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Data mining is a cornerstone of modern bioinformatics. Techniques
such as feature selection or data-driven model (classifier) building
are used broadly in many fields including gene expression data
analysis (Wood et al., 2007), proteomics (Barla et al., 2008),
secondary and tertiary protein structure prediction (Heringa, 2000;
Kryshtafovych et al., 2007), prediction of experimental behavior of
proteins or other molecules (Liao et al., 2006; Smialowski et al.,
2007) and medical science (Patel and Goyal, 2007). It is widely
accepted that any model building requires stringent evaluation
of its performance and generalization capabilities using well-
established methods such as k-fold cross-validation, leave-one-out
cross-validation, bootstrap and others (Frank et al., 2004).

The growing complexity of the data and the urge to improve
available methods have led to the development of procedures
combining feature selection and model building. Feature selection
is often used to limit the amount and dimensionality of the data
or to select features that correlate well with the target class.
Feature selection methods can be subdivided into those that are
unsupervised, i.e. unaware of class attributes [e.g. removal of a
feature with the same constant values throughout the whole dataset,
PCA (principal component analysis), MF (matrix factorization)] and
those that are supervised, i.e. driven by class information. The latter
group includes filter methods using, e.g. information gain as well as
the Wrapper approach (Witten and Frank, 2005).

Special consideration is required when supervised feature
selection is used to construct input data for model building
(classification). In order to correctly evaluate classifiers built on such
projected data, the entire procedure including feature selection and
model training has to be evaluated against independent data. In other
words, the test set must not be used for supervised feature selection
(or more generally, supervised preprocessing). Otherwise, estimates
of the classifiers’performance will be over optimistic (Ambroise and
McLachlan, 2002; Efron, 2005; Kohavi and John, 1997; Molinaro
et al., 2005; Reunane, 2004). Any model building method integrated
with feature selection must be externally evaluated. Evaluation must

∗To whom Correspondence should be addressed.

A

B

C

Fig. 1. The correct [(A) followed by (C)] and the incorrect [(B) followed
by (C)] procedure for combining supervised feature selection and learning
a classifier. In the figure, processes and products are depicted by ellipses
and rectangles, respectively. Training and test sets consist of features X and
a target attribute Y (to be predicted). X ′ is a subset of features reduced by
supervised feature selection, f () is a classifier and Ŷ contains the prediction
of Y values by this function. (A and B) show the workflows for the correct
and incorrect application of supervised feature selection, and (C) holds the
evaluation workflow (more description in the text).

include both: supervised feature selection and classification and
should not be limited to classification only (Fig. 1).

The correct procedure is depicted in Figure 1 and consists of the
workflow from Figure 1A for training and Figure 1C for testing
(evaluation). In a preprocessing step, supervised feature selection
reduces the set of features X to a subset X ′ (Y is the target attribute).
Subsequently, the reduced training set is used to infer a classifier f ().
During testing (Fig. 1C), the trained classifier f () is evaluated using
an independent test set with the feature space reduced to X ′ according
to the feature selection derived in the previous step (Fig. 1A).
The classifier predicts Ŷ for each instance. Various performance
measures can then be calculated by comparing the predictions Ŷ
with the true values for Y .

In contrast with this procedure, the most common mistake
(according to our observation) of machine learning applications in
the life sciences is illustrated in Figure 1B: both training and test
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sets are used for supervised feature selection. After that, a classifier
f () is learned from the reduced training set as before. During
testing, this classifier is applied to the test set as described above
(Fig. 1C). However, as evident from the illustration, information
from the test set has already been used for the inference of the
classifier, by choosing an appropriate subset of features for the
learning algorithm (Fig. 1B). Therefore, class information from the
test set has leaked to the training phase. This analysis remains true
for classification and regression and regardless whether training and
test sets are created as part of a k-fold cross-validation or any
other method. Recently, it has repeatedly come to our attention
while reading or reviewing manuscripts submitted to Bioinformatics
and other journals that often no proper external evaluations of
the whole method consisting of supervised feature selection and
subsequent classification is provided. In this brief note we would
like to demonstrate the consequences of this type of a mistake
for classification performance estimation using data where attribute
values are generated randomly as well as data with random class
assignments. We also estimate the consequences of such erroneous
overoptimism as a function of the dataset size. For simplicity, we
focus only on classification and leave out regression methods.

Three types of datasets were used in this study. All have 21
attributes: 20 frequencies of amino acids and one class attribute
assigning each instance to one of two classes. Datasets of the
first type (randomly generated attributes) contain real random
attribute values resembling natural frequency distributions of
20 amino acids. To generate randomly perturbated frequencies
of the 20 amino acids, we used Gaussian random numbers
with peak maximums at their natural occurrence frequencies
(as provided at http://prowl.rockefeller.edu/aainfo/struct.htm) and
standard deviation (SD) equal to 0.25 of this value. All negative
values were set to 0 and the sum of 20 frequencies for a given
instance was not allowed to be greater than 100.

Datasets of the second type (randomize class data) consist of
instances picked randomly from a dataset of 1000 proteins of which
a half showed good solubility upon heterologous expression in
Escherichia coli, while the other half was notoriously insoluble.
Classes of these instances—soluble or non-soluble—were assigned
randomly. Third type of datasets (real data) was same as second
except that real class labels were preserved.

Quantum Random Bit Generator Service (QRBG; Stevanovic
et al., 2008) was used as a source of seeds for random numbers.
We maintained even class distribution at all times.

For selecting the best features, the following methods were used:
Wrapper (Kohavi and John, 1997), Relief Attribute Evaluation with
Ranker (Witten and Frank, 2005) and PCA (Pearson, 1901). The
Wrapper method takes into account class information by evaluating
feature sets based on the performance of the classifier. Hence, the
resulting feature set is tailored to a given classification method. In
our comparison, the Wrapper method is the most ‘aggressive’ feature
selection method. It was setup to use Naive Bayes for classification
and Best First for attribute space search (Witten and Frank, 2005).
The Relief method is also supervised, but does not optimize feature
sets directly for classifier performance. Thus, it takes into account
class information in a ‘less aggressive’ manner than the Wrapper
method. The threshold of Ranker coupled to the Relief Attribute
Evaluation method was set to zero. PCA (Jolliffe, 2002) is an
unsupervised feature selection method and hence does not take
into account class information at all. PCA dimensionality reduction

was accomplished by the following steps: data normalization,
calculation of orthonormal vectors [PC (principal components)],
sorting PC according to decreasing variance. We save PC accounting
cumulatively for 95% of the data variance (Jolliffe, 2002). Naive
Bayes and nearest neighbor IB1 (Aha and Kibler, 1991) algorithms
were used for classification, because they are among the simplest and
most fundamental classification methods. Classifiers were trained
and evaluated using 10-fold cross-validation. MCC (Matthew’s
correlation coefficient) and AUROC (area under receiver operating
curve) were calculated to measure classifier performance. For
each dataset size, feature selection and classification algorithm the
whole procedure starting from data construction was repeated 30
times. Overfitting (overoptimism) was measured as the difference in
classification performance (denoted by �AUROC in the following)
on data after and before feature selection, averaged over 30 trials.

Information density is defined as the number of instances per
number of attributes. For datasets resulting from feature selection,
we calculate the information density ratio (ID ratio, the factor
by which the number of features is reduced) to measure loss of
information.

We generated a range of datasets containing between 10 and 1000
instances. For both types of randomize datasets, half of the data were
tagged with the ‘no’ class and the rest with ‘yes’ to simulate a two
class problem with an even class distribution.

We found that using supervised feature selection with dataset
containing both training and test sets leads to a significant
overoptimistic assessment of classifier performance. This holds
true for datasets with randomly generated attribute values,
randomized class data (Fig. 2) and real data (Supplementary Fig. 1,
Supplementary Table 1). The extent of overfitting depends on the
dataset size. The strongest overfitting (AUROC increase ∼0.5) was
observed for the smallest real datasets with random class labels using
the Wrapper method. Classification on randomly generated attribute
data exhibits a slightly smaller increase (∼0.4) (data with real class
labels also reached 0.4). These values are extremely high considering
that the AUROC ranges from 0.5 for random guessing to 1.0 for the
best theoretically possible model. Improper use of feature selection
also distorts classifier performance when larger datasets are used.
Even for datasets with 1000 instances we observed slight albeit
statistically significant increase in AUROC values (0.04) (whiskers
in Fig. 2 mark 95% confidence intervals). As seen in Figure 2, the
use of both the Wrapper and the Relief feature selection algorithms
results in falsified measures of classifier performance. Application
of PCA which is not supervised did not lead to substantial overfitting
on any tested dataset.

Feature selection reduces the amount of information by lowering
the number of attributes and thus leads to an increase of the ratio
between the number of instances and the number of attributes. We
assessed the extent of information loss by calculating the ID ratio
between datasets before and after feature selection as described
above. A higher ID ratio means that a higher percentage of features
was removed. For example, ID ratio = 2, means that after feature
selection the number of attributes is reduced by two. For each
of the feature selection method, we found that the more features
got removed, the stronger were the effects of overfitting (Fig. 3).
Interestingly, there are also differences between attribute selection
algorithms. Wrapper seems to be less prone to overfitting compared
with the Relief method. By almost the same magnitude of overfitting
(increase in AUROC 0.25), it reduces the information content more
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Fig. 2. Relation between the number of instances and the extent of overfitting
caused by feature selection as measured by AUROC growth. (A) Randomly
generated attribute values, (B) randomly tagged real data. Three different
feature selection algorithms were used: Wrapper (hashed bars), Relief
Attribute Evaluation (white bars), PCA (black bars). Whiskers mark 95%
confidence intervals.

effectively (4.5 times) compared with Relief (2.5 times). Wrappers
reduce the number of features stronger than Relief method possibly
because it comprehensively evaluates also combinations of features,
selecting features based on not only their own relevancy but also
redundancy (Kohavi and John, 1997). Moreover, Wrapper efficiency
in feature selection depends on internally employed classifier and
search algorithms. Data with randomly generated attribute values
showed higher resistance against classification bias permitting a
greater decrease in the feature number compared with real data
with randomized class tags and real data. PCA did not cause
overfitting while still being able to slightly reduce the number of
attributes of all data types. Similar results were obtained when MCC
was used instead of AUROC and also when the whole analysis
was repeated using the IB1 nearest neighbor classification method
(Supplementary Table 1, Data not shown).

In summary, we show that supervised feature selection coupled
with or integral to model building (classification) requires external
evaluation. Failure in setting up evaluation with external data

Fig. 3. Relation between information loss and overfitting measured by
�AUROC growth. (A) Randomly generated attribute values, (B) randomly
tagged real data. Three feature selection methods were examined: Wrapper
(black circles), Relief Attribute Evaluation (open squares) and PCA (gray
triangles). Lines were fitted by linear regression: solid lines to Wrapper and
dashed to Relief Attribute Evaluation data points. ID ratio is the information
density ratio.

(Fig. 1B) leads to overoptimism in the assessment of classifier
performance. It is reasonable to expect that overfitting will be at least
in the same order of magnitude as what is observed on randomly
generated data for most of the real life classification tasks, where
amino acid composition is used as input. Real data may be more
prone to overfitting because they are likely to contain more patterns
than randomly generated data. Even if patterns are orthogonal to
the problem under consideration overfitting can still occur. For this
reason, whenever model building (classification) is integrated with
supervised attribute selection, it is crucial to evaluate classifiers with
the data not used for attribute selection (Fig. 1 A and C).
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