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Aims. Diabetes is a proinflammatory state, evidenced by increased pattern recognition receptors and the inflammasome
(NOD-like receptor family pyrin domain (NLRP)) complex. Recent reports have elucidated the role of the gut microbiome
in diabetes, but there is limited data on the gut microbiome in NLRP-KO mice and its effect on diabetes-induced
inflammation. Methods. Gut microbiome composition and biomarkers of inflammation (IL-18, serum amyloid A) were
assessed in streptozotocin- (STZ-) induced diabetic mice on a NLRP3-knockout (KO) background versus wild-type diabetic
mice. Results. SAA and IL-18 levels were significantly elevated in diabetic mice (STZ) compared to control (WT) mice,
and there was a significant attenuation of inflammation in diabetic NLRP3-KO mice (NLRP3-KO STZ) compared to
control mice (p < 0 005). Principal coordinate analysis clearly separated controls, STZ, and NLRP3-KO STZ mice. Among
the different phyla, there was a significant increase in the Firmicutes : Bacteroidetes ratio in the diabetic group compared to
controls. When compared to the WT STZ group, the NLRP3-KO STZ group showed a significant decrease in the
Firmicutes : Bacteroidetes ratio. Together, these findings indicate that interaction of the intestinal microbes with the innate
immune system is a crucial factor that could modify diabetes and complications.

1. Introduction

Diabetes is a worldwide epidemic, and inflammation has
been shown to contribute to increased diabetic complications
[1]. Diabetes is thus a proinflammatory state characterized
by increased C-reactive protein (CRP), proinflammatory
cytokines, and monocyte activation [2].

A critical step in the activation of inflammatory
responses is the recognition of microbes or endogenous
molecules produced in the setting of infection or cellular
injury by host pattern recognition receptors [3]. We and
others have shown increased pattern recognition receptors,
TLR2 and TLR4, in diabetes and have also shown that
knockout of TLR2 and/or TLR4 in a mouse model can result

in decreased microvascular complications using the strepto-
zotocin- (STZ-) induced diabetes model [4–6]. Another
major innate signaling pathway is the inflammasome, a
multiprotein platform that activates caspase-1 leading to
the proteolytic processing of prointerleukin-1β (pro-IL-1β)
and pro-IL-18 into their mature active forms, IL-1β and
IL-18 [7]. Among the intracellular Nod-like receptor
(NLR) family [8] of inflammasomes, NLRP3 is activated by
multiple stimuli including bacterial pore-forming toxins,
ATP, microbial RNA, and particulate matter [9, 10]. Several
recent reports have elucidated the role of the gut micro-
biome and its components in the pathogenesis of diabetes
and its sequelae [11], and MyD88-KO mice on a NOD
background have decreased inflammation and diabetes
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development [12]. Blocking inflammasome activation has
been shown to decrease inflammation and is beneficial in
decreasing intestinal inflammation as well as effective in
nonalcoholic fatty liver disease (NAFLD) [13].

There is however a paucity of data on the gut microbiome
in NLRP3−/− (NLRP3-KO) mice and its effect on diabetes-
induced inflammation. In this study, we provide evidence
that (i) specific taxa of the gut microbiota present signifi-
cantly altered prevalences when diabetes is induced by
means of STZ in wild-type mice and (ii) these changes
are attenuated when diabetes is induced in NLRP3-KO
mice, correlating with the decreased inflammation picture
that, as expected, characterizes these mice.

2. Methods

Wild-type (WT) and NLRP3-KO mice generated on a
C57BL/6J genetic background (male, 5 weeks of age, body
weight 19–24 g) were purchased from Jackson Laboratory.
The protocol was approved by the institution and conforms
to the National Institutes of Health Guide for the Care and
Use of Laboratory Animals (NIH publication number 8023,
revised 1978). The animals were housed in a pathogen-free
animal facility with free access to normal chow and water.
In these mice, diabetes was induced by intraperitoneal
administration of 60mg/kg STZ freshly dissolved in
sodium citrate at pH4.5 for 5 consecutive days in 7-
week-old mice as described before [14]. The 3 groups are
referred to as WT or wild type, WT+STZ or diabetic,
and NLRP3-KO STZ or diabetic with knockout of NLRP3
(n = 6, 9, and 8, resp.). Since there were no observable
changes in the wild-type NLRP3-KO mice (n = 4), the data
are not presented here. Blood glucose levels were mea-
sured after 5 days, and diabetes was established with a glu-
cose level of >250mg/dl on 3 consecutive days. When
animals show signs of decompensation defined as progres-
sive weight loss with severe hyperglycemia with glucose
levels> 500mg/dl over 3 days, they were injected with
low-dose insulin (1.0 unit subcutaneously) and intraperito-
neal Ringer’s lactate (0.5 to 1.0ml). Blood and stool were
collected after 24 weeks of diabetes in mice. Before eutha-
nasia, 24-hour urine and fecal collection was performed
using metabolic cages. All procedures were approved by
the Institutional Animal Care and Use Committees
(IACUCs), University of California Davis Medical Center,
Sacramento.

2.1. Measures of Inflammation. Serum amyloid A, IL-1β, and
IL-18 in plasma were measured by ELISA (R&D) as per the
manufacturer’s instructions.

2.2. Microbiome Analysis. Approximately 0.02 g of stool was
added to a MO BIO PowerBead Tube and processed
through the standard MO BIO PowerSoil extraction kit
protocol (MO BIO Laboratories, Carlsbad, CA). Quantity
and quality of the resulting nucleic acid content were
assessed by Nanodrop 1000 and Qubit. Amplification
and sequencing of the V1V3 region of the 16S rRNA gene
were performed using the NEXTflex 16S V1V3 Amplicon-

Seq Kit 2.0 (Bioo Scientific, Austin, TX) with 20 ng of
input DNA, and sequences were generated on the Illumina
MiSeq platform (Illumina, San Diego, CA) with a mini-
mum of 800 and an average of 7500 sequences generated
per sample. Sequence data was processed through the
LotuS pipeline as previously described [15]. Sequencing
reads were processed through the LotuS pipeline, reads
were demultiplexed, and paired ends were stitched. Quality
filters using a modified version of the UPARSE algorithm
were utilized to reduce error rates [16]. Taxonomic assign-
ment was performed with RDP as the classifier and HitDB
and SILVA as the selected databases [17, 18]. Alpha diver-
sity was calculated using QIIME 1.7 for subsequent data
processing: Chao1 index and Shannon diversity index.
Beta diversity was determined by the unweighted UniFrac
distance and Bray-Curtis dissimilarity. OTUs failing to
classify bacteria at the kingdom level were removed before
further analysis.

Statistical analysis of taxonomic and functional profiles
(STAMP) was employed for the visualization and statistical
analysis of OTUs [19]. To visualize the distributions of
beta diversity values, a PCoA plot was generated using a
dissimilarity measure calculated between every pair of
community samples with individual dots on the PCoA plot
representing distinct microbial communities. Comparisons
between groups were made at various taxonomic levels,
including the OTU level. Taxonomic assignments for rep-
resentative sequences of significant OTUs were confirmed
by manual database searches and alignments. In addition,
microbial differences were evaluated based on other avail-
able clinical data, such as glucose and biomarkers of
inflammation.

3. Results

Baseline characteristics of the mice at 24 weeks are shown in
Table 1. There was a small but significant decrease in body
weight of diabetic mice. Despite insulin administration,
plasma glucose levels continued to be significantly elevated
in the STZ mice compared to controls. Although higher
plasma glucose levels were observed in NLRP3-KO STZ mice
compared to controls, they were not significantly different;
the only significant difference was those between WTSTZ
and NLRP3-KO STZ mice.

Since NLRP3 inflammasome regulates inflammatory
pathways in diabetes, we examined serum amyloid A (SAA),
a major prototypic marker of inflammation in rodents,

Table 1: Baseline characteristics.

WT
(n = 5)

WT-STZ
(n = 10)

NLRP3-KO STZ
(n = 9)

Body weight (g) 35.1± 3.1 28.9± 2.5∗ 30.5± 3.1
Plasma glucose
(mg/dl)

181.3± 48.5 916.3± 482.6∗ 393.7± 310.3∗#

Data are presented as mean ± SD. ∗p < 0 05 versus WT. #p < 0 05
versus WT-STZ.
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as well as circulating levels of IL-1β and IL-18 (Table 2).
IL-1β levels were below the detection range of the high-
sensitivity assay. However, as reported previously in many
studies, SAA levels were significantly elevated in diabetic
mice and there was a significant attenuation of inflamma-
tion in the NLRP3-KO STZ mice to the level of the con-
trol mice (p < 0 005). Another marker of the activation of
the inflammasome complex is IL-18. IL-18 levels were sig-
nificantly increased in diabetic mice, and knockout of
NLRP3 resulted in a significant abrogation of this proin-
flammatory cytokine in diabetic mice.

Lastly, we examined the effect of the NLRP3 inflamma-
some and inflammation on gut microbiota composition.
The examination of alpha diversity of the gut microbiota as
depicted by the Shannon or Chao index (Figures 1(a) and
1(b)) showed no significant differences between wild-type
control, STZ, and NLRP3-KO STZ groups. Since there were
no observable changes in the wild-type NLRP3-KO mice
(n = 4), the data are not presented here. Principal coordinate
analysis of 16S sequences from samples using UniFrac shows
a distinct separation of sample groups of controls (orange)
and STZ (blue) (Figure 2(a)) as well as a distinct separation
between STZ (blue) and NLRP3−/− STZ (red) (Figure 2(b)).

Next, taxonomy was assigned on the three groups and
represented as percent abundance at the level of bacterial
phyla (Figure 3(a)) and genera (Figure 3(b)). Among the
different phyla, there were a significant increase in Firmicutes
and a decrease in Bacteroidetes in the STZ–diabetic group
compared to WT controls. Also, there was a significant
increase in the Firmicutes : Bacteroidetes ratio in WT STZ
mice which was restored in the NLRP3-KO STZ mice
(WT: 1.25± 0.29; STZ: 3.0± 1.1; NLRP3-KO STZ: 2.2± 0.91;
p < 0 01 for the trend). When compared to WT STZ, the
NLRP3-KO STZ group showed a significant increase in
Bacteroidetes and a nonsignificant decrease in Firmicutes.
The remainder of the microbiota was composed of divisions
commonly encountered at lower abundance in the mouse
and human gut: Verrucomicrobia, Proteobacteria, Cyano-
bacteria, Actinobacteria, and the candidate phylum TM7.
At the genus level, there were increased Akkermansia and
decreased Barnesiella and Oscillibacter in STZ which was
reversed in diabetic NLRP3-KO.

4. Discussion

The results presented in this report provide evidence
that modulation of the intestinal microbiota through
the regulation of the NLRP3 inflammasome is important
in regulating inflammation in diabetic animals and has
an effect on glucose homeostasis.

Recent reports suggest a complex role of inflammasome
function in multiple manifestations of the metabolic syn-
drome. Activation of IL-1β, mainly through cleavage by the
NLRP3 inflammasome, promotes insulin resistance [20].
While the gut microbiota is important in diabetes, there is a
paucity of data on the relationship of inflammation and

Table 2: Biomarkers of inflammation.

WT
(n = 5)

WT-STZ
(n = 10)

NLRP-KO STZ
(n = 9)

SAA (ug/ml) 56 (45, 66) 110 (91, 132)∗ 50 (19, 63)#

IL-18 (pg/ml) 18 (15, 22) 71 (57, 88)∗ 54 (12, 64)#

Data are presented as median (25th percentile, 75th percentile). ∗p < 0 05
versus WT. #p < 0 005 versus WT-STZ.
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Figure 1: (a) Rarefaction curves demonstrating the Shannon index
(evenness and richness metric) of the OTUs identified for the
three groups: WT control, WT STZ, and NLRP3-KO STZ.
Rarefaction of the OTU table was set to 794. Curves suggest no
significant differences in alpha diversity. (b) Rarefaction curve
using the Chao1 index for the three groups: WT control, WT STZ,
and NLRP3-KO STZ, calculated using QIIME 1.7. Rarefaction of
the OTU table was set to 794. Curves suggest no differences in
alpha diversity.
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microbiota in diabetes and its complications. In this report,
in addition to decreased inflammation in the NLRP3-KO
mice in the diabetic milieu compared to STZ mice, we show
a significant increase in Firmicutes and a decrease in
Bacteroidetes in the STZ–diabetic group compared to WT
controls and an associated significant increase in the Firmi-
cutes : Bacteroidetes ratio in STZ which was restored in the
NLRP3-KO STZ mice.

Previously, Xie et al. [21] showed that compared to
controls, STZ mice on a high-fat diet had fewer Bacteroidetes
and Proteobacteria but higher levels of Firmicutes, Teneri-
cutes, and Actinobacteria. In concordance with those studies,
we also report a significant increase in Firmicutes and a
decrease in Bacteroidetes in the STZ–diabetic group com-
pared to WT controls. Also, there was a significant
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Figure 2: (a) PCoA plot of the WT group by unweighted UniFrac
distances. Analyses were determined using QIIME 1.7. The axes
represent the first highest discriminating axes using the Bray-
Curtis distance measure. (b) PCoA plot of the treatment groups by
unweighted UniFrac distances. Analyses were determined using
QIIME 1.7. The axes represent the first highest discriminating
axes using the Bray-Curtis distance measure.
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Figure 3: (a) The taxonomic distribution of the WT control, WT
STZ, and NLRP3-KO STZ groups is represented as the percent
abundance of the identified phyla for each group. Analyses were
determined using QIIME 1.7, and raw data was entered into
GraphPad Prism to generate a stacked bar plot. (b) The taxonomic
distribution of the WT control, WT STZ, and NLRP3-KO STZ
groups is represented as the percent abundance of the identified
genera for each group. Analyses were determined using QIIME
1.7, and raw data was entered into GraphPad Prism to generate a
stacked bar plot.

4 Journal of Diabetes Research



increase in the Firmicutes : Bacteroidetes ratio in STZ
which was restored in the NLRP3-KO. A change in the
Firmicutes : Bacteroidetes ratio by itself may be important
since it can influence the processing of dietary polysaccha-
rides [22, 23]. In this context, our findings are important
since it has been previously shown that deficiency of the
TLR adaptor protein, MyD88, changes the composition of
the distal gut microbiota as well as the exposure of the micro-
biota to SPF NOD. MyD88-negative donors attenuate type 1
diabetes in germ-free NOD recipients [12]. Furthermore,
NLRP6−/− mice have been demonstrated to have reduced
IL-18 and increased representation of Prevotellaceae which
belongs to the Bacteroidetes phyla [24], and this lends sup-
port to our findings in NLRP3−/− mice on a diabetic
background. Genus-level-specific findings from our study
need to be corroborated with results from larger studies.

5. Conclusion

Together, these findings indicate that interaction of the
intestinal microbes with the innate immune system and
resulting inflammation is a crucial factor that could modify
diabetes and its complications. Understanding precise sig-
nals that activate each of the inflammasomes and thereby
regulate the gut microbiome composition would be impor-
tant for developing therapeutic strategies in diabetes and
its complications.
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