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Intracerebral hemorrhage (ICH) has one of the worst prognoses among patients with stroke.
Surgical measures have been adopted to relieve the mass effect of the hematoma, and
developing targeted therapy against secondary brain injury (SBI) after ICH is equally
essential. Numerous preclinical and clinical studies have demonstrated that
perihematomal edema (PHE) is a quantifiable marker of SBI after ICH and is associated
with a poor prognosis. Thus, PHE has been considered a promising therapeutic target for
ICH. However, the findings derived from existing studies on PHE are disparate and unclear.
Therefore, it is necessary to classify, compare, and summarize the existing studies on PHE.
In this review, we describe the growth characteristics and relevant underlying mechanism of
PHE, analyze the contributions of different risk factors to PHE, present the potential impact
of PHE on patient outcomes, and discuss the currently available therapeutic strategies.
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INTRODUCTION

The prognosis of patients with hemorrhagic stroke is extremely poor, resulting in long hospital stays
and high costs (1). Each year, approximately 2.8 million people die of intracerebral hemorrhage
(ICH) worldwide (2), and only 25% of ICH survivors are able to live independently 6 months after
ICH onset (3). The functional neurological outcome of ICH is associated with mechanical
destruction of nerve fibers and ICH-induced secondary brain injury (SBI).
Abbreviations: ApoE, apolipoprotein E; AQPs, aquaporin; ATACH, antihypertensive treatment of acute cerebral hemorrhage;
ATP, adenosine triphosphate; BBB, blood–brain barrier; CT, computed tomography; CTA, CT angiography; DC,
decompressive craniectomy; EED, edema extension distance; FPR1, formyl peptide receptor 1; ICH ADAPT, ICH Acutely
Decreasing Arterial Pressure Trial; ICH, intracerebral hemorrhage; INTERACT, Intensive Blood Pressure Reduction in Acute
Cerebral Haemorrhage Trial; MISTIE, minimally invasive surgery and rt-PA in ICH evacuation; MRI, magnetic resonance
imaging; MMP, matrix metalloproteinases; NKCC1, Na–K–Cl cotransporter 1; NF-kB, nuclear factor kB; PHE,
perihematomal edema; PT, partial thromboplastin; PPAR-g, peroxisome proliferator activated receptor gamma; RBC, red
blood cell; STICH, Surgical Trial in Intracerebral Hemorrhage; SUR, sulfonylurea receptor; SUR1–TRPM4, sulfonylurea
receptor 1–transient receptor potential cation channel subfamily Mmember 4; TPA, tissue-type plasminogen activator; VEGF,
vascular endothelial growth factor.
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Perihematomal edema (PHE) manifests when the water
content increases in the brain tissue adjacent to the
intraparenchymal hematoma. The development of PHE has
been considered a quantifiable marker of SBI and is associated
with thrombin activation, an inflammatory immune response,
blood–brain barrier (BBB) dysfunction, and hemoglobin
cytotoxicity after ICH (4–6). PHE also induces a significant
mass effect, and rapid growth of PHE may result in severe
intracranial hypertension. The International Surgical Trial in
Intracerebral Hemorrhage (STICH) I and II showed no clinical
benefit of early surgical evacuation of the hematoma in patients
with ICH (7, 8); therefore, whether targeted treatment for PHE
can provide favorable effects has become of great interest to
researchers. Evidence obtained from high-quality preclinical
research is required to investigate this issue. A comprehensive
understanding of the pathogenesis and natural course of PHE is
urgently needed to discover novel therapeutic targets for ICH-
induced SBI.

Most research on PHE in patients with ICH has been
retrospective. However, it is challenging to obtain good
congruity in the timing of head computed tomography (CT)
examinations in retrospective studies (9, 10). Previous studies
adopted different severity indices and measurements for PHE
and used CT scanning more often than head magnetic resonance
imaging (MRI) (11, 12). These factors have led to discrepant
findings in the exploration of the natural course and prognosis of
PHE. In the present review, the PHE literature is assessed to
describe the development characteristics of, pathophysiologic
mechanisms of, and risk factors for PHE. This review also
discusses the impacts of PHE on the clinical outcomes of
patients with ICH and the currently available therapeutics for
PHE in an effort to provide deeper insights into ICH-induced SBI
and provide relevant data for innovative trials.
Frontiers in Immunology | www.frontiersin.org 2
NATURAL COURSE OF PHE

An experimental study of ICH showed that PHE was initiated in the
acute phase, peaked at 3 to 4 days, and persisted for 7 days after
onset (13). These findings are consistent with the neuropathological
changes in experimental animals reported by Enzmann et al. (13),
who found significant rupture of perihematomal erythrocytes and a
peak perihematomal neuroinflammatory response 4 days after
inducement of ICH. Additionally, Sun et al. (14) found that the
aquaporin-4 (AQP-4) involved in brain water accumulation peaked
at 48 h in a rat model of autologous blood injection.

Because PHE occurs predominantly in white matter, and
because a significant discrepancy in the development of white
matter exists between humans and animals (especially rodents),
PHE growth is expected to be even more prominent in human
beings (Figure 1) (15). In one human imaging study, all patients
with ICH developed PHE within 6 h of symptom onset (12). The
ultra-early stage of ICH is commonly regarded as the rapid growth
phase of PHE (Figure 2). Wu et al. (10) reported that PHE grows
rapidly within 24 h after onset and that the edema extension
distance (EED) at 24 h accounts for 60% of the peak EED. Other
researchers have reported that the time window from symptom
onset to 48 or 72 h after symptom onset is the phase of most rapid
PHE growth (16, 17). These discrepant findings are partly related to
the heterogeneous timing of follow-up CT scans in retrospective
studies of patients with PHE as well as the various metrics reflecting
the severity of PHE that were adopted among different studies.

The growth rate of PHE gradually decreases after the rapid growth
phase (Figure 2). Wu et al. (10) reported that the line of best fit
between the growth rate of the EED (y, cm) and the symptom onset
time (x, days) can be calculated as follows: y = 0.162x−0.927 (R2 =
0.820). The PHE volume peaks at around 1 to 2 weeks after onset of
ICH (17–19). However, growth of PHE in a small number of patients
FIGURE 1 | A 47-year-old male who manifested weakness of the right limb and gradually developed mild disturbance of consciousness without clear inducement.
There exists a past medical history with hypertension, which the admission blood pressure is 166/106 mmHg and the Glasgow Coma Scale score was 12. The head
NCCT revealed left basal ganglia hemorrhage. The patient received the standardized medical management, and the discharge Glasgow Outcome Scale score is 3.
(A–C) The image features of PHE (in red) and ICH against the onset time.
October 2021 | Volume 12 | Article 740632
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persists up to 3 weeks after onset, which might be associated with a
high hematocrit at admission. In contrast, one study showed that an
early peak in PHE growth may be associated with rupture of the
hematoma into the ventricle (16). This may be clinically relevant
because a high hematocrit indicates higher red blood cell (RBC)
degradation, which has been identified as an essential factor for
promotion of PHE. The abovementioned study showed that in
patients with rupture of the hematoma into the ventricle, the
deposition of lysed erythrocytes in the brain parenchyma was
alleviated by the dilutional effect of the cerebrospinal fluid.
Unexpectedly, the initial hematoma volume did not appear to affect
the peak time of PHE (16). The peak time points may also differ
according to the location of ICH. Sprügel et al. (20) reported that
lobar ICH was associated with earlier peak PHE onset and a greater
initial PHE volume than deep ICH. This likely occurred because of
the irregular shape of the lobar ICH within the relatively loose brain
tissue, promoting a higher PHE volume per unit of the hematoma
surface area. Therefore, it is clinically important to evaluate the PHE
growth patterns when differentiating the common causes of lobar
ICH (e.g., cerebral amyloid angiopathy) and deep ICH (e.g.,
hypertensive ICH). Peng et al. (21) showed that in about 30% of
patients, the PHE volume at 2 to 3 weeks after ICH was 3 ml greater
than that within 1 week after ICH, and this increase in volume was an
independent risk factor for a poor prognosis. However, a clear
definition of delayed PHE formation is still lacking.

After peaking, PHE enters a phase in which it slightly decreases
in volume (Figure 2). One study showed that in patients who did
not undergo curative surgery, the PHE volume at 4 weeks was
similar to that at 1 week after onset (22). However, Fung et al. (23)
found that in patients with a large initial PHE volume, about 60
days was required for the PHE to return to the baseline level
regardless of whether the patient had undergone decompression.
For patients with ICH who undergo hematoma removal
procedures, the natural postoperative course of PHE differs from
that before surgery. Horowitz et al. (24) defined postoperative
PHE as “pericavity edema” and investigated its time course. They
found that pericavity edema grew mainly within the first 2 days
Frontiers in Immunology | www.frontiersin.org 3
postoperatively, after which the growth maintained a steady state.
A higher percentage of hematoma removal resulted in slower
growth of pericavity edema (24).
MECHANISMS OF PHE

Cytotoxic Edema vs. Vasogenic Edema
Although the complex mechanism of PHE growth is not yet
completely clear, preclinical evidence suggests that different
pathophysiologic mechanisms dominate the development of
PHE at different stages of ICH (Figure 3) (4–6, 25). The
essential phenomenon underlying PHE formation is an
imbalance of the perivascular fluid interchange based on
Starling’s principle (26). Specifically, the formation of an
osmotic gradient and the elevation of capillary hydrostatic
forces drive the flow of fluids that result in the development of
PHE. Starling’s classic formula is JV = KH(PC − PI) − KO(pC − pI),
where JV is the net transendothelial fluid transfer in brain
capillaries; KO and KH are the filtration coefficients of oncotic
conductivity and hydraulic conductivity, respectively; pC − pI is
the difference in oncotic pressure between the capillaries and
interstitial tissue; and PC – PI is the difference in hydraulic
pressure between the capillaries and interstitial tissue.

Both cytotoxic edema and vasogenic edema play particularly
significant roles in PHE formation. Cytotoxic edema dominates the
initial stage of PHE and is a premorbid precursor to extracellular
ionic edema resulting from the dysfunction or abnormal activation
of ion pumps in endothelial cells and astrocytes. Perihematomal
glutamate deposition may contribute to cytotoxic edema (27). The
extracellular concentration of glutamate in patients with stroke or
traumatic brain injury can be 20 times higher than that in healthy
individuals (28, 29). The opening of ion channels increases the
movement of water from the extracellular to intracellular space,
causing cell swelling and even cell death (30, 31). The essential
mechanism of cytotoxic edema is the variation in the brain water
distribution, which does not induce true tissue space swelling;
FIGURE 2 | Timeline of PHE volumes after intracerebral hemorrhage based on real-world clinical research of the natural history of PHE. Triphasic patterns of growth
of PHE (fast-growing phase: 1–3 days; slow-growing phase and peak period: 1–3 weeks; resorption phase: >3 weeks) were observed.
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however, the transendothelial osmotic gradients derived from
cytotoxic edema provide the driving force for ionic edema.
Astrocyte swelling is a typical manifestation of cytotoxic edema.
When cytotoxic edema occurs, water gains access to the central
nervous system through the AQP-4 expressed in astrocytic foot
processes (32). Upregulated AQP-4 expression has been identified
in patients with ischemic stroke and facilitates ionic edema
formation (33). However, how AQP-4 affects ion transcellular
transport remains unclear.

Vasogenic edema dominates the second stage of PHE
formation, which is characterized by BBB dysfunction caused
by a series of neuroinflammatory responses associated with the
mechanical destruction of ICH, thrombin activation, and toxic
effects of erythrocyte lysis (4–6). Vasogenic edema is a
consequence of multifactorial actions. In the immune response
associated with neuroinflammation, the disruption of tight
junctions between vascular endothelial cells increases vascular
permeability via inflammatory cell chemotaxis, cytokine and
chemokine release, and upregulation of vascular endothelial
growth factor (VEGF) and matrix metalloproteinase-9 (MMP-
9) (4, 5, 26). The endothelial cell swelling and cell membrane
breakdown caused by cytotoxic edema may also increase the
permeability of the BBB (34). After BBB injury, both the filtration
coefficients of oncotic conductivity and the hydraulic
conductivity rise (26), the water and macromolecular
substances can more easily pass through the cell membrane
and enter the interstitial tissue of the brain, causing vasogenic
Frontiers in Immunology | www.frontiersin.org 4
edema. The intracranial pressure, blood pressure, and
concentration of intravascular osmotically active molecules
influence the relevant hydraulic pressure and oncotic pressure,
thereby affecting the formation of PHE (26). BBB opening is
associated with rapid activation of the complement cascade.
Complement fragments (e.g., C3a, C5a, and others) amplify
the inflammatory response in a positive feedback loop to
disrupt the BBB (35), producing anaphylatoxins and
membrane attack complexes that lyse erythrocytes and thus
promote the formation of iron-induced PHE (36).

First Stage of PHE Formation
In the first few hours after ICH onset, during which the
coagulation cascade is activated, the blood clot retraction, cell
death, and brain atrophy induced by destruction of the
hematoma produces a relatively large perihematomal space,
leading to a reduction in the perihematomal hydrostatic
pressure (37). The serum protein that is extruded secondary to
the blood clot retraction leads to an increase in the interstitial
oncotic pressure (38). Together, these changes induce the initial
transport of water into the brain tissue, leading to edema. An
important point to note is that the ionic edema driven by the
cytotoxic edema dominates the first stage of PHE. The
development of cytotoxic edema reportedly involves aberrant
regulation of ion transport channels expressed on vascular
endothelial cells (e.g., Na-K-Cl cotransporter 1 (NKCC1),
which plays a role in the brain edema associated with ischemic
FIGURE 3 | Mechanism of PHE formation. Po indicated the difference in oncotic pressure between the capillaries and interstitial tissue. Ph indicated the difference in
hydraulic pressure between the capillaries and interstitial tissue. NKCC1, Na–K–Cl cotransporter 1; SUR1–TRPM4, sulfonylurea receptor 1–transient receptor
potential cation channel subfamily M member 4; ROS, reactive oxygen species; TNF-a, tumor necrosis factor-a; IL-1b, interleukin 1b; MMPs, matrix
metalloproteinases; BBB, blood–brain barrier; AQPs, aquaporins.
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stroke) and the sulfonylurea receptor 1–transient receptor
potential cation channel subfamily M member 4 (SUR1-
TRPM4) (39).

In the early stage of ICH, after transition from the closed to
open state of the NKCC1 secondary to perihematomal glutamate
deposition (28), Na+ is transported across the membrane to the
interstitial tissue; this transport is driven by the transendothelial
forces produced by the cytotoxic edema. Ionic edema forms as
the Cl− and water follow the movement of Na+ to maintain
electrical and osmotic neutrality (40). When adenosine
triphosphate depletion occurs, the NKCC1 closes while the
SUR1-TRPM4 opens, allowing the Na+ and water to be
transferred to the interstitial tissue along their gradient,
resulting in edema (39). Nevertheless, the associated molecular
pathways of ionic edema remain poorly understood, and the
involvement of cytotoxic edema in PHE is not well defined.

Second Stage of PHE Formation
Within 2 days after ICH onset, the vasogenic edema induced by
the inflammatory immune response dominates the second stage
of PHE (4–6). Numerous molecules are involved in this response,
and four main pathways have been recognized. First, the
thrombin and mechanical destruction of the hematoma
activate Toll-like receptor 4 and the nuclear factor kB (NF-kB)
pathway. NF-kB activates and regulates the transcription of
cytokines, chemokines, and MMPs, leading to BBB dysfunction
(41). The expression of Toll-like receptor 4 begins at 6 h after
ICH onset and persists for almost 7 days, also triggering
microglial activation (42, 43). Second, the activated thrombin
induces the expression of chemokines and adhesion molecules,
promoting the recruitment and infiltration of inflammatory cells
(e.g., neutrophils, macrophages, and lymphocytes) to
perihematomal sites (44). These recruited inflammatory cells
release cytokines, reactive oxygen species, tumor necrosis factor-
a, and MMPs, leading to BBB injury (45). Chemotaxis of
neutrophils and polymorphonuclear leukocytes begins shortly
after ICH onset and peaks at 3 days (46). Third, thrombin can
further activate astrocytes and microglia via proteinase-activated
receptor 4. The hyperactivation of microglia may exaggerate
neuroinflammation through the secretion of reactive oxygen
species, tumor necrosis factor-a, and cytokines (4, 5). Because
microglial activation peaks at 3 days and significantly decreases 1
week after ICH (47), the SBI induced by these activated microglia
is still maintained despite the fact that the leukocyte infiltration
gradually resolves after 2 to 3 days (4). Notably, M2 microglia
promote endogenous clearance of the hematoma following ICH
(48). However, in the acute and subacute phases, the M2-
dominant microglia quickly switch to M1-phenotype microglia
(49); these M1 microglia excessively release destructive
proinflammatory mediators and neurotoxic substances, leading
to BBB dysfunction, PHE, and neurologic dysfunction (50).
Thus, conversion of M1 to M2 microglia may be a potential
treatment modality for ICH-induced SBI. Fourth, the activated
complement cascade increases the production of anaphylatoxins
and chemokines, resulting in increased permeability of the
BBB (35).
Frontiers in Immunology | www.frontiersin.org 5
Third Stage of PHE Formation
Although erythrocyte lysis is initiated within 24 h after ICH (4),
erythrocyte lysis with resultant hemoglobin and iron-related
toxicity still dominates the PHE process 3 days after ICH
onset. Specifically, the erythrocytes are dissolved to
hemoglobin by complement-produced membrane attack
complexes, and the hemoglobin is then oxidized into
methemoglobin, which rapidly liberates its heme. The heme is
then degraded into free iron via heme oxygenase enzymes (36).
An experimental rat model showed that iron deposition occurs
within 24 h after ICH, peaks after 7 days, and is maintained at a
high concentration for at least 2 weeks (51). The free iron also
stimulates the production of reactive oxygen species and MMP-
9, promoting an inflammatory reaction and BBB dysfunction
(45). The deposition of hemosiderin upregulates AQP-4, which
exacerbates the brain edema and peaks at 3 to 7 days (5, 52). The
hemoglobin and heme can also directly activate Toll-like
receptor 4, microglia, and the NF-kB pathway to further
promote the inflammatory reaction (53, 54). Consequently, the
third stage of PHE is also arguably a delayed stage of vasogenic
edema induced by erythrocyte lysis.
MEASUREMENT OF PHE

During head MRI, PHE appears as a hyperintense lesion with a
clear boundary on T2-weighted imaging and fluid-attenuated
inversion recovery. Although these two imaging techniques are
the best choices for measuring the volume of PHE, the use of
MRI may not be possible in emergency settings. Additionally,
measuring PHE by CT examination is challenging because the
PHE may be difficult to distinguish from periventricular
leukoaraiosis over time. Manual segmentation of PHE is
undoubtedly reliable but is not practical because it is a highly
laborious process. Moreover, the consistency of manual
segmentation may be lower than that of automatic
segmentation. A CT value-based semiautomatic segmentation
tool has been applied in numerous studies of PHE (10, 21, 55).
The use of this segmentation tool requires researchers to
manually delineate the region of interest, after which all voxels
within the threshold range of edema (5–33 HU) are accumulated
to obtain the PHE volume. Volbers et al. (56) verified that the
performance of semiautomatic PHE segmentation is more
consistent than that of manual PHE segmentation and shows
less interference by periventricular leukoaraiosis. Urday et al.
(57) found that the PHE volume obtained from both
semiautomatic segmentation and manual segmentation was
similar (R2 = 0.98, p < 0.0001). However, there are potential
limitations regarding the accuracy of semiautomatic
segmentation because there may be a certain degree of
variability of neuroanatomic characteristics among individual
patients. External validation of semiautomatic segmentation is
required to verify its efficacy in real clinical settings, and this
method still needs to be refined to reduce the processing time of
generating segmentation. Deep learning methods based on
October 2021 | Volume 12 | Article 740632
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convolutional neural networks have become another option for
automatic PHE segmentation. Zhao et al. (58) developed a deep
learning model based on an U-Net for PHE segmentation.
However, the best dice value was only 0.71. These findings
indicate that automatic PHE segmentation is considerably
more difficult than hematoma segmentation because of the
lower clarity of PHE on CT scans (58, 59), necessitating
refinement of the performance of automatic PHE segmentation.

Various parameters reflecting the severity of PHE have been
adopted by separate studies (9, 10, 60). An indicator of the
absolute PHE volume or absolute change (or absolute growth
rate) of the PHE volume is frequently used to assess PHE and its
progression. However, it would be inappropriate to evaluate the
true effect of PHE on patients’ prognosis by using these indicators
because the absolute PHE volume is strongly dependent on the
initial ICH volume (61, 62). The relative PHE volume is the ratio
of the absolute PHE volume to the ICH volume, which enables
researchers to better compare the severity of PHE in patients with
different initial ICH volumes. However, when using the relative
PHE volume or the relative change of the PHE volume to predict
the prognosis in patients with ICH, mismatch between the
predictive results and the actual outcome may be obtained when
the initial hematoma is small (63). Furthermore, it would be
inappropriate to evaluate the severity of edema in patients with a
hematoma that has ruptured into the ventricles using the indicator
of the relative PHE volume because erythrocyte lysis in the brain
parenchyma is alleviated by the dilutional effects of the
cerebrospinal fluid. The absolute or relative peak PHE volume
has also been used as an indicator of PHE severity and was
considered to be associated with the 3-month neurological
outcome (20). However, it is difficult to obtain an accurate peak
PHE volume in the clinical setting. No effective methods with
which to predict the peak PHE growth rate and volume in
individual patients have yet been established. The EED
represents the average thickness in centimeters of the edema
beyond the boundary of the hematoma (64). Wu et al. (10)
found that an unexpected EED within 72 h of onset was
associated with a 6-month mortality rate. The EED is calculated

using the following formula:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PHE Volume+ICH Volume

4=3p
3

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ICH Volume

4=3p
3

q
.

However, the EED is calculated based on the assumption that both
the hematoma and the total lesion (hematoma + PHE) are ellipsoid,
introducing controversy into use of the EED to evaluate the PHE
severity with irregularly shaped ICH (60).
RISK FACTORS FOR PHE

Imaging Features
Numerous studies have demonstrated that the initial hematoma
volume determines PHE formation (9, 10, 12, 65), which shows
good agreement with the aforementioned mechanism in which a
greater ICH volume is associated with stronger thrombin cascades,
erythrocytes lysis, and ICH-related toxicity. Several studies have
revealed that a higher percentage of surgical hematoma removal
results in slower PHE growth (24, 66). However, Sprügel et al. (20)
Frontiers in Immunology | www.frontiersin.org 6
indicated that the surface of the hematoma, not the initial
hematoma volume, is the primary driver of PHE growth because
a smaller hematoma has a larger relative surface area, contributing
to a higher PHE volume per unit of the hematoma’s surface area.
The evidence that irregular ICH and relatively minor ICH (<30 ml)
generate a higher relative PHE volume was verified, supporting the
surface-driven hypothesis. Notably, however, irregular and relatively
minor ICH has a higher relative, not absolute, PHE volume. A
recent study showed that certain CT imaging signs, such as the
blend sign, black hole sign, and island sign, are capable of predicting
hematoma expansion (67) and are associated with PHE growth in
the acute phase of ICH (68). However, there is currently no evidence
supporting an association between hematoma expansion and PHE
formation. Rodriguez-Luna et al. (12) found that patients with spot
signs on baseline CTA had a larger absolute PHE volume.
Nevertheless, using the absolute PHE to predict hematoma
expansion would be inappropriate because the PHE strongly
depends on the initial hematoma volume. There is great
controversy regarding the severity of PHE in different ICH
locations. Sprügel et al. (20) found that lobar ICH had a larger
initial PHE volume and higher early PHE growth rate. However,
there was no significant difference in the peak PHE volume between
deep and lobar ICH after adjusting for the hematoma volume (20).
McCarron et al. (69) found that PHE was not affected by the
location of ICH within 24 h after onset. In contrast, Grunwald et al.
(11) found that the growth rate of lobar PHE within 24 h of ICH
was significantly higher than that of deep ICH and was associated
with the 90-day mortality rate. However, there was no significant
difference in the growth rate of PHE within 72 h of onset between
lobar and deep ICH. Cerebral amyloidosis was found to be a
common cause of lobar ICH, which has localized anticoagulant
and thrombolytic properties (70). However, we found no evidence
indicating that lobar PHE is significantly smaller than deep PHE.
We speculate that different shapes and growth patterns of PHE exist
in different locations, and these differences are probably due to the
different morphologies of the hematoma and the heterogeneity of
the targeted population with diverse characteristics of ICH.

Baseline Characteristics
In addition to imaging features, the patient’s baseline neurological
status (e.g., as measured by the National Institutes of Health Stroke
Scale score, Glasgow Coma Scale score, and other indexes) is also
significantly associated with PHE progression (10). Advanced age
is an independent risk factor for PHE (10, 61). However, Peng
et al. (21) indicated that younger patients are more likely to
develop delayed PHE formation, which may be due to age-
related differences in brain atrophy. Whether sex influences
PHE continues to be debated. Wagner et al. (71) found that the
PHE volume in women with supratentorial ICH is lower than that
in men which may be associated with the higher levels of estrogen
in women, enabling alleviation of iron-induced PHE. However,
other studies have produced different or even contrary conclusions
(16, 65). Because poorly controlled hypertension and unstable
blood pressure at admission are assumed to be risk factors for
hematoma expansion (72, 73), the role of blood pressure in PHE is
also attracting interest. The Intensive Blood Pressure Reduction in
Acute Cerebral Haemorrhage Trial (INTERACT) showed that a
October 2021 | Volume 12 | Article 740632
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history of hypertension was positively correlated with the relative
growth of PHE, whereas lower systolic blood pressure at
admission was positively associated with the absolute growth of
PHE (65). In the ICH Acutely Decreasing Arterial Pressure Trial
(ICH ADAPT) performed by McCourt et al. (74), aggressive
antihypertensive treatment (diastolic blood pressure of <150
mmHg) was found to affect neither the perihematomal cerebral
blood flow nor PHE progression. A clinical trial of hypothermia
administration for PHE revealed that a higher number of
hypertension attacks at admission was associated with a larger
initial PHE volume (61). Moreover, the Antihypertensive
Treatment of Acute Cerebral Hemorrhage-2 (ATACH-2) trial
also demonstrated that intensive antihypertensive therapy (target
systolic blood pressure of 110–139 mmHg within 2 h) effectively
reduced the relative expansion rate of PHE within 24 h after onset
(62). In general, intensive antihypertensive therapy has been
demonstrated to be safe in the treatment of PHE. However,
whether the control of blood pressure mediates the PHE by
modulating hematoma expansion is unclear. Previous studies
have shown that a shorter interval between onset and the initial
CT scan is associated with a higher risk of hematoma expansion
and more rapid relative PHE growth (65, 75). However,
Rodriguez-Luna et al. (12) indicated that the ICH onset time did
not affect the relative PHE volume within 6 h of onset. Because
obtaining a precise onset time is significant for determining the
optimal treatment of ICH, whether the onset time affects the PHE
needs to be further investigated. Additionally, the imaging features
of ICH and PHE may help to predict the onset time.

Laboratory Testing
Several laboratory parameters that have been confirmed to affect
hematoma expansion, such as hyperglycemia, a highMMP-9 level,
and a high white blood cell count, may also be positively associated
with PHE progression (10, 61, 76, 77). Gusdon et al. (78) found
that the ratio of neutrophils to lymphocytes is effective in
predicting PHE growth. Because MMP-3, MMP-9, VEGF, and
angiopoietin-1 are all related to vascular function, they might be
predictive of vasogenic edema (79). A high RBC count and high
hematocrit at admission are associated with delayed peak PHE
(16). This may be relevant because a high RBC count and high
hematocrit are indicative of higher RBC degradation, which has
been identified as an essential factor for promoting PHE. A high
platelet count promotes increases in the VEGF level and capillary
permeability, thereby exacerbating PHE (16). A prolonged partial
thromboplastin time is significantly associated with PHE growth
(16, 61, 80). This could be due to a consumptive coagulopathy
resulting from significant release of coagulation factors after ICH,
manifesting as platelet dysfunction and prolonging the partial
thromboplastin time (80, 81). Some studies have shown that
hyperglycemia is associated with earlier PHE progression (10,
82), which might be due to the fact that hyperglycemia promotes
an oxidative stress response with consequent BBB dysfunction
(83). However, hyperglycemia can merely be a stress response to
ICH instead of a contributing factor for PHE. Feng et al. (84)
found that hyperglycemia did not significantly affect PHE after
adjusting for the initial ICH volume.
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Others
Apolipoprotein E (ApoE) has been considered an independent
risk factor for lobar ICH (85). Apo-E plays an essential role in
maintaining normal lipid homeostasis in the central nervous
system (86) and mitochondrial resistance to oxidative stress (87).
James et al. (88) found that APOE-ϵ4 positivity was associated
with a larger PHE volume. However, McCarron et al. (89)
demonstrated that APOE-ϵ4 positivity was not associated with
PHE after adjusting for race, age, and type of bleeding. These two
studies reached different conclusions, which might be related to
the selection of different time windows for PHE observation.
Further studies are still needed to understand the role of ApoE in
PHE progression.
IMPACT OF PHE ON ICH PROGNOSIS

Whether PHE directly affects the prognosis of ICH remains
controversial. From a pathogenesis perspective, PHE formation in
the ultra-early stage of ICH might be clinically meaningful because
the blood clot retraction and activated thrombin cascade are effective
in promoting hemostasis (90). A recent magnetic resonance
spectroscopy study of an experimental ICH model showed that the
recovery of N-acetylaspartate, choline, and creatine was faster in the
PHE area than in the non-PHE area, suggesting that the PHE may
maintain the integrity of the perihematomal tissue and provide a
protective buffer against irreversible impairment (91). Levine et al.
(92) reported that a higher absolute PHE volumewas associatedwith
lower 90-day mortality. Similar results were obtained by two other
studies using the indicator of the relative PHE volume to predict the
functional status after ICH (90, 93). However, real-world cohort
studies, such as the INTERACT-1/2 trials, have shown that absolute
PHE growth is associated with poor outcomes of ICH (94). The
absolute or relative PHE growth rate within 72 h of onset is
considered an independent predictor of death and poor functional
prognosis (modifiedRankin scale score of≥3) (9, 11, 65). Urday et al.
(60) found that the PHE expansion rate within 24 h significantly
affectedmortalitywithin 90days of ICHonset even after adjusting for
the initial hematomavolume.Wuet al. (10) found thatpatientswitha
larger initial EED were more likely to develop a significant midline
shift and brain herniation, which were related to the 6-month
mortality rate after ICH. However, not all studies have shown that
PHE significantly affects the ICH prognosis after adjusting for the
initial hematoma volume (61, 65). Appelboom et al. (95) found that
the absolute PHE volume is correlated with the prognosis of patients
withanICHvolumeof<30ml,whereas the relativePHEvolumedoes
not affect the modified Rankin scale score upon hospital discharge.
The impact of PHE from different ICH locations on the prognosis
remains controversial. Thefinding that lobarPHEwas not associated
with the 3-month modified Rankin scale score may have resulted
from different morphological characteristics of hematomas among
different ICH locations (11). TheATACH-2 trial showed that PHEof
basal ganglia hemorrhage, but not thalamic hemorrhage, was
associated with the 3-month prognosis. This result was most likely
obtained because thalamic hemorrhage is more possible to develop
intraventricular hemorrhage, which is a potential confounder (62).
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Peng et al. (21) reported that delayed PHE formation was an
independent predictor of a poor prognosis at discharge. In their
study, delayed PHEwas defined as an absolute PHE volume that is 3
ml greater at 12 to 20 days than at 5 to 9 days. This is a particularly
interesting finding because it seems revealed that a mild unsteady
state of PHEon the delayed phase instead of acute phase significantly
affects the prognosis. Notably, however, there is currently no
consensus on the definition of delayed PHE, and whether delayed
PHE affects the prognosis of ICH remains unclear.

Because the time of the follow-up CT scan differed among the
population of various retrospective studies on PHE, and because
heterogenous metrics reflecting the severity of PHE were adopted
by separate studies, the ability of PHE to predict prognosis
remains unclear. The results of PHE-based prognostic studies
are summarized in Tables 1–4.
POTENTIAL THERAPIES FOR PHE

Targeted Strategies for Cytotoxic Edema
The formation of the perihematomal osmotic gradient, which is
driven by cytotoxic edema, dominates PHE in the ultra-early phase
of ICH (25, 38). Compared with mannitol, the currently available
dehydrating drug that is commonly used to decrease the intracranial
pressure, continuous infusion of hypertonic saline has been
identified as a safe method for controlling PHE progression in the
early phase of ICH, and it does not seem to affect the BBB (100,
101). Given the putative advantages of hypertonic saline in
improving cerebral perfusion, Cook et al. (102) reported that
hypertonic saline possesses a better capacity for controlling PHE
and the corresponding intracranial hypertension than mannitol.
However, in a recent multicenter randomized controlled trial,
Roquilly et al. (103) found that continuous infusion of 20%
hypertonic saline solution did not improve the neurological
outcome 6 months after onset among patients with moderate to
severe traumatic brain injury. As previously described, during the
stage of cytotoxic edema, the SUR1-TRPM4 channel was confirmed
to be upregulated, promoting ionic edema (5, 104). Jiang et al. (105)
established a model of autologous blood-induced ICH and found
that glibenclamide (a SUR1 inhibitor) effectively reduced the PHE
volume, which was associated with cognitive deficit improvement.
However, another study involving a model of collagenase-induced
ICH showed that glibenclamide neither aggravated nor ameliorated
the PHE volume or neurological dysfunction (106). Sheth et al.
(107) conducted a double-blind, randomized controlled trial of
patients with cerebral hemispheric infarcts and found that
glibenclamide therapy significantly reduced the midline shift and
MMP-9 level compared with the control group, revealing the
potential role of glibenclamide in alleviating PHE after stroke.
Additional clinical trials are needed to investigate preclinical
strategies for cytotoxic edema.

Targeted Strategies for Vasogenic Edema
The thrombin cascades, inflammatory response, andBBBdysfunction
have been confirmed to exert essential functions inPHE formation (4).
Thus, treatments targeting critical molecules in the formation of
Frontiers in Immunology | www.frontiersin.org 8
vasogenic edema (such as VEGF, MMPs, and AQPs) may be
promising (5, 108). In one study, the anti-inflammatory drug
fingolimod alleviated the progression of PHE and improved the
functional independence of patients with ICH at 90 days (109).
However, patients with a sizeable initial hematoma (>30 ml) were
not included. Given that PHE is strongly dependent on the primary
hematoma, whether fingolimod can benefit critically ill patients with
ICH remains to be explored. Statins are HMG-CoA reductase
inhibitors that exert their neuroprotective effects by anti-
inflammatory actions and facilitation of neo-angiogenesis (110).
Statins have also been found to reduce the absolute or relative PHE
volume (111), and most relevant studies have shown that statin use
does not increase the risk of ICH recurrence (112). However, the effect
of statins on the growth rate of PHE has not been demonstrated.
Celecoxib is a selective cyclo-oxygenase 2 receptor inhibitor that
attenuates the inflammatory reaction and edema by inhibiting the
generation of prostaglandins (113). A multicenter randomized
controlled trial confirmed the efficacy of using celecoxib to reduce
the expansion rate of PHE (114). However, because the time to initial
CTwas longer in the celecoxib group than in the control group in that
study, the primary outcome was defined as a ≥20% change in PHE
from onset to an average of 1 week, which may be inappropriate
becausea longer time to initialCTmayrepresent a steady state forPHE
(10, 98).Antiadrenergicdrugs suchasb-blockers anda2-agonistshave
also been used to manage hypertension in patients with ICH. A
retrospective analysis of a prospective cohort of patients with
cerebral hemorrhage (CHANT trial) showed that the administration
of antiadrenergic drugs effectively reducedPHEwithin 72h after onset
(115), suggesting that a reduction of central/peripheral sympathetic
activity attenuates neuroinflammation and thereby alleviates the PHE.
Notably, the reduction of PHE might not have been due to the
antihypertensive actions of these antiadrenergic drugs because other
kinds of blood pressure-lowering drugs did not result in the same
degree of PHE reduction. The transcription factor peroxisome
proliferator-activated receptor gamma (PPAR-g) plays a significant
role inmodulatingthebiomarkersofoxidative stressandinflammation
(116). One study showed that the PPAR-g agonist rosiglitazone
significantly reduced the expression of proinflammatory genes such
as tumornecrosis factor-a, interleukin-b, andMMP-9 inaratmodelof
ICH and consequently attenuated the SBI (117). However, there is a
scarcity of clinical trial data regarding the use of PPAR-g agonists in
patients with ICH. The iron chelator deferoxamine is a potential
candidate for ICH treatment, and its effectiveness in alleviating PHE
hasbeenconfirmed inexperimentalmodelsof ICH(118,119).Ameta-
analysis of the efficacy of deferoxamine in an experimental ICHmodel
showed that deferoxamine reduced the brain water content by 85.7%,
although the effect lasted for only 24 h after onset (120). However, it is
discouraging to note that a double-blind, randomized controlled
clinical trial showed no association between administration of
deferoxamine mesylate and better neurological outcomes in patients
with ICH (121). Indeed, because deferoxamine is characterized by a
small effect size, itwouldbebetter to enroll a considerablyhighnumber
of patients to verify the drug’s utility and validity when conducting
studies targeting a small effect size. Li et al. recently performed an
unbiased genome-wide transcript sequencing study for surgical
removal of perihematomal brain tissue in patients with ICH and
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TABLE 1 | Summary of prognostic research of PHE—the PHE was associated with poor ICH outcome.

Time Imaging
Method

PHE Measurement PHE Metric Prognostic Marker

days CT Semiautomated calculation
based on CT Hounsfield units

Delayed perihematomal
edema: the volume of
absolute PHE in 12–20 days
is 3 ml larger than that in 5–9
days

Discharge mRS score 2–6

nset Baseline: CTP;
follow-up: CT

Semiautomated calculation
based on CT Hounsfield units

Absolute/relative PHE volume 3-month mRS score 3–6

ter onset CT Semiautomated calculation
based on CT Hounsfield units

Edema extension distance 6-month mortality; brain
herniation

nset CT Semiautomated calculation
based on CT Hounsfield units

Expansion rates 3-month mRS score 3–6

h after CT Automatic segmentation Expansion rates; absolute/
relative PHE volume

3-month mortality; 3-
month mRS score 3–6

ter onset CT Semiautomated calculation
based on CT Hounsfield units

Expansion rates; peak
absolute-PHE volume; peak
relative-PHE volume

Discharge mRS score 4–6

nset CT Semiautomated calculation
based on CT Hounsfield units

Expansion rates 3-month mortality; 3-
month mRS score 3–6

nset CT Semiautomated calculation
based on CT Hounsfield units

Expansion rates 3-month mRS score 3–6

; day CT Semiautomated calculation
based on CT Hounsfield units

Absolute/relative PHE volume In-hospital mortality

, and 28
onset

CT Unclear Absolute PHE volume In-hospital NIHSS score

d Rankin Scale; CTP, CT perfusion; INTERACT, Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial.
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3 weeks a

Murthy et al. (9) Retrospective, Virtual
International Stroke Trials
Archive

N = 596, ICH 72 h after
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Volbers et al. (18) Retrospective, single-center N = 220, supratentorial ICH 12 days a

Yang et al. (94) Retrospective, INTERACT1/
INTERACT2

N = 1,138, ICH 24 h after

Murthy et al. (63) Retrospective, Virtual
International Stroke Trials
Archive

N = 596, ICH 72 h after

Staykov et al. (19) Retrospective, single-center N = 219, supratentorial ICH Days 1–21
≥22
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TABLE 2 | Summary of prognostic research of PHE—the PHE was associated with improved ICH outcome.

d Patient PHE Measurement PHE Metric Prognostic Marker

le-center N = 44, supratentorial ICH Manual segmentation Relative PHE volume 3-month mRS score 0–2
ngle-center N = 98, warfarin-related ICH

noncoagulopathic ICH
Manual segmentation Absolute PHE volume 3-month mortality

le-center N = 142, ICH Semiautomated
calculation
based on CT
Hounsfield units

Baseline relative PHE
volume

3-month mRS score 0–2

mputed tomography; PHE, perihematomal e

research of PHE—the PHE was not asso

Method Patient t PHE Metric Prognostic Marker

pective, single- N = 795, ICH 7 ic Absolute PHE
volume

3-month mRS score

ctive, multicenter N = 353, ICH 24 on
units

Absolute/relative
PHE volume

Hematoma expansion

pective, multicenter N = 60, ICH 24 Expansion rates 3-month mRS score 3–6

pective, INTERACT N = 296, ICH 24
on

on
units

Expansion rates 3-month mRS score 3–6

ctive, multicenter N = 266,
supratentorial
ICH

48 Absolute/relative
PHE volume

Early neurologic deterioration: CSS score
decreased > or =1 point between admission and
48 h

mputed tomography; CTA, CT angiography; nadian Stroke Scale; INTERACT, Intensive Blood Pressure Reduction in Acute Cerebral

C
hen

et
al.

P
erihem

atom
alEdem

a
A
fter

IntracerebralH
em

orrhage

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

O
ctober

2021
|
Volum

e
12

|
A
rticle

740632
10
Study Metho

Gupta et al. (93) Prospective, sing
Levine et al. (92) Retrospective, s

Gebel et al. (90) Prospective, sing

ICH, intracerebral hemorrhage; CT, co

TABLE 3 | Summary of prognostic

Study

Hervella et al. (61) Retros
center

Rodriguez-Luna et al. (12) Prosp

Qureshi et al. (96) Retros

Arima et al. (65) Retros

Leira et al. (97) Prosp

ICH, intracerebral hemorrhage; CT, co
Hemorrhage Trial.
i

e

e

Focused Time Imaging
Method

24 to 72 h after onset CT
nd 24 h after onset CT

3 and 20 h after baseline
image

CT

a; mRS, modified Rankin Scale.

ted with ICH outcome.

cused Time Imaging
Method

PHE Measuremen

s after onset CT ABC/2 method; automa
segmentation

after onset Baseline: CTA;
follow-up: CT

Semiautomated calculat
based on CT Hounsfield

after onset CT Semiautomated
segmentation

d 72 h after
t

CT Semiautomated calculat
based on CT Hounsfield

after onset CT ABC/2 method

, perihematomal edema; mRS, modified Rankin Scale; CSS, Ca
a

dem

cia

Fo

day

h

h

an
se
h

PHE
t

i

i

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 4 | Summary of prognostic research of PHE—the conflicting findings.

sed Time/
ing Method

PHE Measurement PHE Metric Prognostic Marker Conflicting Findings

r onset; CT Manual segmentation Expansion rates 3-month mRS score 4–6 Positive: basal ganglia PHE; negative:
thalamus PHE

2 h after
T

Automatic segmentation Expansion rates 3-month mortality; 3-
month mRS score 3–6

Positive: (1) 24 h deep/lobar PHE; (2)
72 h deep PHE; negative: 72 h lobar
PHE

2 h after
T

Unclear Absolute PHE volume In-hospital neurological
deterioration: a ≥2-point
decrease in GCS or a ≥4-
point increase in the
NIHSS score

Positive: 0–24 h neurological
deterioration; negative: 1–3 days
neurological deterioration

7 days after
RI

Manual segmentation Absolute PHE volume;
presence of cytotoxic
edema

3-month mRS score 4–6 Positive: 72 h PHE; negative: (1)
baseline PHE and (2) cytotoxic
edema

r onset; CT Semiautomated
segmentation

Absolute/relative PHE
volume

Discharge mRS score 3–6 Positive: absolute PHE volume;
negative: relative PHE volume

after onset; Manual segmentation Expansion rates In-hospital NIHSS; 3-
month mRS score; 3-
month eGOS

Positive: 48 h NIHSS; negative: 3-
month mRS/eGOS score

h after
image; CT

Semiautomated
calculation based on CT
Hounsfield units

Absolute/relative PHE
volume

3-month mRS score 3–6 Positive: baseline relative PHE
volume; negative: absolute PHE
volume

icates the PHE was not associated with ICH outcome.
mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; eGOS, extended Glasgow Outcome scale.
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Leasure et al. (62) Retrospective, the
ATACH-2 randomized trial

N = 870, deep-
supratentorial ICH

24 h aft

Grunwald et al. (11) Retrospective, single-
center

N = 115,
supratentorial ICH

24 and
onset; C

Lord et al. (98) Retrospective, Virtual
International Stroke Trials
Archive

N = 376, ICH 24 and
onset; C

Li et al. (99) Prospective, single-center N = 21, ICH 1, 3, an
onset; M

Appelboom et al. (95) Retrospective, single-
center

N = 133, ICH 24 h aft

Venkatasubramanian
et al. (16)

Prospective, single-center N = 27, ICH 21 days
MRI

Gebel et al. (90) Prospective, single-center N = 142, ICH 3 and 2
baseline

Positive indicates the PHE was associated with poor/improved ICH outcome; negative in
ICH, intracerebral hemorrhage; CT, computed tomography; PHE, perihematomal edema;
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identified abundant expression of formyl peptide receptor 1 (FPR1),
whichpromotes neuroinflammatory reactions.Under the screening of
a computer-aided drug design system, the research group further
selected an FPR1 inhibitor (T-0080) that can cross the BBB and
successfully reduced the PHE by about 35% in experimental ICH
models to improve the neurological status (122). This FPR1 inhibitor
may be a promising candidate for ICH therapy. Antidiuretic hormone
maintains the brain water content by regulating the permeability of
capillaries. Conivaptan is an antidiuretic hormone receptor antagonist
thatwas confirmed to reducebrain edemaand repair theBBB function
in an experimental ICHmodel (123). The effects of conivaptan on the
treatment of PHE might be correlated with a reduction in the
expression of AQP-4 (124). A recent phase I clinical trial verified
the safety of conivaptan in the treatment of PHE (125). A phase II
clinical trial of antidiuretic hormone receptor antagonists is urgently
needed to further explore their efficacy on SBI in patients with ICH.

Comprehensive Treatments
The MISTIE II trial showed that minimally invasive surgery
combined with tissue-type plasminogen activator effectively
reduces the PHE volume (126). In the MISTIE III trial, the patients
in the surgery group had improved neurological outcomes at 1 year
when no more than 15 ml of hematoma remained at the end of the
treatment (127). Similarly, a recent study showed that minimally
invasive endoscopic surgery for ICH evacuation alleviated the
postoperative PHE progression. A higher percentage of hematoma
removal results in slower PHE growth (24). Although hematoma
evacuation surgery has been shown to be a promising treatment for
PHE, whether the patient’s prognosis can be significantly improved
remains unclear. Fung et al. (23) reported that patients who
underwent simple decompression surgery (without hematoma
removal) developed more severe PHE than patients in the control
group. However, there was no significant difference in the 90-day
neurological functionbetween thedecompressive craniectomygroup
and the control group (23). Perhapswhen the surgical indications for
ICH becomemore detailed and standardized, the benefits of surgical
interventions in reducing the complications of SBI (e.g., PHE) will
gradually emerge.

Supportive treatments, including hypothermia therapy (61, 128),
intensive antihypertensive therapy (62), and hyperbaric oxygen
therapy (129), have also been reported to reduce PHE growth.
Frontiers in Immunology | www.frontiersin.org 12
However, the number of existing clinical studies is small, and
inevitable bias and confounding factors have limited these studies.
A large‐scale prospective follow‐up study for validation is warranted.
CONCLUSION

Because of the lack of significant progress in treating hematomas
in patients with ICH, damage secondary to ICH (especially PHE)
has recently become a promising therapeutic target. This article
has reviewed the mechanisms and growth patterns of PHE after
ICH and has introduced potential treatments. However, previous
studies have various limitations. For example, the sample sizes,
especially in studies involving brain MRI, are limited; no
standard indicator of PHE severity has been established; and
prospective primary data are entirely lacking. Randomized
controlled trials of PHE are urgently needed. Furthermore,
researchers are expected to employ more effective measuring
technologies to analyze high-quality imaging data, effectively
explore the laws involved in PHE growth, and develop new
therapeutic options for patients with ICH.
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