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Abstract: Pt-based bimetallic nanostructures have attracted a great deal of attention due to their
unique nanostructures and excellent catalytic properties. In this study, we prepared porous Pt–Pd
nanoparticles using an efficient, one-pot co-reduction process without using any templates or toxic
reactants. In this process, Pt–Pd nanoparticles with different nanostructures were obtained by
adjusting the temperature and ratio of the two precursors; and their catalytic properties for the
oxidation of methanol were studied. The porous Pt–Pd nanostructures showed better electrocatalytic
activity for the oxidation of methanol with a higher current density (0.67 mA/cm2), compared
with the commercial Pt/C catalyst (0.31 mA/cm2). This method provides one easy pathway to
economically prepare different alloy nanostructures for various applications.
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1. Introduction

Recently, direct methanol fuel cells (DMFCs) have been widely reported to exhibit high-energy
conversion efficiency, a low operation temperature, and environmentally benign properties [1,2].
Consequently, they exhibit potential as an alternative to conventional combustion engines in
next-generation mobile applications. Platinum (Pt) has been widely used as the highly-active catalyst
in DMFCs and heterogeneous catalysis [3] because it possesses a unique intrinsic structure and is able
to facilitate both hydrogen oxidation and oxygen reduction [4,5]. Unfortunately, the limited resource
reserves and sky-high price of Pt has become one of the main barriers inhibiting the commercialization
of DMFCs. Therefore, it would be beneficial to reduce the consumption of Pt by replacing it with
non-noble metals while attempting to maintain the excellent properties previously mentioned.

To address this issue, various Pt-based bimetallic nanoparticles (Pt–Pd, Pt–Cu, Pt–Ni, Pt–Co etc.)
have been reported to serve as economical and effective candidates for Pt catalysts in various
fields [6–8]. Firstly, the introduction of traditional metal compositions acts to reduce the consumption
of Pt catalysts [9–11]. Furthermore, the introduction of secondary metal elements can modify the
crystallographic and electronic structures of Pt nanoparticles, and so, improve the binding energy
between Pt and the poisonous species [9]. Among the various noble-metal nanomaterials available
for catalytic applications, palladium (Pd) shares the same face-centered cubic structure and a nearly
identical lattice with Pt [10], and Pd has other advantages, such as low-price, good CO-tolerance,
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and excellent catalytic activity. Therefore, Pd is probably one of the best candidates for alloying with
Pt [11,12].

The size, shape, composition, and surface structure of Pt-based alloy nanoparticles have
been shown to significantly influence the catalytic properties. Until today, Pt–Pd bimetallic alloy
nanoparticles with all kinds of structures have been fabricated [13–16], such as cages [2], tetrahedral,
dendrites [17], clusters, octahedral [18], and cubes [19]. Compared with their solid counterparts,
porous nanoparticles are of great importance due to their larger surface area and lower density; they
also exhibit ideal structural features for many catalytic applications. Many different methods [20] have
been developed to prepare porous Pt–Pd nanostructures, including galvanic replacement [21], seeded
growth [22], solvothermal synthesis [15], co-chemical reduction, and electrochemical deposition [23].
For example, Hong et al. have developed a galvanic replacement route to prepare Pd–Pt alloy
nanocages [1] and Pd@Pt core-shell dendritic nanocrystals (NCs) using uniform Pd octahedral and
cubic NCs as sacrificial templates [1]. Lim et al. have fabricated Pt–Pd bimetallic nanodendrites,
which are composed of a dense array of Pt nano-branches on a Pd core, with uniform Pd nanocrystals
being used as crystal-seeds in an aqueous solution [3]. However, the above methods have several
disadvantages, including a relatively low cost–performance and multiple reaction steps. Therefore,
more cost-effective, novel, and environmentally friendly strategies need to be explored in the synthesis
of Pt–Pd bimetallic nanostructures to achieve superior catalytic properties.

Recently, we developed an efficient, one-pot solution-phase strategy to fabricate porous Pt–Pd
alloy nanoparticles (Pt–Pd NPs) utilizing a modified polyol process using ethylene glycol (EG) as the
reductant, and hydrochloric acid (HCl) and polyvinyl pyrrolidone (PVP) as the structure-directing and
stabilizing agents, respectively. No toxic organic solvent, seed, or template was used. These Pt–Pd NPs
showed excellent electrocatalytic activity and anti-CO poisoning ability for the oxidation of methanol
compared with commercial Pt black (PtB).

2. Materials and Methods

2.1. Materials and Reagents

Hexachloroplatinic acid (H2PtCl6·6H2O, ACS reagents), sodium tetrachloropalladate (Na2PdCl4,
98%), ethylene glycol (EG, >99%) and polyvinyl pyrrolidone (PVP, average Mw ≈ 55,000) from
Sigma-Aldrich (St. Louis, MO, USA); hydrochloric acid (HCl, 37 wt %) and all other solvents (acetone,
hexane and ethanol) from SINOPHARM (Shanghai, China) were used for the synthesis of the Pt–Pd
nanoparticles. Commercial Pt black (PtB) from RiYn (Shanghai, China) was used as the reference
catalysts. All the chemicals were used as received without further purification.

2.2. Synthesis of Pt–Pd NPs

The Pt–Pd NPs were synthesized using a modified polyol process. In the process, 2.5 mL ethylene
glycol (EG) was refluxed for 5 min at 190 ◦C in the flask. Then, 0.34 mL of 37 wt % HCl solution was
added whilst vigorously stirring. Subsequently, 0.94 mL of PVP 0.0375 M and 0.94 mL of 0.0625 M
H2PtCl6·6H2O and Na2PdCl4 in EG were repeatedly added into the above solution 10 times over
a 5 min period. After the addition of the reactants, the solution was again heat-treated for 20 min
at 190 ◦C. The samples were collected using centrifugation and continually washed several times
using acetone, ethanol and hexane. Finally, the Pt–Pd NPs were dispersed in an ethanol solution.
The reaction temperature, and the ratio of the two precursors (H2PtCl6/Na2PdCl4) were changed in
order to optimize the reaction conditions.

2.3. Structural Characterization

Transmission electron microscope (TEM) and high-resolution TEM (HRTEM) images were taken
using a JEOL JEM-2100F microscope operated at the accelerating voltage of 200 kV (Hitachi, Tokyo,
Japan). High-angle annular dark-field scanning TEM (HAADF-STEM) images and scanning electron
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microscopy (SEM) images were obtained using a Magellan 400 microscope operated at the accelerating
voltage of 30 kV (FEI, Hillsboro, OR, USA).

Wide-angle and low-angle powder X-ray diffraction (XRD) profiles were obtained with a D8
ADVANCE diffractometer with Cu Kα radiation (Burke, Germany).

2.4. Electrochemical Measurements

Cyclic voltammogram (CV) curves were obtained using a CHI 600C electrochemical analyzer (CH
Instrument, Shanghai, China). The measurements were conducted using a conventional three-electrode
cell in this experiment, where an Ag/AgCl electrode, a platinum wire, and a glassy carbon electrode
(GCE, 3 mm in diameter) modified by catalysts were used as the reference electrode, counter electrode,
and working electrode, respectively. After being carefully cleaned, the samples were coated on the
surface of the GCE with a load of 4 µg. Then, Nafion solution (2.0 µL, 1 wt %) was dropped onto
the surface of the samples and was air-dried naturally. The cyclic voltammetry (CV) curves were
measured in a 0.1 M H2SO4 solution saturated by nitrogen at room temperature, in order to determine
the electrochemical active surface area (ECSA). Methanol oxidation reaction (MOR) measurements
were performed in a 0.5 M H2SO4 solution containing 1.0 M methanol. The potential scan rate was
50 mV/s for these CV measurements. As a comparison, Pt/C (Alfa) was used as the baseline catalysts,
and the electrochemical measurement was performed with the same process as that described above.

3. Results

3.1. Structural Characterization of Porous Pt–Pd Nanoparticles

Figure 1 shows the sizes and morphologies of the synthesized porous Pt–Pd nanoparticles
(Pt–Pd NPs) reacted at 190 ◦C (with a Pt:Pd precursor ratio of 9:1). Well-defined and uniform Pt–Pd
NPs with an average size of 19.8 nm were obtained, as shown in Figure 1a. They had a narrow size
distribution of 16–25 nm. More importantly, each nanoparticle had a porous structure, with many small
particles stacking together, as shown in Figure 1b. From the HRTEM images, the lattice-fringe distances
were 0.224 and 0.194 nm (Figures 1b and 1(b-2)), which were close to the (111) and (200) plane of the
single Pt (0.2265 nm, 0.1962 nm) and Pd (0.2246 nm, 0.1945 nm), respectively. Its single-crystalline
nature could also be elucidated by the corresponding fast Fourier transform (FFT) pattern (inset in
Figure 1(b-1)). In addition, XRD measurements were performed to investigate the crystal structures
of Pt–Pd NPs. In the XRD spectrum (Figure 2a), these characteristic diffraction peaks of Pt–Pd NPs
are located between single Pt (JCPDS-04-0802) and Pd (JCPDS-46-1043), demonstrating the formation
of a Pt–Pd bimetallic alloy with a face-centered cubic structure. The ratio of I(111)/I(200) diffraction
peak for Pt–Pd NPs in the XRD pattern was obviously larger than that of the Pt nanocrystals with
standard crystalline parameters, indicating a higher percentage of (111) crystal planes in Pt–Pd
NPs [23]. The STEM image (Figure 1c) of Pt–Pd nanoparticles clearly shows the porous structure
with small particles stacking together. The elemental distribution of the Pt–Pd NPs was illustrated
in the EDS-mapping images (the insets in Figure 1c). Based on the results, it was revealed that Pt
and Pd were homogeneously distributed throughout the nanoparticles. The elemental compositions
were investigated using energy-dispersive spectroscopy (EDS) (Figure 2b). The compositional ratio
calculated by the EDS spectrum was Pt:Pd = 11:1.
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Figure 1. Morphology and composition analyses for the porous Pt–Pd nanoparticles synthesized
at 190 ◦C: (a) Representative low-magnification TEM image, (b) high-magnification TEM image,
(b-1) the corresponding Fourier transform (FFT) pattern, (b-2) the corresponding magnified TEM
image, (c) high-angle annular dark-field scanning TEM (HADDF-STEM) image. The insets in (c) show
the corresponding elemental mapping images of Pt (blue) and Pd (red) for porous Pt–Pd nanoparticles.

Figure 2. Composition analyses for the porous Pt–Pd nanoparticles synthesized at 190 ◦C: (a) XRD
spectrum and (b) energy-dispersive spectroscopy (EDS) spectrum.

3.2. Controllable Synthesis of Pt–Pd NPs

To illustrate the formation process of porous Pt–Pd NPs, we adjusted the reaction conditions,
especially the reaction temperature and the ratio of the two precursors, and investigated the influence
these adjustments had on the morphologies of the final bimetallic nanoparticles.

As demonstrated in various studies, the temperature is one of the most important parameters
affecting the decomposition and reduction rate of the metal precursor. This acts to change the growth
kinetics by adjusting the equilibrium established between the different species found in the reaction
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solution. As shown in Figure 3a,b, cubic nanoparticles were formed without the stacking phenomenon
when the temperature was 170 ◦C. However, the porous alloy structures stacked at 180 ◦C (Figure 3c)
and 190 ◦C (Figure 3e), respectively. In addition, there are some lattice fringes observed on the surfaces,
all of which are beneficial to achieving a high catalytic activity. It can be inferred from this that more
crystal nuclei generate at higher temperatures, and thus grow into particle-stacking structures, which
would result in a higher surface area and more active sites conducive to better catalytic properties [4].
Additionally, from the HRTEM images in Figure 3b,d,f, no defects can be seen in the stacking structures
which demonstrates that these alloy particles are of single-crystalline structures.

Figure 3. Morphologies of Pt–Pd nanostructures prepared at different temperatures. TEM images:
(a) 170 ◦C, (c) 180 ◦C, (e) 190 ◦C; HRTEM images: (b) 170 ◦C, (d) 180 ◦C, (f) 190 ◦C.

In addition to temperature, the ratio of the two different precursors is another important factor
in adjusting the rate of reaction and thus the morphologies of the final nanostructures. In this study,
the molar ratio of H2PtCl6·6H2O and Na2PdCl4 were adjusted between a range of 1~10. As shown
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in Figure 4, the size of the Pt–Pd bimetallic nanoparticles increased from 12, 19, 20, 22, to around
30 nm with the decrease in the Pt/Pd precursor ratio. When the ratio is 10 (Figure 4a) or 1 (Figure 4f),
small nanoparticles were obtained without a stacking structure. When the ratio was 9 (Figure 4b),
7 (Figure 4c), 5 (Figure 4d), and 3 (Figure 4e), nanostructures with small particles stacking together
were obtained; this illustrates that the stacking structures could be obtained under the appropriate ratio.
The porous structure with stacking particles is most notable when the ratio is 9. The special structure
with small particles stacking together is helpful in improving the catalytic activity. As we know, the
reduction potential of PdCl4−/Pd0 (0.62 V vs. RHE) is smaller than that of PtCl4−/Pt0 (0.758 V vs.
RHE). Therefore, some Pd4+ ions in this solution may be easily deoxidized and serve as deposition or
nucleation sites. As the Pt/Pd precursor ratio decreases, the amount of Pd nuclei increases, leading to
an increase in the formation of the stacking-particle structure (Figure 4b). With a continual decrease
in the Pt/Pd precursor ratio, the growth of Pd nuclei is in a dominant position, and thus leads to the
increase of alloy particles’ size (Figure 4e,f), not the formation of more stacking-particles structures.

Figure 4. TEM images of Pt–Pd nanoparticles prepared by adding precursors with different ratios:
(a) 10:1, (b) 9:1, (c) 7:1, (d) 5:1, (e) 3:1, (f) 1:1.
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3.3. Electrocatalytic Properties

In order to characterize the catalytic properties of the Pt–Pd nanoparticles obtained at different
temperatures and different ratios of precursors, the electrochemical properties of Pt–Pd nanoparticles
were analyzed using a three-compartment electrochemical cell.

Figure 5 shows the cyclic voltammetry (CV) curves of Pt–Pd nanoparticles obtained at different
temperatures. The CV curves in Figure 5a were recorded at room temperature in 0.1 M H2SO4 solutions.
These curves exhibit two distinctive potential regions associated with the Hupd adsorption/desorption
process and the formation of an OHad layer, which are typical Pt-like Hupd features. On the basis of the
CV data, the electrochemically active surface area (ECSA) of catalysts was calculated by measuring the
charge collected in the Hupd adsorption/desorption region. In addition, the electrocatalytic behaviors
were examined in a methanol oxidation reaction system. Figure 5b,c shows the mass and specific
activities of catalysts for the methanol oxidation reaction. The catalysts showed typical features found
in the oxidation process of methanol, which contain characteristic double anodic peaks in the forward
and reverse scans. The calculated results are shown in Table 1. The area specific activity of Pt–Pd
NPs obtained at 190 ◦C, 180 ◦C, 170 ◦C and Pt/C was 0.67, 0.49, 0.19 and 0.31 mA·cm−2, respectively.
This result demonstrates that nanoparticles obtained at 190 ◦C show the highest catalytic activity,
and the specific activity is about 2.13 times that of the commercial Pt/C catalyst. The increased
activity of Pt–Pd NPs could be attributed to their unique structures with the porous features and a
higher percentage of Pt {111} planes exposed [23]. Firstly, the Pt–Pd NPs exhibit a three-dimensional
interconnected porous structure with a large surface area and an interconnected network composed
of nano-branches; this is helpful for electron and mass transfer in catalytic reactions. Secondly, it is
possible for the electronic, strain, or alloy effects to take place in the unique hierarchical Pt–Pd bimetallic
structure, resulting in a further enhanced catalytic reactivity [24].

Figure 5. Cyclic voltammetry (CV) curves of Pt–Pd nanoparticles prepared at different temperatures
and commercial Pt/C: (a) in 0.5 M H2SO4 solution; (b) in 1.0 M methanol + 0.5 M H2SO4 solution,
mass activities; and (c) in 1.0 M methanol + 0.5 M H2SO4 solution, specific activities. The scan rate was
50 mV/s.

Table 1. The catalytic activities of Pt–Pd nanoparticles at different temperatures and commercial Pt/C
for methanol oxidation reaction.

Catalysts ECSA
(m2/g)

Mass Activity
(mA/mg)

Specific Activity
(mA/cm2)

Pt–Pd-190 ◦C 31.59 210.35 0.67
Pt–Pd-180 ◦C 10.54 51.48 0.49
Pt–Pd-170 ◦C 35.48 65.85 0.19

Pt/C 85.63 268.3 0.31

Figure 6 shows the cyclic voltammetry (CV) curves of Pt–Pd nanoparticles obtained at different
ratios of precursors. From Figure 6a, we calculated the ECSA of the catalysts by measuring the charge
collected in the Hupd adsorption/desorption region. In addition, the electrocatalytic behaviors were
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examined in a methanol oxidation reaction system. Figure 6b,c shows the mass activities and specific
activities of catalysts for the methanol oxidation reaction; characteristic double anodic peaks in the
forward and reverse scans were observed, indicating a typical feature of the oxidation process of
methanol. The results are summarized in Table 2, and it indicates that the catalytic activity decreases
with the decrease of the ratio of Pt/Pd, while the ratio (If/Ib) of the forward current density (If) to the
backward current density (Ib) increases with the decrease of the ratio of Pt/Pd. This demonstrates that
it is beneficial to improve the anti-CO poisoning performance.

Figure 6. CV curves of Pt–Pd nanoparticles prepared by adding precursors with different ratios and
commercial Pt/C: (a) in 0.5 M H2SO4 solution; (b) in 1.0 M methanol + 0.5 M H2SO4 solution, mass
activities; (c) in 1.0 M methanol + 0.5 M H2SO4 solution, specific activities. The scan rate was 50 mV/s.

Table 2. The catalytic properties of Pt–Pd nanoparticles prepared by adding precursors with different
ratios and commercial Pt/C for methanol oxidation reaction.

Catalysts ECSA
(m2/g)

Mass Activity
(mA/mg)

Specific Activity
(mA/cm2) If/Ib

Pt–Pd (9:1) 31.59 210.35 0.67 1.32
Pt–Pd (7:1) 23.51 112.95 0.48 1.89
Pt–Pd (5:1) 20.70 84.20 0.41 1.89
Pt–Pd (3:1) 20.90 65.60 0.31 2.02

Pt/C 85.63 268.3 0.31 1.29

4. Conclusions

In summary, this study presents an efficient, one-pot route for the synthesis of porous Pt–Pd
bimetallic nanostructures without using seeds, templates and toxic reactants. The Pt–Pd NPs had a
porous feature and single-crystalline nature, with small particles stacking together. Thus, they exhibited
an excellent catalytic activity for the oxidation of methanol with a higher current density (0.67 mA/cm2)
than the commercial Pt/C catalyst (0.31 mA/cm2). In addition, it was found that the anti-CO poisoning
properties improved as the amount of palladium increased. Our method provides a possibility for the
easy and economical preparation of different alloy nanostructures for various applications.
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