPK pairs, 528 feature/AST
pairs, and 528 feature/WBC pairs in each of the YUV and YIQ color models were signifi-
cantly different (p < 0.05).

3.2.3. Selection of Features in HSB Color Model

The slopes of the linear regression equations were not significantly different for
two features in the HSB color model when compared to a single blood biomarker in
selected ROIs. In ROI 1, no significant differences were noted for either CPK or AST
when compared to the 99th percentiles of either the hue component (H.HS.Perc99) or the
brightness component (B.HS.Perc99) (CPK vs. H.HS.Perc99 p = 0.1450, one slope: 12.818;
AST vs. H.HS.Perc99 p = 0.5090, one slope: 10.092; (Figure 6E)) (CPK vs. B.HS.Perc99
p = 0.1053, one slope: 12.205; AST and B.HS.Perc99 p = 0.3651, one slope: 9.479; (Figure 6I)).
In ROI 2, no differences were found between the slopes of AST vs. H.HS.Perc99 (p = 0.0740,
one slope: 8.099; (Figure 6F)) or WBC vs. B.HS.Perc99 (p = 0.7142, one slope: 0.748;
(Figure 6J)). In ROI 3, no significant differences were noted when comparing the slope of
AST with either HS.Perc99s (AST vs. H.HS.Perc99 p = 0.1668, one slope: 8.606 (Figure 6G))
or B.HS.Perc99 (p = 0.1827, one slope: 8.655). The same is true when comparing CPK with
B.HS.Perc99 (p = 0.0522, one slope: 11.381 (Figure 6K)). In ROI 4, no significant differ-
ences were observed between the slope comparisons of WBC with HS.Perc99s (p > 0.05,
one slope: 8.606 (Figure 6H,L)) or AST with H.HS.Perc99 (p = 0.0793, one slope: 7.887
(Figure 6H)). All the remaining slopes from the 528 features/CPK pairs, 528 features/AST
pairs, and 528 feature/WBC pairs in the HSB color model were significantly different
(p < 0.05).
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Figure 5. Comparison of image texture features with conventional blood biomarkers in repeated
exercises. Features derived from the normalized red component and the un-normalized blue com-
ponent in the RGB color model were visualized for ROI 1 (A,E,I), ROI 2 (B,F,J), ROI 3 (C,G,K), and
ROI 4 (D,H,L). ROI—region of interest; CPK—creatine phosphokinase activity; AST—aspartate
aminotransferase activity; WBC—white blood cell count; r.GLCH.SumOfSqs—normalized sum of
squares of the asymmetric gray-level co-occurrence matrix, red component in RGB color model (A–D);
r.GLCH.SumVarnc—normalized sum of variance of the asymmetric gray-level co-occurrence ma-
trix, red component in RGB color model (E–H); B.GLCM.SumVarnc—sum of variance of gray-level
co-occurrence matrix, blue component in RGB color model (I–L). Similarity was tested using linear
regressions. A p-value of less than 0.05 was considered significant. If the difference between slopes
was not significant, a single slope measurement was calculated for all the data.

3.3. Comparison of Image Texture with IRT Measures

In contrast to the features of image texture analysis, the slopes in the linear regression
models were significantly different (p < 0.05) for all blood biomarkers when compared to
either conventional IRT measures (maximal temperature (Tmax) (Figure 7A–D) or average
temperature (Taver) (Figure 7E–H)). No signs of relationships between blood biomarkers
and conventional IRT measures over repetitions of exercise were observed in any examined
ROIs.

The mean ± SD values of conventional IRT measures are summarized in Supplemen-
tary Table S2 (available online). Tmax and Taver were significantly higher (p < 0.0001) after
exercise than before exercise at each of the six repetitions of exercise and in all examined
ROIs. However, no differences were found for either Tmax or Taver between REs. For
comparison, the mean ± SD values for selected features of image texture are summarized
in Supplementary Table S3 (available online). In ROI 1, R.HS.Variance, r.HS.Variance,
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R.GLCM.SumOfSqs, r.GLCM.SumOfSqs, and r.GLCH.SumOfSqs increased significantly
(p < 0.0001) with REs after effort and differed significantly (p < 0.05) between BS 0 and
BS 1 in all REs. R.GLCM.SumVarnc, r.GLCM.SumVarnc, and r.GLCH.SumVarnc differed
significantly (p < 0.05) between BS 0 and BS 1 in ROI 1, ROI 3, and ROI 4 but not in ROI 2.
B.GLCM.SumVarnc in ROI 1 increased significantly (p = 0.0005) with REs after effort; how-
ever, BS 0 and BS 1 only differed significantly (p < 0.05) in the first, fourth, and fifth REs.
Q.HS.Variance was highly related to the examined effort model in all four examined ROIs.
Both significantly increased (p < 0.05) with REs after effort, and significant differences
(p < 0.05) between BSs in all REs were observed without exception. H.HS.Perc99 increased
significantly (p < 0.05) with repeated REs and differed significantly (p < 0.05) between BS 0
and BS 1 in most REs in ROI 1, ROI 3, and ROI 4 but not in ROI 2. B.HS.Perc99 differed
significantly (p < 0.05) between BS 0 and BS 1 in most REs in ROI 1, ROI 3, and ROI 4.
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Figure 6. Comparison of image texture features with conventional blood biomarkers in repeated
exercises. Features derived from the un-normalized Q component in the YIQ color model, as
well as the un-normalized Hue component and un-normalized Brightness component in the HSB
color model, were visualized for ROI 1 (A,E,I), ROI 2 (B,F,J), ROI 3 (C,G,K), and ROI 4 (D,H,L).
ROI—region of interest; CPK—creatine phosphokinase activity; AST—aspartate aminotransferase
activity; WBC—white blood cell count; Q.HS.Variance—variance of histogram statistics, Q component
in YIQ color model (A–D); H.HS.Perc99—99th percentiles of histogram statistics, hue component in
HSB color model (E–H); B.HS.Perc99—99th percentiles of histogram statistics, brightness component
in HSB color model (I–L). Similarity was tested using linear regressions. A p-value of less than 0.05
was considered significant. If the difference between slopes was not significant, a single slope
measurement was calculated for all the data.
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Figure 7. Comparison of body surface temperatures with conventional blood biomarkers in repeated
exercises. Conventional IRT measures were visualized for ROI 1 (A,E), ROI 2 (B,F), ROI 3 (C,G),
and ROI 4 (D,H). ROI—region of interest; CPK—creatine phosphokinase activity; AST—aspartate
aminotransferase activity; WBC—white blood cell count; Tmax—maximal temperature (A–D);
Taver—average temperature (E–H). Similarity was tested using linear regressions. A p-value of
less than 0.05 was considered significant.

In summary, twelve features of image texture had parallel slopes to blood mark-
ers in ROI 1, and three variants of SumVarnc (R.GLCM.SumVarnc, r.GLCM.SumVarnc,
r.GLCH.SumVarnc) were found to have parallel slopes to blood markers in ROIs 3 and 4.
Q.HS.Variance was the only feature with parallel slopes to blood markers in all ROIs; all
should be considered for further research (Figure 8).
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colors and letters for different color components. R, r—red component in the RGB color model; B—
blue component in the RGB color model; Q—Q component in the YIQ color model; H—hue compo-
nent in the HSB color model. Capital letters (R, B, Q, H) annotate the un-normalized channels, 
whereas a lowercase letter (r) annotates the normalized channel. 
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for the monitoring of workload in horses [15,19,26–28,39,55,56]. However, many factors 
affecting the results, reliability, and repeatability of the IRT examination make this tech-
nique very speculative [24,25,57]. Therefore, the current study focused on the introduction 
of advanced image texture analysis for the description of exercise effort [58]. Further work 
on this topic should examine whether IRT allows for monitoring of increasing levels of 
workload. Knowing the limitations that can be encountered during conventional IRT, fur-
ther image analyses are necessary [19,24–28,57]. Conversion of color images into the three 

Figure 8. Features of histogram statistics (A,D,G,J), symmetric gray-level co-occurrence matrix (B,E,H,K),
and asymmetric gray-level co-occurrence matrix (C,F,I,L) for examined color models (RGB, YUV,
YIQ, HSB) found to have parallel slopes to selected blood markers (WBC, CPK, ALT) in (A–C) ROI 1,
(D–F) ROI 2, (G–I) ROI 3, and (J–L) ROI 4. Parallel slopes are marked with different colors and letters
for different color components. R, r—red component in the RGB color model; B—blue component
in the RGB color model; Q—Q component in the YIQ color model; H—hue component in the HSB
color model. Capital letters (R, B, Q, H) annotate the un-normalized channels, whereas a lowercase
letter (r) annotates the normalized channel.

4. Discussion

Data of the current and related studies show that the IRT has the potential to allow
for the monitoring of workload in horses [15,19,26–28,39,55,56]. However, many factors
affecting the results, reliability, and repeatability of the IRT examination make this tech-
nique very speculative [24,25,57]. Therefore, the current study focused on the introduction
of advanced image texture analysis for the description of exercise effort [58]. Further work
on this topic should examine whether IRT allows for monitoring of increasing levels of
workload. Knowing the limitations that can be encountered during conventional IRT,
further image analyses are necessary [19,24–28,57]. Conversion of color images into the
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three basic RGB components and the more advanced analytic approach allow for better
use of IRT images. Advanced IRT analyses with the simultaneous evaluation of blood
biomarkers in the multiple-exercises model would allow for differentiation of the effort
and load of a horse during exercise [4,6,7,15,27,39,56–58]. The use of increasing exercise
intensity rather than the same exercise test within six following days would be an unjus-
tified omission of the necessary stage of implementation work. This would lead to an
excessive number of variables that would be difficult to interpret properly. Some blood
variables and texture IRT features change over time, especially after exercise tests. This
phenomenon could be useful in detecting the need to continue exercise up to a certain level
of effort during training to provide an expected conditioning response [2,5,12]. Among
the examined blood biomarkers, WBC, CPK, and AST increased over multiple exercise
trials. The increase in WBC may be caused by higher cortisol concentration, as the redis-
tribution of WBC from the marginal pool is mostly regulated by cortisol release [59,60].
The exercise-intensity-dependent cortisol increase usually reaches a peak 15–30 min after
the beginning of the exercise [59,60] and regulates WCB migration, crucial in homeostatic
conditions [61,62]. Widely used blood biomarkers of muscle damage, CPK and AST are
cumulative; thus, their steady increase across six days of multiple exercise trials seems
informative [63,64]. After effort, a horse’s body needs at least 24 h to clear the bloodstream
of CPK and AST [4,16], excreting CPK faster than AST [4]. CPK and AST levels after effort
depend on the effort intensity [59–65], conditioning and type of usage [61,62,65], as well
muscle mass and composition [61,62]. This feature indicates their possible use in further
research on increased exercise intensity. The parallelism of WBC, CPK, and ALT slopes
and variance; 99th percentiles; sum of squares; and summation variance with consecutive
components in RGB, YIQ, and HSB color models was shown in the research. This shows
the possibility of predicting an increase in blood biomarkers based on the texture features
of noninvasive IRT imaging. Basic thermal camera software for smartphones and more
advanced software for medical applications are developing rapidly [66–69]. We believe
our advances in the IRT equine load-monitoring approach could be easily and accurately
transferred into typical daily riding practice as a tool for horse owners, competitors, and
trainers. Such an approach can be used to monitor the exertion level of a horse to achieve
the required training response without tipping over into fatigue levels associated with
injury. However, the introduction of advanced digital IRT image processing into the moni-
toring of equine welfare during conditioning and competition requires further research,
including the assessment of equine emotional state [70–76] and cortisol release [72,75,76].

A color model is a model that uses mathematical functions to convert light-color
coordinates into three color components in three-dimensional space [77,78]. In the current
research, RGB color cube, YUV and YIQ color spaces, and HSB color coin (Figure 1) were the
models considered. As the color model is the digital representation of possibly contained
colors [77], a different color model may convey differing features of image texture. In
the current study, the most potentially informative features were observed in the RGB
color model. This finding is consistent with the basic IRT rainbow palette, where high
temperature is red-annotated and low temperature is blue-annotated [19,79]. After physical
effort, whether single or repeated, body surface temperature increases [15,26,27,39], and
as a result, the count of red-annotated pixels in IRT images also increases. Moreover, in
the RGB color model, the acquired image does not need any further transformation to
display features of image texture. Therefore, the RGB color model is considered the default
color model for most image applications [27–34,36,39,42], and researchers do not typically
investigate other available color models. Our findings support the selection of the RGB
color model as a default color model for the analysis of image texture of equine IRT images.
However, feature extraction in the YIQ and potentially the HSB color models should also be
considered. The variance of the Q component in the YIQ color model was the only feature
related to all blood biomarkers in three out of four ROIs. As human vision can recognize
two forms of images, RGB images and grayscale images, the YUV and YIQ color models
were developed to provide compatibility between these two forms [77]. The YIQ color
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model differs from YUV in that it emphasizes sensitivity to changes in luminance rather
than hue or saturation changes [80].

In the YIQ color model, the Y component represents brightness, the I component cor-
responds to the orange-cyan axis, and the Q component corresponds to the magenta-green
axis [77,80]. This is consistent with the basic IRT rainbow palette, where the medium-high
temperature is magenta-annotated and the medium-low temperature is green-annotated [19,79].
When body surface temperature increases after effort [15,26,27,39], the count of magenta-
annotated pixels in the IRT image also increases. We suspect that the increase in medium-
high temperature on the IRT image may be successfully quantified in the YIQ color model
using digital image analysis of IRT images. However, further research is required. There-
fore, not including the transformation of IRT images to the YIQ color model in further
equine applications may result in the loss or inadvertent omission of important image
texture data. Our findings suggest that the YIQ color model is an additional informative
color model that should be considered in subsequent digital IRT image processing in
equine applications. The HSB color model is based on the human visual system [80]. In
this investigation, it exhibited a poor repeatability between ROIs, correlation with few
blood biomarkers, and differentiation between BSs and REs. In the HSB color model, the
brightness component is separated from the hue component and saturation component [78],
whereas in the YIQ color model, the hue and saturation are the latter components [80]. It
seems that representation of the same signal for both color and grayscale images using the
brightness component in YIQ color model [77] is more suitable to digital IRT image pro-
cessing than the separation of the brightness component in the HSB color model [78]. The
selection of the YIQ and HSB color models, as additive to the RGB model, can be considered
useful in effort-dependent assessment, similar to pregnancy detection [58]. Therefore, the
RGB, YIQ, and HSB color models should be carefully considered for subsequent digital IRT
image processing in equine applications.

Only two of the applied computational gray-level matrices (both symmetric GLCM
and asymmetric GLCH variants) provided features of an image texture with slopes parallel
with conventional reference measures of exercise effort. Our findings stand partially in
agreement with and partially in contradiction to recent research conducted on the single-
exercise effort model [39,56]. In recent research, not only GLCM but also GRLM features
demonstrated effort-dependent differences [39,56]. In this study, no evidence of similarity
was noted for blood biomarkers and GRLM features. Interestingly, differing features
of GLCM were informative in the single-effort [39,56] compared to the repeated-effort
research model. In the single-effort model, features of contrast (Contras, Correlat [39]) and
order (Entropy, DifEntrp, DifVarnc, InvDefMom [39,56], SumEntrp [56]) were found to
be informative, whereas in the current study, features of variance (SumOfSqs, SumVarnc)
were informative. Moreover, features of variance (Variance) in histogram statistics were
in line with blood biomarker measures. Therefore, it can be carefully assumed that the
variability of IRT image texture may be a promising and novel tool for the detection of
exercise effort. However, extensive investigations are required to fully understand its
potential applications.

All eight features of the variability of the red component in the RGB color model
were highly repeatable between image-processing protocols. The results of Variance,
SumOfSqs, and SumVarnc were repeatable, whether the images were normalized (r) or not
(R). Likewise, the results of normalized SumOfSqs and SumVarnc were repeatable whether
the symmetric (GLCM) or asymmetric (GLCH) matrices were applied. Additionally, un-
normalized SumVarnc of GLCM was related to blood biomarkers in the examined effort
markers, as was also observed in the blue component of the RGB color model. These
highly repeatable findings justify the selection of the RGB color model as the default color
model for further equine IRT applications, which is in agreement with recently reported
results [56,57]. In addition, histogram statistics and gray-level co-occurrence matrix are
suggested approaches for analysis of image texture data.
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The thoracolumbar region was selected as the examined thermal window based on
recent research, as equine neck and trunk regions were recognized as the most suitable
for the determination of thermal effects of under-saddle work [15,81]. IRT limitations are
related to the effect of ambient temperature [24,25,82,83], the warming effect of sunlight
exposure [19,57,82], and the cooling effect of airflow during movement [27,84]. The under-
saddle region was chosen as the least susceptible to the influence of external conditions
in the current and recent research [39,56]. Texture features of IRT images from ROI 1,
representing the withers area of the thoracolumbar region, provided the most consistent
correlation with blood biomarkers. ROI 1 is a small area symmetrically covering the left and
right cranial part of the back muscles and the first vertebrae of the thoracic spine [85]. ROI 1
is suitable for GLCM and GLRLM best image-segmentation conditions. Those conditions
encompass annotation of a small and functionally differential area to detect small lesions in
low-resolution medical images [35]. Likewise, three variants of SumVarnc were related to
blood biomarker levels in ROI 3 and ROI 4, representing a large area of back muscles on
the left and right. The previously discussed repeatability of SumVarnc and the consistent
measurements obtained in the large areas covering the back muscles indicates the potential
applicability of this feature for the evaluation of IRT images. Since approximately 70%–80%
of the energy produced during exercise by working muscles is released as heat [84], the
size of the muscular unit underlying the imaged area significantly affects the measurement
of body surface temperature [15,19,26,27]. Recent research has found that the highest
temperature values after single-effort exercise were observed in the areas covering three
large thoracolumbar muscles (m. latissimus dorsi, m. obliquus externus abdominis, and m.
pectoralis transversus) [15]. However, in this study the complete segmentation of the horse’s
body surface in terms of muscle units was not taken into account, similarly to other studies.
More complete segmentation was proposed in the interspecific comparative studies of
equids [38]; however, the effect of exercise was not considered. The presence of structures
not producing heat, such as bones lying directly under the imaged area in IRT, oppositely
affects the measurement results [55,58,86]. Therefore, it is not surprising that no significant
results were observed in ROI 2, which represents the thoracic spine area with the least
influence of back muscles [58]. Only Q.HS.Variance was related to blood markers in the
examined effort model in four ROIs, regardless of the mass of muscles lying under the
examined areas.

5. Conclusions

Based on the current preliminary results, it can be concluded that the combination
of two analytical approaches to image texture (histogram statistics and gray-level co-
occurrence matrix) and two color models of thermal images (RGB and YIQ) should be
strongly considered as the most appropriate digital image-processing methods applicable
in equine IRT. Furthermore, the experimental results suggest that the features of image
texture (variance, sum of square, and sum of variance) found to be informative of the effect
of exercise in horses must be investigated extensively in further equine applications. We
plan to extend the present preliminary experiments by using other initial experimental
designs, i.e., other muscle areas, effort intensity, types of work (jumping, dressage, eventing,
endurance, and racing), etc. Current research should be treated as preliminary because
further experiments should be conducted involving equine athletes. This would allow for
more specific conclusions to be drawn regarding exercise effectiveness and avoidance of
excessive fatigue. The long-term objective is to determine the most appropriate combina-
tions of color models and the best approach to digital image processing for the effective
detection of exercise effect in equine athletes at peak competition levels.

Supplementary Materials: The following are available online at https://www.mdpi.com/article
/10.3390/ani12040444/s1, Table S1: Blood biomarkers level (mean ± SD) before (BS 0) and after
(BS 1) exercise in the model of six repetitions of exercise (REs). Table S2: Body surface temperature
(mean ± SD) in four regions of interest (ROIs 1-4) before (BS 0) and after (BS 1) exercise in the model of
six repetitions of exercise (REs). Table S3: Selected features of image texture analysis (mean ± SD) in
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four regions of interest (ROIs 1-4) before (BS 0) and after (BS 1) exercise in the model of six repetitions
of exercise (REs).
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Abbreviations
The following abbreviations are used in this manuscript:

ALT Alanine aminotransferase
AM Autoregressive model
AngScMom Angular second moment/energy
AST Aspartate aminotransferase
B Blue component in the RGB color model
B Brightness component in the HSB color model
BS Blood sampling
Correlat Correlation
CPK Creatine phosphokinase
DifEntrp Differential entropy
DifVarnc Differential variance
e Emissivity
EMG Electromyography
G Green component in the RGB color model
GLCH Asymmetric gray-level co-occurrence matrix
GLCM Symmetric gray-level co-occurrence matrix
GLevNonUn Gray-level non-uniformity
GLM Gray-level matrix
GM Gradient map
GradArea Absolute gradient area
GradMean Absolute gradient mean
GradNonZeros Percentage of pixels with nonzero gradient
GradSkewness Absolute gradient skewness
GradVariance Absolute gradient variance
GRLM Gray-level run-length matrix
GT Gabor transform
H Hue component in the HSB color model
HCT Hematocrit
HGB Hemoglobin concentration
HistArea Histogram area
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HistDomn Histogram dominants
HistKurtosis Histogram kurtosis
HistMaxm Histogram maximum of moments
HistMean Histogram mean
HistPerc Histogram percentile
HistSkewness Histogram skewness coefficient
HistVariance Histogram variance
HOG Histogram of oriented gradients
HR Heart rate
HRV Heart rate variability
HS Histogram statistics
HSB Hue/Saturation/Brightness color model
I I component in the YIQ color model
II Infrared thermography imaging
InvDefMom Inverse different moment/homogeneity
IRT Infrared termography
LAC Lactate concentration
LngREmph Moment of long string emphasis
MCH Mean corpuscular hemoglobin
MCHC Mean corpuscular hemoglobin concentration
MCV Mean corpuscular volume
MGLevNonUn Gray-level non-uniformity moment
MRLNonUni Run-length nonuniformity moment
Q Q component in the YIQ color model
R Red component in the RGB color model
RBC Red blood cells count
RE Repetition of exercise
RGB Red/Green/Blue color model
RH Relative humidity
RLNonUni Run-length nonuniformity
ROI Region of interests
S Saturation component in the HSB color model
SET Standardized exercise test
ShrtREmp Reverse moment of short string emphasis
SumAverg Summation mean
SumEntrp Summation entropy
SumOfSqs Sum of squares
SumVarnc Summation variance
Taver Average temperature
Tmax Maximal temperature
TSP Total serum protein
U U component in the YUV color model
WBC White blood cell count
v Velocity
V V component in the YUV color model
Y Brightness in the YUV and YIQ color models
YIQ Brightness/I component/Q component color model
YUV Brightness/U component/V component color model
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15. Witkowska-Piłaszewicz, O.; Maśko, M.; Domino, M.; Winnicka, A. Infrared thermography correlates with lactate concentration in
blood during race training in horses. Animals 2020, 10, 2072. [CrossRef] [PubMed]

16. Wan, J.-J.; Qin, Z.; Wang, P.-Y.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017,
49, e384. [CrossRef]

17. Lenoir, A.; Trachsel, D.S.; Younes, M.; Barrey, E.; Robert, C. Agreement between electrocardiogram and heart rate meter is low for
the measurement of heart rate variability during exercise in young endurance horses. Front. Vet. Sci. 2017, 4, 170. [CrossRef]

18. Williams, J.M. Electromyography in the horse: A useful technology? J. Equine Vet. Sci. 2018, 60, 43–58. [CrossRef]
19. Soroko, M.; Howell, K. Infrared thermography: Current applications in equine medicine. J. Equine Vet. Sci. 2018, 60, 90–96.

[CrossRef]
20. Colborne, G.; Birtles, D.; Cacchione, I. Electromyographic and kinematic indicators of fatigue in horses: A pilot study. Equine Vet.

J. 2001, 33, 89–93. [CrossRef]
21. Mohr, E.; Witte, E.; Voss, B. Heart rate variability as stress indicator. Arch. Tierz. 2000, 43, 171–176.
22. Mott, R.O.; Hawthorne, S.J.; McBride, S.D. Blink rate as a measure of stress and attention in the domestic horse (equus caballus).

Sci. Rep. 2020, 10, 21409. [CrossRef] [PubMed]
23. Takahashi, T.; Ohmura, H.; Mukai, K.; Matsui, A.; Aida, H. Fatigue in the superficial and deep digital flexor muscles during

exercise in t horoughbred horses. Equine Vet. J. 2014, 46, 30. [CrossRef]
24. Satchell, G.; McGrath, M.; Dixon, J.; Pfau, T.; Weller, R. Effects of time of day, ambient temperature and relative humidity on the

repeatability of infrared thermographic imaging in horses. Equine Vet. J. 2015, 47, 13–14. [CrossRef]
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47. Szczypiński, P.M.; Klepaczko, A. MaZda—A framework for biomedical image texture analysis and data exploration. In Biomedical
Texture Analysis: Fundamentals, Tools and Challenges, 1st ed.; Depeursinge, A., Al-Kadi, O.S., Ross Mitchell, J., Eds.; Elsevier:
Amsterdam, The Netherlands, 2017; pp. 315–347.
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