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Abstract

Genotype imputation is often used in the meta-analysis of genome-wide association studies (GWAS), for combining data
from different studies and/or genotyping platforms, in order to improve the ability for detecting disease variants with small
to moderate effects. However, how genotype imputation affects the performance of the meta-analysis of GWAS is largely
unknown. In this study, we investigated the effects of genotype imputation on the performance of meta-analysis through
simulations based on empirical data from the Framingham Heart Study. We found that when fix-effects models were used,
considerable between-study heterogeneity was detected when causal variants were typed in only some but not all
individual studies, resulting in up to ,25% reduction of detection power. For certain situations, the power of the meta-
analysis can be even less than that of individual studies. Additional analyses showed that the detection power was slightly
improved when between-study heterogeneity was partially controlled through the random-effects model, relative to that of
the fixed-effects model. Our study may aid in the planning, data analysis, and interpretation of GWAS meta-analysis results
when genotype imputation is necessary.
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Introduction

Genome-wide association studies (GWA studies or GWAS) using

high-throughput genotyping data are a powerful tool and are of a

great help in identifying susceptibility loci for human complex traits

and common diseases [1–4]. However as most of these susceptibility

loci have small effects, large sample sizes are usually required for

having sufficient statistical detection powers. Such sample size

requirement can be beyond the capacity of a single GWA study.

A partial solution to this issue is meta-analysis, which combines

data from multiple studies of relatively small sample sizes, with the

expectation to detect genes underlying susceptibility loci with

greater power and produce more precise estimation of genetic

effects, and hence to provide more convincing conclusions than

the original individual studies do [5–8]. This strategy has been

applied to and improved our understanding in a number of

common diseases, such as Parkinson’s disease [9], type 2 diabetes

[10–12], bipolar disorder [13], colorectal cancer [14], and

rheumatoid arthritis [15], demonstrating the applicability and

usefulness of meta-analysis of GWAS.

A useful tool in GWAS is imputation, which can provide the

same set of SNPs across individual studies by inferring millions of

untyped/missing SNPs from typed SNPs and based on the known

knowledge such as haplotype structure from HapMap [16].

Imputation can improve the power for GWAS in a single study

[17], and can also be used for meta-analysis of GWAS by

combining data from different studies and/or with different

genotyping platforms. However, imputation is not perfect, and

errors and uncertainty can be introduced in the imputed

genotypes. These issues may consequently affect the detection

power of meta-analysis with imputation, which however has not

been fully investigated. Thus, it is necessary to investigate the

impact of imputation on GWAS, for appropriate planning, data

analysis, and interpretation of meta-analysis of GWAS.

To better assess the usefulness and limitation of the meta-

analyses of GWAS using genotype imputation, several critical

questions need to be answered:

N Does genotype imputation affect (or create) between-study

heterogeneity? If yes, how does this heterogeneity caused by

imputation affect the performance of meta-analysis of GWAS?

N Does imputation-based meta-analysis of GWAS with a much

larger sample size always have greater power than that of

individual component studies with smaller sample sizes?

N What to do in the presence of potential negative impacts of

genotype imputation on the meta-analysis of GWAS?
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In order to address these questions, we performed comprehen-

sive simulation studies based on the empirical GWAS dataset from

the Framingham Heart Study (FHS). We found that genotype

imputation may cause between-study heterogeneity and reduce

the power of meta-analysis of GWAS. Strategies were proposed to

alleviate this negative impact of genotype imputation on meta-

analysis of GWAS.

Results

Imputation effects on between-study heterogeneity
Data structure such as sample size and simulation parameters

were indicated in Tables 1 and 2 (see the Materials and Methods

section for details). We assessed the impact of genotype imputation

on between-study heterogeneity using two measurements for the

index I2: the mean value of I2 and the average percentage of

simulations with I2.50% (referred as large between-study

heterogeneity [6]). Results were based on 1,000 simulations for

each scenario with various QTL variances and risk increasing

allele frequencies (RAFs) (Fig. 1). Between-study heterogeneity was

almost ignorable for Scenario 1 (SNPs fully genotyped across sub-

samples, Fig. 1 A and B) and Scenario 2 (SNPs fully imputed

across sub-samples, Fig. 1 C and D), with the highest mean I2

below 15% and only limited fraction (,10%) of the simulations

having I2.50% for relatively rare SNPs (RAF between 0.01–

0.05). In contrast, significantly higher mean I2 and higher

percentage of large between-study heterogeneity were observed

in Scenarios 3 and 4 (when SNPs were imputed in one or two sub-

samples, Fig. 1 E–H). For Scenario 3, up to 60 percent of the

simulations showed I2.50%, and the mean I2 values reached 40–

50% for SNPs with RAF1-3. Scenario 4 showed similar level of

between-study heterogeneity to that of Scenario 3. In addition, in

Scenarios 3 and 4, between-study heterogeneity was observed to

increase with a larger variation explained by QTLs, and decrease

with a higher RAF. Therefore, imputation may cause between-

study heterogeneity, especially when imputation was performed in

some but not all of the sub-samples.

Comparison of performance of meta-analysis with and
without genotype imputation

The estimated type-I error rates and the power of meta-analysis

with both fixed-effects model and random-effects model are shown

in Table 3. For Scenarios 1 & 2, which have little between-study

heterogeneity, both fixed-effects and random-effects models had

correct type-I error rates that were below the target level 5%

under all conditions. For Scenarios 3 & 4, under which

considerable between-study heterogeneity existed, random-effects

model still had comparable type-I error rates. The fixed-effects

model however may have inflated type-I error rates, which can be

over 60% greater than that of random-effects model, showing the

need of taking caution in selecting appropriate meta-analysis

strategy.

The power of the meta-analysis was different for various

scenarios (Table 3). In general, the highest power was observed

when causal SNPs were genotyped in all individual component

studies (Scenario 1), followed by the situation when causal SNPs

were imputed in all individual component studies (Scenario 2), and

the lowest power was seen when SNPs were genotyped in some

sub-samples and imputed in the other sub-samples (Scenarios 3 &

4). For the independent populations generated through HAP-

GEN2 [18], Scenario 2 had similar powers as those of Scenarios 3

and 4 (results not shown). When compared between meta-analysis

with fixed-effects model and that with random-effects model, the

power was almost the same for Scenario 1 or Scenario 2. For

Scenarios 3 & 4, meta-analysis using random-effects model

performed slightly better than that using fixed-effects model,

particularly when QTL variance was relatively large. For instance,

when s2
a = 2%, a 5–25% power increase was shown for random-

effects model over that for fixed-effects model. These results

indicate that meta-analysis with random-effects model is more

appropriate for GWAS with imputation.

The estimation accuracy of the genetic effects, measured by

mean(b̂b) and SE(b̂b), were different for various scenarios, as shown

in Fig. 2. The mean(b̂b) values were almost equal to the true values

for Scenario 1, and were underestimated for Scenarios 2–4. The

percentages of underestimation were similar across different RAF

intervals. For example, when the simulated mean(b̂b) was

3:76(SE~0:35) within RAF2, the mean(b̂b) was 3:74(SE~0:59)

Table 1. Selection strategy and quality control parameters for sub-population construction.

Samples Selection strategy Sample size No. of SNPs surviving QC

Pre-QC After-QC

Sample 1 Singletons, all unrelated subjects from the 1st generation (two at most) in each pedigree,
plus married-ins in the 2nd and the 3rd generations

2,200 2,023 412,432

Sample 2 One subject from the 2nd generation in each pedigree 1,071 1,055 416,800

Sample 3 One subject from the 3rd generation in each pedigree 812 806 417,532

Parameter values for quality control (QC): minor allele frequency .0.01, Hardy-Weinberg equilibrium test p-values.0.0001, sample call-rate .0.90, and SNP call-rate
.0.90.
doi:10.1371/journal.pone.0034486.t001

Table 2. Simulation schemes and parameters.

Genotypes of the causal SNPs

Scenario 1 Directly-typed in all three sub-samples

Scenario 2 Imputed in all three sub-samples

Scenario 3 Imputed in Samples 1 & 2 but typed in Sample 3

Scenario 4 Imputed in Sample 1 but typed in Samples 2 & 3

Range of risk increasing allele frequency (RAF)

RAF1 0.01,RAF#0.05

RAF2 0.05,RAF#0.10

RAF3 0.10,RAF#0.20

RAF4 0.20,RAF#0.50

QTL variation 0.5%,1.0%,1.5% and 2.0%

doi:10.1371/journal.pone.0034486.t002

Imputation Impact on GWAS Meta-Analysis
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for Scenario 1, 3:57(SE~0:81) for Scenario 2 and 2:56(SE~1:27)
for Scenario 3.

Power comparison between imputation-based meta-
analysis and individual association studies

Power comparisons between meta-analysis and individual

association analyses were conducted and were partially shown in

Fig. 3. As indicated previously, meta-analysis with causal SNPs

typed (Scenario 1) or imputed (Scenario 2) across sub-samples had

higher power. When all causal SNPs were typed in Sample 1, the

power of the analyses in individual Sample 1 was compatible with

that of Scenarios 1 and 2, and was higher than that of Scenarios 3

and 4. Moreover, the power of the analyses in individual Sample 1

was still mostly higher than that of Scenarios 3 and 4, even when

causal SNPs were imputed in Sample 1. These results illustrate the

importance of taking cautions when applying meta-analysis with

genotype imputation to GWAS, as the power of the analyses in

individual samples may not be necessarily lower than that of the

meta-analysis with genotype imputation.

Discussion

In this study, we investigated the performance of imputation-

based meta-analysis of GWAS through an empirical GWAS

genotype data. Considerable between-study heterogeneity was

Figure 1. Assessment of between-study heterogeneity under various scenarios. The plots in the left column (A, C, E, G) show the mean
values of I2 , and those in the right column (B, D, F, H) show the average percentage of simulations with I2

w50% (large between-study
heterogeneity). The plots in rows 1–4 are for scenarios 1–4, respectively. Descriptions of scenarios and RAF’s are given in Table 2, and ‘‘var’’ values
indicate the simulated QTL variance.
doi:10.1371/journal.pone.0034486.g001
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detected and reduction in detection power was observed when

causal variants were typed in some individual studies and imputed

in the others. Specifically, for meta-analysis using fixed-effects

model, the power loss was up to ,25% for situations that causal

genes were genotyped in some but not all individual component

studies, comparing to relatively homogenous situations of typed

causal variants across all individual studies. Notably, for situations

of partially directly-typed causal variants, the power of meta-

analysis may be lower than that of analyses performed in some

individual studies.

An important issue in meta-analysis is the potential existence of

between-study heterogeneity, which can affect the power of the

meta-analysis. In the context of genome-wide association studies,

the between-study heterogeneity can be caused by various factors,

such as the variation of genetic effects across different populations,

incomparable measures of phenotype used in different studies,

and/or the deviation from Hardy–Weinberg equilibrium for SNPs

and population stratification. With the above-mentioned hetero-

geneity-causing factors removed by constructing our sub-samples

from a single population and using the same distribution for

genetic effects across sub-samples, the observed between-study

heterogeneity in our simulated sub-samples will be most likely to

be only due to imputation, indicating another possible source of

between-study heterogeneity for the meta-analysis of GWAS.

Although our study is based on simulations for an empirical data

set, the observations from our study are closely relevant to

practical analyses. An interesting and useful observation is that a

meta-analysis with imputation is not necessarily more powerful

than that of analyses performed in individual samples, as shown in

Fig. 3, especially when imputation was performed in some but not

all individual samples. This may be because the loss of power due

to the introduced uncertainty by imputation is greater than the

gained power by increasing the sample size through meta-analysis.

This observation illustrates the importance of taking cautions in

the application and data interpretations of applying meta-analysis

to GWAS. In addition, we compared the analyses under different

imputation scenarios, one of which is that SNPs are genotyped in

some individual samples, but untyped in other samples. This

situation is not uncommon in practice. For example, when

different genotyping platforms are used for different GWA studies,

many SNPs will be genotyped in some samples for one specific

genotyping platform, and be untyped in other samples with a

different genotyping platform, requiring imputations in some but

not all sub-samples. Another situation is when in silico replications

are performed for candidate or genome-wide association analyses.

In this case, statistically significant SNPs are genotyped in the

discovery sample, and may not be genotyped in all the replication

samples and thus need to be imputed, such as in our previous

study [19].

Both risk increasing allele frequency and the magnitude of

variation explained by the causal SNPs can affect between-study

heterogeneity, as shown in Fig. 1. Briefly, for a specific value of var,

an increasing RAF results in less between-study heterogeneity; and

for a specific range of RAF, an increasing value of var results in

more between-study heterogeneity. These trends may be partially

explained by effect sizes of the causal SNPs. On one hand, greater

effect sizes may imply greater between-population variation for the

causal SNPs, and thus greater chances for observing between-

study heterogeneity. On the other hand, it is known from

population genetics theory that the variation explained by the

causal SNPs is proportional to RAF*(1-RAF)*a2, where a is the

effect size for the causal SNP. Thus for a fixed value of var, an

Table 3. Mean power and type-I error rate of Zmeta (a= 1027).

QTL variance (%) Fixed-effects model Random-effects model

RAF1 RAF2 RAF3 RAF4 RAF1 RAF2 RAF3 RAF4

Scenario 1 0 3.01 2.98 3.10 2.97 2.86 3.05 2.89 2.89

0.5 18.77 20.93 19.38 19.41 16.35 20.93 19.34 19.40

1.0 84.96 82.32 81.66 80.43 78.39 81.81 81.36 80.23

1.5 98.79 97.76 95.69 95.90 93.24 94.66 93.89 92.29

2.0 100.00 98.88 96.69 96.72 96.17 95.77 95.59 95.09

Scenario 2 0 3.27 3.33 3.25 3.42 3.13 3.12 3.04 3.05

0.5 17.20 14.01 13.71 8.91 17.20 14.01 13.60 7.72

1.0 69.90 67.77 56.32 49.29 69.90 67.77 56.00 44.66

1.5 88.20 84.35 81.19 68.76 88.09 84.35 80.77 62.83

2.0 91.51 90.22 86.61 73.87 91.29 90.11 85.87 66.15

Scenario 3 0 5.57 5.49 5.48 5.50 3.55 3.52 3.53 3.52

0.5 10.13 7.42 7.65 4.04 10.92 8.14 7.65 5.70

1.0 37.26 34.81 29.76 26.48 38.18 37.70 36.69 33.27

1.5 46.98 44.8 41.34 34.92 46.08 47.14 46.09 42.62

2.0 49.13 47.27 44.00 38.12 53.33 52.54 51.26 49.17

Scenario 4 0 5.56 5.53 5.52 5.56 3.54 3.53 3.56 3.54

0.5 8.60 7.55 7.21 4.40 8.72 7.83 7.61 4.99

1.0 32.77 35.02 35.02 31.12 33.25 32.41 32.12 30.22

1.5 45.27 45.73 45.73 39.61 46.76 46.34 45.01 40.63

2.0 47.50 47.89 47.89 40.94 51.43 50.20 49.74 45.55

Descriptions for Scenarios 1–4 and RAF ranges are given in Table 2. Mean power and type-I error rates were estimated based on 1,000 simulations.
doi:10.1371/journal.pone.0034486.t003
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increasing RAF yields a smaller value for a; and for a specific range

of RAF, an increasing var yields a greater value for a. For either

case, the magnitudes of effect sizes are positively correlated with

those of between-study heterogeneity.

To deal with the negative impacts of genotype imputation on

meta-analysis of GWAS, we provide the following suggestions

based on our study. Firstly, focus on SNPs presented in all

individual studies, as meta-analysis with direct genotypes in all

individual studies help to avoid generating spurious between-study

heterogeneity by genotype imputation. Secondly, random-effects

model should be used when significant between-study heteroge-

neity is detected. Although the random-effects model may not

guarantee higher power than that of the fixed-effects model, it may

help obtain more accurate effect size estimation. Thirdly, when

sample sizes of individual studies vary largely, the results from the

largest individual sample should be carefully evaluated, as it may

provide better power than that of mate-analysis with imputation.

Lastly, improving imputation accuracy may be useful in reducing

between-study heterogeneity introduced by genotype imputation.

A number of issues in our studies may need further investigations.

For example, only three GWAS sub-samples were used in our

current study. Although a similar number of individual populations

were used in various published meta-analysis of GWAS (e.g.,

[14,20]), increasing the number of sub-samples in simulation studies

may be needed in order to provide more robust conclusions. In our

simulations, all sub-samples are constructed from the same

genotyping platform. Additional simulations may be helpful in

understanding the power for meta-analysis of GWAS using samples

with different genotypes. Thus in future studies, we will perform

analyses to investigate situations such as increased numbers of sub-

samples and sub-samples with different genotyping platforms.

Materials and Methods

In this section, we will first summarize how the sub-populations

are constructed; we then describe the model and procedure for

phenotype simulation; and at the end, we describe several topics

related to our analyses, including imputation method, analytical

models and test statistic for meta-analysis, and heterogeneity

detection.

Sub-population construction
The individual study samples used for the meta-analysis were

constructed from an empirical GWAS dataset, the genome-wide

genotyping data obtained from FHS SNP Health Association

Resource (SHARe) project. The application for using the data has

been approved by Tulane University Institutional Review Board and

the access to the data has been granted by NHLBI Data Access

Committee. The dataset contains more than 9,300 subjects from three

generations of over 900 families and was genotyped for ,550,000

SNPs (Affymetrix 500 K mapping arrays plus Affymetrix 50 K

supplemental arrays). Detailed information about the FHS and its

genotyping dataset can be found at the dbGaP website. For simplicity,

we only used the SNPs in the 500 K array for subsequent analyses.

To imitate meta-analysis, three sub-samples (Samples 1–3) were

constructed, with related information summarized in Table 1.

Briefly, Sample 1 included all unrelated subjects from the 1st

generation (two at most in each pedigree), and married-ins in the

2nd and 3rd generations. Sample 2 and Sample 3 were constructed

by randomly selecting one subject from the rest members of the

2nd and 3rd generations in each pedigree, respectively. This

selection strategy helps to ensure unrelatedness among individuals

within each sample. After data quality controls, including

removing individuals with genome-wide genotype missing rates

.10%, SNPs with genotyping call rates ,90% or minor allele

frequencies ,0.01, and Hardy-Weinberg equilibrium test p-

values, = 0.0001, the numbers of individuals for Samples 1–3

are, respectively, 2,023 (883 males and 1,140 females), 1,055 (471

males and 584 females), and 806 (362 males, 444 females), and the

number of common SNPs across all three populations is 392,261.

Notice that throughout the simulations, genotypes were fixed and

obtained from the FHS data set directly, and phenotypes were

simulated as described in the next session.

Genotypes of three independent populations were also gener-

ated through simulations using the software HAPGEN2. The

sample sizes for the three populations were 2000, 1000, and 1000,

respectively. The genotypes were generated based on the 1000

Genomes data provided by the software, and SNPs matching those

in the Affymetrix 500 K mapping array were then selected to be

the genotyped SNPs for the simulated populations. This simulation

produced fully independent samples.

Phenotype simulation
For a di-allelic quantitative trait locus (QTL), the risk allele and

the alternative allele are denoted by 1 and 0, respectively. The

Figure 2. Comparison of effect size and standard error
estimated by meta-analysis to simulated true values. The
simulated QTLs explain 2.0% of the total trait variance.
doi:10.1371/journal.pone.0034486.g002

Figure 3. Power comparison between meta-analysis of differ-
ent scenarios and association analysis in individual Sample 1.
Sample1_geno and Sample1_impu refer to situations where causal
SNPs are typed and imputed, respectively, in Sample 1. QTL variation of
2.0% is used.
doi:10.1371/journal.pone.0034486.g003
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frequencies for the two alleles are assumed to be p and q ( = 12p),

respectively. With an additive genetic effect of a, the phenotypic

value for the ith individual is modeled by: ŷyi~mzb̂bgize, where m
is the mean population phenotypic value, gi is the genotype score

which is coded as the number of risk alleles carried by the ith

individual, b̂b is the regression coefficient rendering the effect of the

assessing QTL (E(b̂b)~a), and e represents the residual error. The

variance due to the QTL is then var or s2
a~2pqa2.

To cover various biologically plausible conditions, our analyses

were performed with a range of parameter values. Briefly, the

variance explained by an assumed QTL was set as 0–2.0% with a

0.5% increment. Risk increasing allele frequency (RAF) was

binned into four intervals: 0.01,RAF#0.05, 0.05,RAF#0.10,

0.10,RAF#0.20 and 0.20,RAF#0.50, which were represented

by RAF1-4, respectively. To simulate meta-analysis with or

without genotype imputation in individual studies, four scenarios

(listed in Table 2) were considered: 1) causal SNPs were directly

typed in all sub-samples; 2) causal SNPs were imputed in all sub-

samples; 3) causal SNPs were imputed in Samples 1 & 2 and typed

in Sample 3; and 4) causal SNPs were imputed in Sample 1 and

genotyped in Samples 2 & 3.

The simulation process for phenotypic values follows the

strategy proposed by Anderson et al [21]. Briefly, for each

combination of parameter values, one SNP at each time was

randomly picked as a causal variant from the genome-wide data

set, and the phenotypic values were then simulated for the study

subjects according to their genotypes for the SNP. The selected

SNP was then set as directly typed or untyped. Power and type-I

error were estimated as the proportions of significant simulation

replicates with an assumed genome-wide significance level of 1027

and an additive model. For each combination of RAF range and

QTL variance, 1,000 simulations were performed.

Genotype imputation and genetic association analysis in
individual studies

Untyped SNPs were imputed by the program IMPUTE

(Version 0.5.0) [16] using default parameters. Based on the

hidden Markov Model and conditional on a set of known

haplotypes and an estimated fine-scale recombination map, the

program produces the probability distribution of missing geno-

types. The phased HapMap II (rel#22 - NCBI Build 36) genotype

data from the 60 CEU HapMap founders was used as the

reference set. The minimum posterior probability of 0.95 was used

as the threshold to accept the imputed genotypes as accurate for

association tests [22].

SNP association tests were carried out by using the program

SNPTEST (Version 1.5.1) [16], which implements an F-test and

accounts for the uncertainty in the imputed genotypes.

Meta-analysis
Fixed-effects and random-effects models. Fixed-effects

model considers the genetic effects to be the same across all

individual studies and assumes that any difference is due to

chance. In genetic association studies, however, genetic effects

could be different across populations due to various reasons such

as allele frequency differences, different biases and estimation

errors across studies. Thus to take these differences into

consideration, random-effects model may be a better choice, as

random-effects model assumes and can accommodate the

potential differential effects across studies.

Test statistic for meta-analysis. In this study, we adopted

the inverse variance method to construct the test statistic for meta-

analysis, which was recently reviewed in the context of genetic

association for quantitative traits by de Bakker and colleagues [5].

The test statistic takes the following form,

Zmeta~
b̂b

SE
ð1Þ

where b̂b~

P
i

biwiP
i

wi
, SE~

ffiffiffiffiffiffiffiffiffiffiffi
1P
i

wi

r
, wi~

1

SE2
i
zt2

. For fixed-effects

model, t2~0, and for random-effects model, t2 is a function of

Cochran’s Q (see below). bi and SEi denote the beta coefficient

and standard error of the estimated genetic effect in the ith study,

respectively. The test statistic Zmeta approximately follows a

standard normal distribution, which is the basis for assessing its

statistical significance.

Heterogeneity measurements. To test between-study

heterogeneity, we used the I2 index [6], which is

I2~
Q{(k{1)

Q
, Qw(k{1)

0, Qƒ(k{1)

(
ð2Þ

where k is the number of studies and Q represents Cochran’s Q

statistic [23], defined as

Q~
X

i

wi(Ti{T̂T) ð3Þ

where Ti and T̂T are effect sizes for the ith study and the combined

study, respectively.

The I2 index, taking values between 0–100 percent, can be

interpreted as a percentage of heterogeneity, that is, the part of

total variation that is due to between-study variance. This statistic

is independent of the number of studies and can be compared

across meta-analyses with different number of studies and metrics.
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