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Abstract

The reconstruction and application of genome-scale metabolic network models is a central

topic in the field of systems biology with numerous applications in biotechnology, ecology,

and medicine. However, there is no agreed upon standard for the definition of the nutritional

environment for these models. The objective of this article is to provide a guideline and a

clear paradigm on how to translate nutritional information into an in-silico representation of

the chemical environment. Step-by-step procedures explain how to characterise and cate-

gorise the nutritional input and to successfully apply it to constraint-based metabolic models.

In parallel, we illustrate the proposed procedure with a case study of the growth of Escheri-

chia coli in a complex nutritional medium and show that an accurate representation of the

medium is crucial for physiological predictions. The proposed framework will assist

researchers to expand their existing metabolic models of their microbial systems of interest

with detailed representations of the nutritional environment, which allows more accurate

and reproducible predictions of microbial metabolic processes.

Introduction

A key approach in Systems Biology is the elucidation of the metabolic potential of an organism

and the transformation of this information into networks of metabolic reactions. Such net-

works are called genome-scale metabolic models and can be used in computer simulations of

metabolism of cells and cellular communities. For instance, models for various eukaryotic and

prokaryotic organisms and cell types have been reconstructed (e.g. as reviewed in [1]) and

applied in microbial ecology, biotechnology, and medical research [2–7].

By mathematical approaches, such as the application of Flux Balance Analysis (FBA), we

are able to optimise a predefined objective function, which is based on nutritional constraints

that represent the chemical environment of cells [4]. A widely used objective function is the

production of biomass, which constitutes building block metabolites (i.e. amino acids, lipids,

carbohydrates, nucleotides), inorganic ions, vitamins, and co-factors [8]. Flux Balance Analysis

(FBA) enables the estimation of maximal biomass production, i.e. yield or rate, depending on

how the model is constrained [9]. For example, biomass production rate can be predicted by

Flux Balance Analysis (FBA) if the inflow of nutrients to the metabolic network is constrained
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by the maximum nutrient uptake rate [10]. However, these uptake rates are context-, organ-

ism-, and compound-specific, which render the experimental measurement of the values for

many FBA applications infeasible especially in chemically complex environments (i.e. broad

range of potential nutrients). In contrast, if FBA models are directly constrained by the con-

centrations of nutrients, the biomass production yield can be predicted in units of grams bio-

mass per gram nutrient [9]. The accuracy of the FBA model predictions are dependent on

three factors: (1) A properly defined linear objective function that accurately represents the

cell’s biochemical objective, (2) an accurate reconstruction of the metabolic network architec-

ture that represents the cell’s metabolic capabilities, and (3) a quantitative representation of

the chemical environment with all nutrients that are available for uptake. Several approaches

and methods have been developed to construct realistic biomass objective functions [11,12]

and to increase the accuracy of the metabolic network structure [13–16]. A realistic representa-

tion of the nutritional environment has received far less attention, although it is of increasing

importance, as flux balance analysis is progressively applied in contexts, such as environmental

and clinical microbiology. For example, it is challenging to study the nutritional microenvi-

ronment of bacterial cells in the mammal’s intestine. In such cases, the exact chemical compo-

sition of the environment can only be vaguely defined, as the individual’s diet is a source of

variation [17] and the bioavailability of nutrients (especially important for the bioactive ones)

is dependent on various processes inside the intestine [18].

Thus, it is a common issue that there is no unanimous approach on how to model the nutri-

tional input in constraint-based modelling. For instance, it is usually not well-defined how to

proceed in representing various compounds (e.g. macromolecules such as proteins, isomeric

forms of compounds such as L- and D-Lactate, volatile compounds, gases, and trace elements)

in the models and how to proceed in calculating their inflow values (i.e. constraints) starting

from their concentrations. Researchers often unintentionally fail to provide information on

their exact methodology how nutritional constraints were calculated and in numerous

instances arbitrary numbers are used for nutritional constraints [19]. As a result, the validity of

phenotypic predictions is potentially impaired and the applicability of FBA models therefore

limited. Thus, new methods and guidelines are required to increase the predictive potential of

FBA models especially in chemically complex environments and to facilitate reproducibility of

results obtained from computational models of metabolism.

Here, we provide clear guidelines on how to design a realistic computational representation

of the nutritional input for metabolic models for environments, which are initially only

defined on the level of chemically complex components such as yeast extract, tryptone or milk

powder. Therefore, a step-by-step procedure is proposed that incorporates publicly available

databases and resources and facilitates reproducible calculations from chemically complex

components to the quantities of specific molecules that are presumably available for uptake by

the cell types of interest. The procedure is illustrated on the example of Lysogeny Broth (LB)

medium, a commonly used microbial growth medium (experimentally and in-silico) that con-

tains, besides water and NaCl, the chemically complex components tryptone and yeast extract

which provide a broad range of nutrients for microbial growth. Based on the example we

emphasise the importance for rationally designed nutritional constraints in FBA models in

order to obtain meaningful physiological predictions.

Material and methods

Software for data analysis and metabolic modelling

Nutritional data was stored and processed using R (v. 3.6.3, [20]) and the R-package ‘readODS’

(v. 1.6.7, [21]). FBA and further model analyses were performed using the R-packages
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‘glpkAPI’ (v. 1.3.2, [22]), ‘sybil’ (v. 2.1.5, [23]), ‘sybilSBML’ (v. 3.0.1, [23]), and the software

libSBML (v. 5.17.2 [24]) and GLPK (v. 4.65 [25]). For simulating the metabolic network of

Escherichia coli str. K-12 substr. MG1655, we employed the model ‘iJO1366’ [26], which can

be downloaded from the BiGG database (http://bigg.ucsd.edu/) [27,28]. The model’s default,

“core” biomass reaction with an ATP-consumption estimate for growth associated mainte-

nance (GAM) of 53.95 ATP gDW−1 was defined as an objective function. For data processing

and visualisation the R-packages ‘dplyr’ (v. 0.8.5, [29]) and ‘ggplot2’ (v. 3.3.0, [30]), ‘egg’

(v.0.4.5, [31]) were utilised.

Stepwise procedures

The methodology is graphically depicted in Fig 1. In the following section, we are going to

describe the modelling procedure, which is subdivided into 6 distinct steps. To illustrate the

proposed procedure, this protocol is applied to computationally model the media conditions

of Lysogeny Broth (LB) for cultures of Escherichia coli str. K-12 substr. MG1655 (S1 File: Step-

wise procedure of designing nutritional input (LB medium)).

Step 1: Understanding the chemical composition of the growth medium

and the physiology of the model organisms

The first task of nutritional modelling is the collection of information regarding the growth

medium of the organism. One of the aims of this initial step is to gather information about the

Fig 1. Graphical summary of stepwise procedures. Roadmap to definition of the nutritional input for genome-scale

metabolic models.

https://doi.org/10.1371/journal.pone.0236890.g001
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background of the organism of interest (e.g. metabolic functions, auxotrophies). Additionally,

a further aim is the collection of data that will enable us to enumerate and quantify those com-

ponents that can potentially serve as nutrients for the model of this organism.

In laboratory settings, this information can usually be extracted from the definition of the

culture medium. For that purpose, the modelling of qualitatively and quantitatively detailed

defined growth media can be straightforward, as direct measurement/definitions of specific

molecules (e.g. measurement of amino acids in a liquid [32]) might be provided. On the other

hand, in environmental settings (e.g. soil, sea water, mammalian intestine), data on the chemi-

cal composition of the growth environment might be less accessible but could potentially be

gathered from online databases and available literature (see Tables 1 and 2 for example

resources).

Furthermore, modelling the metabolism of a cell requires detailed knowledge of the under-

lying (micro)environment, because cells are dependent on nutrients provided either through

the medium or from other neighbouring cells. Therefore, they cannot be regarded as isolated

organisms per se.
For instance, the simulation of cells, which are part of a multicellular system (e.g. host cells

and bacteria in the vicinity [47]), requires more elaborate equations that link the molecular

Table 1. Examples of nutritional model for bacteria, humans and worms.

Nutritional model or medium Source

Defined culture medium for Escherichia coli Brock Biology of Microorganisms, p. 100, ISBN: 978-1-292-

01831-7 [33]

Various human diets (e.g. Vegetarian,

Mediterranean)

www.vmh.life [34,35]

Caenorhabditis elegans Maintenance Medium Szewczyk NJ et al. [36]

https://doi.org/10.1371/journal.pone.0236890.t001

Table 2. Collection of the most useful resources for modelling nutrition.

Database Website / ISBN of the

book

Short Description

Metabolic modelling databases

VMH www.vmh.life [34,35] Metabolic models of bacteria, human cells, and collection

of human diets

BiGG https://bigg.ucsd.edu

[27,28]

Metabolic models of various organisms

ModelSeed www.modelseed.org [37] Construction of metabolic models with collection of

reactions/metabolites

MetaNetX www.metanetx.org [38–

41]

Integration of different metabolic modelling databases

Chemical and nutritional databases

PubChem https://pubchem.ncbi.

nlm.nih.gov [42]

Chemical compounds and their properties

FoodData Central https://fdc.nal.usda.gov

[43]

Chemical composition of ready and raw foods.

Until 2019 the database was available through USDA Food

Composition Databases (https://ndb.nal.usda.gov/ndb/)

FooDB www.foodb.ca/ [44] Chemical and biological database specialised on foods and

nutrients.

Fundamental nutritional literature

Ernährung des Menschen ISBN 9783825287481 [45] Detailed overview of human nutrition (in German)

Advanced Nutrition and

Human Metabolism

ISBN 9781305627857 [46] Detailed overview of human nutrition and metabolism (in

English)

https://doi.org/10.1371/journal.pone.0236890.t002
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quantities of compounds with what is available for a model as input. For example, to simulate

the nutritional environment of bacterial cells in the lower gastroenterological tract, we should

account for the chemical and biological processes that take place in the upper tract, as host pro-

cesses contribute to the bacterial microenvironment. Such processes may include absorption

[for details see [48]], enzymatic and spontaneous degradation or modification of chemical

compounds, and other time-dependent ones (e.g. peristalsis).

On the other hand, bacterial cell cultures involve well-designed experiments and many

parameters are known and/or adjusted according to the scientific question (e.g. chemically

defined media, defined environmental conditions). In such cases, this information can be

directly incorporated into in-silico experiments. In conclusion, modelling should be firstly

focused on clarifying the nutritional environment of an organism.

Here, we will consider the Lysogeny Broth (LB) medium as a sample case [49]. This

medium is considered complex and nutrient-rich and is widely used for the cultivation of a

range of different bacterial species [50]. It is an aqueous mixture composed of tryptone, yeast

extract, and sodium chloride, while sodium hydroxide is added to adjust the pH level to 7.0

[49]. Although production of yeast extract is not unanimous and may differ across different

products, in this study, we assumed that the yeast extract (Saccharomyces cerevisiae) is auto-

lysed (i.e. lysis of yeast contents by the cell’s own enzymes) [51].

Tryptone and yeast extract are the major constituents of this growth medium. The chemical

composition of those ingredients can often be obtained directly from the manufacturer’s prod-

uct specifications. Such manuals ideally contain detailed nutritional information about the

major elements and amino acids, which are available in yeast extract and tryptone. However,

these manuals typically lack information about the content of minor minerals, vitamins,

nucleic acids, fatty acids, and fibres. These constituents were for example inferred from the

studies by Grant et al. [52], by Sarwar et al. [53] and as well as by the Bionumbers [54,55]—

along with the bionutrients technical manual published by the company BD [56].

Step 2: Define growth medium as a set of molecules derived from

macromolecules

At this stage, the objective is the establishment of a list of molecules and their quantities based

on the known ingredients of the medium (see step 1). Such a representation of the composi-

tion of the growth medium has to be derived, because only a small set of compounds of the

medium are represented in the models.

Nutrients in organismal metabolic models are usually depicted as unique molecules with

known chemical formula, structure, and mass such as vitamins, ions, amino acids, fatty acids,

mono-/oligosaccharides, and specific fibres. By using primary literature, textbook information,

and databases, (see Table 2 for example resources), it is possible to translate macromolecules

or mixture of molecules into their constituent molecular components (e.g. albumin into its

amino acid composition or mineral mixes to individual vitamins and minerals, see Table 2 for

examples).

After collecting all the compounds and their quantities, unit transformations to the refer-

ence unit of the study (e.g. mmol/L) should be performed. Usually, chemical compounds are

dissociated or hydrated in aqueous solutions (e.g. salts) or are dependent on the pH of the

solution (e.g. conjugate bases and acids). Such cases ought to ideally be represented by one

molecule or ion (e.g. butyrate not both butyrate and butyric acid), since models can often only

handle one form of molecules or ions. A special case are natural polymers (e.g. fibres), which

can occur in many different configurations and lengths. However, metabolic models often

comprise only specific forms of the polymers. In such cases, one solution is to assume that the
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focal polymer occurs only in the forms that the model supports. Another possibility to deal

with the multiplicity of polymer variants is to translate the total polymer mass within the

growth medium to a concentration of the respective monomers. However, in this case, the

model would not require the enzymatic hydrolysis of the polymer.

Commercial mixture of compounds (e.g. yeast extract, casitone) can be translated into their

molecular components (e.g. ions, amino acids) according to the manufacturer’s manuals. To

sum up, the focus of this step is the enumeration of compounds which constitute the growth

medium of interest. In our example, we followed these principles by adding ions of salts (e.g.

NaCl recorded as ion Na+ and ion Cl-) or simple compounds (e.g. polymer cellulose recorded

as its dimer cellobiose).

Step 3: Define the inorganic environmental factors

The objective of this step is to define the environmental compounds needed for cell growth.

This step is important, because there are environmental constraints of the actual experimental

or physiological setting that should be taken into consideration in addition to the nutritional

compounds. For example, culturing conditions are usually well defined with respect to the

oxygen regime as well as pH. Thus, the concentrations of the substances oxygen and protons

need to be adapted accordingly (i.e. [oxygen] = 0 mM for anaerobic cultures, [protons] = 10−7

M for medium pH 7).

In our illustrative example (LB medium), the original experiments are conducted in aerobic

conditions in an aqueous solution. Assuming that water’s density is 1 g/cm3, concentration of

water in pure water is 5.55�104 mmol/L and the concentration of oxygen was set to 18.2

mmol/L, based on data from E. coli cultures [57]. Concentration of protons in the computa-

tional diet should reflect the pH of the actual experiments (pH = 7 which is equal to 10−7 M or

10−4 mM of protons) [49].

Step 4: Map chemical compounds to metabolite identifiers of the metabolic

model

The goal of this step is to map molecules to their representations in the model. It is a crucial

step of metabolic modelling, as the more precisely the list of compounds is matched to the

metabolites of the model, the more accurate will be the outcome of model simulations. In gen-

eral, metabolites are linked to specific exchange reactions, i.e. pseudo-reactions that enable the

exchange of metabolites with the external compartment of the model, which represents the

theoretical chemical environment of the model.

In the general convention for metabolic modelling, exchange reactions that represent the

chemical environment have identifiers with prefix “EX_” followed by the identifier of the focal

metabolite/nutrient and the suffix for the external compartment (i.e. “(e)” or “_e”). However,

the exact nomenclature for exchange reactions depends on the underlying reaction database

and modelling framework. Although databases are not always compatible, approaches for

mapping identifiers are available (e.g. MetaNetX [38–41]). Nonetheless, some databases such

as VMH [34,35] and BIGG [27,28] share some but not all metabolite and reaction identifiers.

The most commonly used biochemistry databases for metabolic modelling can be found in

Table 2.

Furthermore, compounds, which are part of the growth medium, are frequently not avail-

able in a model (e.g. fibres). There are three options available to address this issue: (1) to

remove these compounds from the setting (e.g. dyes and indicators of in-vitro cultures like

phenolphthalein can be excluded if we can assume that they do influence the organism’s meta-

bolic processes), (2) choice of another molecule which is related to the missing compound (e.g.
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nicotinate instead of nicotinamide), or (3) if feasible, to curate the models, i.e. to extend the

models by adding the exchange and internal metabolic reactions needed based on the available

genetic or physiological evidence. All in all, the objective of this step is the most precise repre-

sentation of the molecular composition of the chemical environment in the model, as incorrect

assignment of metabolite(s) to model compounds frequently leads to errors in subsequent

model applications (see troubleshooting step).

Our LB practical example is based on the iJO1366 [26] model of E. coli, which can be found

in the BIGG [27] database of models, reactions, and compounds. In total, 53 compounds were

found in the metabolite list of the model. For 13 cases we could not identify appropriate

exchange reactions in the model (e.g. metals, folate), so they were not added in the setting.

Moreover, some media compounds are matched with more than one model metabolite. For

instance, concentration of ions in media definitions are frequently provided without specifica-

tions of their oxidation states (e.g. Fe2+ / Fe3+), while metabolic models require this informa-

tion as the redox potential is crucial for most reactions that involve these ions. A quantitative

estimation of the oxidation states ratio of ions in rich media such as LB will be in most cases

not possible without experimental measurements, as such ratios are highly variable over time

e.g. by reacting with dissolved oxygen. In our LB medium example and in the case of Fe ions,

we have chosen a 50% Fe2+ / 50% Fe3+, which reflects the measured intracellular ratio of the

oxidation states in E. coli W3110 [58]. For chemically well-defined media formulations, the

concentration of the different oxidation states can be inferred from the amount of the source

salt (e.g. FeSO4 provides Fe2+, FeCl3 provides Fe3+ when dissolved).

Step 5: Apply the “diet” to the model and evaluate the output

This step focuses on adjusting the exchange reactions linked to the metabolite identifiers,

which were selected in step 5, and on performing growth simulations. This adjustment is

essential for the accuracy of the growth simulation, as the outcome (i.e. growth) depends on

the availability of each metabolite according to the actual concentration of the diet.

Notably and in the framework of FBA, the flux of the exchange reactions should be constrained

to represent the availability of the nutrients. For this purpose, exchange reactions are constrained

by upper and lower bounds. Usually, the uptake of a compound is represented by a negative value

and excretion by a positive value. In case the FBA modelling approach aims to predict the organ-

ism’s growth rate (hr-1), the concentrations defined after step 1 to 4 need to be transformed to the

maximum uptake fluxes in the unit mmol�(gDW�hr)-1. This conversion is not trivial as it relies

on kinetics (e.g. following the Monod equation), which are dependent on the compound and the

organism of interest. In case the aim is to predict maximum growth/biomass yield (gDW per litre

of growth medium), one can assign the concentration of the nutrients (e.g. in mmol per litre of

growth medium) to the uptake bound as explained in the introduction.

Having defined constraints on the exchange reactions, the models can be optimised typi-

cally by maximising flux through the biomass reactions. Usually software like sybil [23], which

utilises FBA [9], or the various COBRA suites/tools [59–62] are useful for this purpose. If the

input of the exchange reactions reflects the concentration of compounds, the result of the opti-

misation corresponds to the biomass yield based on the growth medium. Otherwise, if the

input reflects fluxes, the result corresponds to the actual growth rate of the organism.

In our LB example, the models followed the nomenclature scheme “EX_” (for exchange)

+ metabolite identifier +”(e)” (for external) to represent exchange reactions. In our case, by

utilising sybil [23], the exchange reactions are constrained based on the concentration of the

growth medium and used to conduct FBA. For compounds not present in the diet we set the

lower bound to zero.
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Step 6: Troubleshooting

The aim of this step is to reveal and solve issues that occur after applying the computational

diet and optimisation methods (i.e. FBA). Troubleshooting and fine-tuning should ideally

guarantee that the outcome is biologically meaningful.

For instance, although it might be known that the cells can grow on specific medium, the

simulation may lead to an unexpected outcome, where the model does not grow after follow-

ing all the above steps. Except for the case of an erroneously defined diet, this issue may be

associated with low quality of the model, which may miss reactions or the model may have

gaps and/or errors. If the latter is the case, then either the model needs to be refined (model

curation) and gap-filling algorithms can be applied [63,64].

In case of an erroneously defined nutritional growth environment, reduced cost calcula-

tions of uptake reactions can provide insights on nutrients that are absent or have too low con-

centrations in the modelled medium but which are essential for cell growth [65]. Reduced

costs are sensitivity parameters for each reaction that are part of an FBA solution. Briefly, these

values can be interpreted as the impact of an increase of the flux through the respective reac-

tion on the final objective value (i.e. growth yield) [66]. Thus, when applied to the nutrient

uptake reactions, the reduced costs allow the identification of compounds that could be added

to the media in order to obtain increased or enabled growth [67].

Therefore, reduced costs can indicate compounds, which are part of the actual nutritional

environment, but are not included in the modelled computational growth medium due to

missing chemical data and knowledge of the media composition. In such cases, steps 1–5 have

to be re-evaluated potentially by including additional metabolomic/chemical information on

the medium components from the literature or even performing targeted chemical analytics to

quantify the metabolite in question. In addition, the reduced cost analysis could also point to

compounds, which may already be part of the modelled nutritional environment, but whose

quantity may not be sufficient to facilitate model growth. This could be for instance the case if

the lower bound for ATP hydrolysis, which is often part of cellular models to represent ener-

getic costs for cell maintenance, cannot be reached due to too low availability of potential

energy sources.

In this context, it also needs to be noted that a zero or infeasible growth solution returned

by the FBA model under the reconstructed nutritional environment does not necessarily indi-

cate missing or limiting compounds in the defined diet. Instead, a nil growth solution could

also be caused by inconsistencies in the model itself, i.e. due to missing reactions, incorrect

reaction bounds, or erroneous definition of the biomass reaction. Thus, in case of nil growth it

is recommended to consider also options for model curation and algorithmic gapfilling

approaches (e.g. [13,63,64]). Alterations to the modelled nutritional environment in order to

enable growth should be primarily considered in cases where the model itself underwent

already substantial curation efforts and where uncertainty of the exact chemical composition

of the growth environment exists. The latter is especially relevant for growth media, which are

generally chemically undefined such as LB medium or other complex growth media that are

frequently used for animal/human cell line cultures [68].

Results

E. coli growth in modelled LB-medium

As an exemplary case, we applied the proposed procedure to the chemically complex growth

medium Lysogeny Broth (LB) [49]. Following step 5, the optimal growth yield of the model of

interest based on the user-defined nutritional constraints can be calculated. The modelled LB
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medium was applied to constrain the genome-scale metabolic model of Escherichia coli K-12

(model designation: iJO1366). At first, the E. coli model predicted that the organism is not able

to produce biomass in LB medium (objective value of zero). To troubleshoot this issue, we

searched for the reduced costs. The missing compound with the highest absolute reduced cost

was molybdate, EX_mobd(e), a molecule comprising molybdenum and oxygen. Ions of

molybdate are the only biologically relevant source of molybdenum and play an important

role in redox enzymes [69]. Molybdenum occurs in a variety of food categories [70]. The con-

centration of molybdate can be inferred by the value of molybdenum in this case. Adding

molybdate (lower bound -3.07�10−4; value as molybdenum in STEP 3, based on the initial

value from [52]), the optimisation was possible and the value of objective function was 1.54 g

per Litre of LB medium for iJO1366. This case illustrates that calculating the reduced costs can

indicate essential compounds that are missing in the nutritional constraints of the model and

to adjust die diet composition accordingly.

In addition, we applied the modelled LB medium (incl. molybdate) to the core model of E.

coli metabolism, which is a sub-network of the Escherichia coli K-12 genome-scale metabolic

network [71] and which can be downloaded from the BiGG database (http://bigg.ucsd.edu/)

[27,28]. The predicted biomass yield using this core model reached 0.59 g/L, which is only 38%

of the growth yield predicted using the genome-scale model. This decrease is explained by the

fact that the core model does not include the reactions and transporters that are required to

utilise a number of nutrients from the LB medium, which the genome-scale model is able to

use for growth.

E. coli is known to produce acetate as metabolic by-product at high growth rates, even in

the presence of oxygen as potential electron acceptor [72]. Using our in silico representation of

the LB medium, we also predicted acetate production using the core model (4.5 mmol/L yield)

and the genome-scale model (46.72 mmol/L).

Impact of diet modifications

Based on the rationale that an accurately modelled growth medium or diet allows realistic pre-

diction of the cellular metabolism and cell growth, those models should also be able to accu-

rately predict the metabolic- and growth response to medium modifications, such as nutrient

supplementations. To test this, we searched for dietary compounds that increase the predicted

objective function value (i.e. E. coli growth yield) if added as a supplement to the computa-

tional LB medium. To this end, we repeated the optimisation by adding +1mM (case A) or

30% (case B) of all compounds contained in the LB medium. We used these two different sup-

plementation approaches to obtain substantial (cut-off of relative difference = 10−6) effects on

growth both when supplementing compounds which are initially low in abundance or absent

or whose molecular weight is high (case A) and when supplementing initially highly abundant

compounds or low-molecular weight compounds (case B). Additionally, we have extended the

list of supplemented compounds (case A) to the carbohydrates D-glucose and L-arabinose, as

glucose is very often used in growth experiments and arabinose has been identified in yeast

extracts in a previous publication of Sarwar et al. (53). The analysis revealed that most com-

pounds, which increased the growth of the model, mainly belonged to the group of amino

acids, and secondarily to nucleobases, carbohydrates, and fatty acids (Fig 2A). Oxygen had the

strongest effect on biomass yield (more than 17% increase of yield while supplementing +30%;

see Fig 2B).

Moreover, supplementation of carbohydrates had the strongest effect on the predicted yield

compared to the other nutrient groups (Fig 2A). This suggests that the available amount of car-

bohydrates in LB medium is growth yield limiting. Interestingly, the effect of supplementing
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the purines guanine and adenine is substantially bigger in comparison to the effect for uracil

and cytosine, possibly due to the difference in the initial concentrations (mean concentration

for G/A ~0.32mM, for U/C ~0.24mM). In contrast, the supplementation of arginine, cysteine,

and glycine is predicted to have only limited effects on the growth yield (Fig 2A).

Discussion

Impact of defining precise nutrient levels for metabolic models

The aim of this work is to provide guidance for estimating the molecular concentrations of

nutrients, which can be used as nutritional input in metabolic models (Fig 2). The utilisation

of generic and arbitrary values can have a strong impact on downstream consequences on

model predictions. For instance, recently published western and high-fibre diets, used for

modelling the nutritional environment of the gut microbiome [19], contain values of 1 mmol/

(gDW�h) for a big set of exchange reactions in the section “Minerals, vitamins, other”, suggest-

ing that there is uncertainty regarding the values that should be used. Another similar example

is the LB medium, which is stored in the KBase database which is a popular tool for automated

model reconstructions [73]. In this case, all fluxes are 100 mol/(gDW�h) for all compounds,

which is physiologically unrealistic and, thus, could result in unlikely growth and metabolic

flux predictions. Additionally, automated gap-filling on inaccurate media as part of the model

construction could not only cause wrong simulation outcomes (fluxes / growth), but also can

cause errors in the network structure itself by making models reliant on an unrealistically high

Fig 2. Impact of diet modifications. (a) Supplementation of amino acids and nucleobases to the computational LB

medium (+30% of the original amount or +1 mM for each compound) and relative differences to the optimisation

results for growth yield of the model iJO1366. (b) Similarly to (a) for oxygen. Cut-off of relative difference = 10−6.

https://doi.org/10.1371/journal.pone.0236890.g002
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inflow of specific compounds. As a result, such models may also require unrealistic nutrient

input for growth.

As a result, a crucial question arises: Is it worth spending effort and resources in designing a

computational medium with accurate quantification? To answer this question, we constrained

a publicly available and manually curated Escherichia coli K-12 model [26] with the LB

medium, which was modelled using the above described 6-step procedure and scrutinised the

FBA model prediction with experimental data (growth yield, nutrient utilisation, and the effect

of nutrient supplementation) of the physiology of E. coli cultures in LB medium.

The growth patterns of E. coli in general have been extensively studied [74]. For instance, it

is known that the optical density of the cultures in LB Medium can achieve a value of

OD600nm 5 [75] and up to OD600nm 6.49 [49]. Additionally, it has been empirically estimated

that an optical density of OD600nm 1 corresponds to ~0.3 g/L of bacterial dry weight [55,76].

By combining the information, a yield of (5�0.3) 1.5 g/L can be calculated for the phase when

growth curves reach a plateau, which is in line with our optimisation result (1.54 g/L). Interest-

ingly, we observed acetate as metabolic by-product alongside the formation of biomass, which

is in line with experimental studies that report acetate production under aerobic conditions in

LB medium [72]. Taking into account these results and based on the modelled diet for LB

medium with rationally defined quantities for all included compounds, it can be suggested

that an accurate representation of the chemical composition of the environment is crucial for

precise predictions of biomass formation and metabolic functions using FBA models.

Such realistic results can be particularly helpful for making context-specific predictions. For

instance, it is possible to investigate the effect of manipulating the nutritional composition on

the predicted phenotypes. In Fig 2A we presented the relative difference of the predicted yields

of the E. coli model iJO1366 after supplementing the computational medium with each com-

pound contained in LB medium. The analysis highlighted that glucose can increase the yield of

the model, which is in line with the fact that glucose can boost the growth of E. coli cultures

[78]. It is worth mentioning that by adding 20 mM of glucose to the simulations of the E. coli
model, the predicted yield increased by 54%, which is an overestimation compared to the pub-

lished experimental value of 39% [77]. Nevertheless, the simulations in-silico reproduced the

strong growth-supporting effects of glucose on E. coli growth. Additionally, supplementing the

computational diet by adding 1mM of amino acids significantly supports the growth of the

model following this order: tryptophan, threonine, glutamate, serine, aspartate, alanine, gly-

cine, while supplementing the diet by adding +30% by this order: glutamate, aspartate, alanine,

threonine, serine, glycine, tryptophan. Similarly, E. coli has been reported to sequentially con-

sume these amino acids in the order of serine, aspartate, tryptophan, glutamate, glycine, threo-

nine, and alanine in a tryptone medium [49,78]. This suggests the order of consumption might

be associated with the growth benefits for the cell. Taking everything into account, such pre-

dictions may be helpful for optimising cultures in-vitro by targeted modifications of the

medium composition [79].

Quality of FBA model prediction depend on the accuracy of the modelled

environment

Although Flux Balance Analysis can be used to make useful physiological predictions, these

are not limitation-free. FBA-based predictions are especially influenced by the exact values for

the nutrient uptake reaction constraints. For instance, in the above-mentioned example of E.

coli growth in LB medium, we showed that increasing the bound of oxygen uptake by 30%

results in more than 17% increased growth yield. The amount of oxygen in our simulations is

based on the uptake rate observed in experiments [57] and not on the environmental amount
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of oxygen, because various phenomena including the diffusion from air to the medium [80]

and the uptake limits by the cell [81] restrict the available amount of oxygen. Moreover it is

sometimes laborious to identify such phenomena and to include them in the static models, but

also it can be challenging to simply quantify some environmental constraints (e.g. gases) or

variability of the nutritional compounds in the media, as discussed above, although the output

of the models severely depend on them (e.g. oxygen, yeast amino acids). As a result, it is worth

noting that as long as an accurate modelled environment cannot be designed, the FBA predic-

tions will be prone to shortcomings.

Relevance of nutritional modelling for human microbiome research

Computational predictions based on constraint-based models of microbial metabolism have

emerged as a powerful tool in microbiome research and broadened its horizons [5,19,82,83].

The microbiota, especially within the human gut, has been acknowledged to be a substantial

contributing factor in health and disease of the host [47]. Since the models are utilised in

exploring health/disease-related bacteria-bacteria and host-bacteria interactions, the impor-

tance of diets has been recognised [84]. For instance, the predictions derived from testing vari-

ous “diets” in metabolic models led to successful dietary interventions in humans [85].

By providing the community with a roadmap and a detailed example we set the basis for

the development of standard operating procedures for reconstructing the nutritional environ-

ment in constraint-based metabolic modelling. The procedure for in-silico modelling of the

nutritional environment of cells described in this study may allow efficient recognition, track-

ing, and handling of inaccuracies and artefacts in constraint-based metabolic modelling

approaches.

Limitations and outlook

We introduced and applied the proposed procedure to reconstruct the nutritional environ-

ment of metabolic models in the context of Flux Balance Analysis. Furthermore, the 6-step

procedure can be analogously applied to other metabolic modelling frameworks such as Ordi-

nary Differential Equation (ODE)—based kinetic models or Elementary Mode (EM) analysis;

with the only exception of the proposed reduced costs analysis in step 6 (‘troubleshooting’).

This analysis is limited to FBA applications, as reduced costs are sensitivity parameters that are

directly associated with an FBA solution [85].

A precise definition of chemical growth environment is especially valuable for kinetic

modelling, as such models typically allow more quantitative predictions than FBA simulations

[86]. These predictions include for example the temporal-dynamic changes of individual

metabolite levels, including metabolic by-products. However, kinetic models are usually lim-

ited to small or medium-scale networks that comprise fewer reactions than genome-scale met-

abolic network reconstructions. Thus, kinetic models may not contain all pathways in which

exogenous compounds from a complex nutritional environment enter the cell’s metabolism.

For the example of E. coli, kinetic models are often derived from a so-called core model, which

is a sub-network of the E. coli genome-scale model that comprises glycolysis, the pentose phos-

phate pathway, the TCA-cycle, and the oxidative respiration chain [87]. This sub-network

does not include the uptake and utilisation of a majority of compounds that are part of com-

plex growth media used for the cultivation of E. coli such as LB medium and that are known to

be utilised by E. coli (e.g. most proteinogenic amino acids). Hence, kinetic models on the basis

of this core network cannot reproduce the metabolism of E. coli in complex nutritional envi-

ronments. We therefore emphasise that future research should focus on the extension of

kinetic models that include the uptake and degradation of several nutrients found in complex
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media. In combination with the incorporation of regulatory circuits such as catabolite repres-

sion [88], kinetic modelling will highly benefit from the here proposed procedure to model

complex growth environments.

Growth media for eukaryotic cell cultures are also often molecularly complex due to com-

ponents such as bovine serum or meat extract, which provide a wide range of potential nutri-

ents for cell metabolism [68]. Thus, computational approaches to simulate metabolic processes

in eukaryotic cell cultures (e.g. human/animal cell lines) also depend on an accurate represen-

tation of the chemical composition of the environment. In this context, the here proposed pro-

cedure to model complex nutritional environments will also promote the predictive potential

of in silico models of eukaryotic cell metabolism.

Supporting information

S1 File. Diet table. Stepwise procedure of designing nutritional input (LB medium).
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