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Deep Cervical Flexor (DCF) muscles are important in monitoring and controlling neck pain. While ultrasonographic analysis
is useful in this area, it has intrinsic subjectivity problem. In this paper, we propose automatic DCF extractor/analyzer software
based on computer vision. One of the major difficulties in developing such an automatic analyzer is to detect important organs
and their boundaries under very low brightness contrast environment. Our fuzzy sigma binarization process is one of the answers
for that problem. Another difficulty is to compensate information loss that happened during such image processing procedures.
Many morphologically motivated image processing algorithms are applied for that purpose. The proposed method is verified as
successful in extracting DCFs and measuring thicknesses in experiment using two hundred 800 × 600 DICOM ultrasonography
images with 98.5% extraction rate. Also, the thickness of DCFs automatically measured by this software has small difference (less
than 0.3 cm) for 89.8% of extracted DCFs.

1. Introduction

Neck pain is very common complaint affecting up to 70% of
individuals at some point of their lives [1]. Once an individual
develops neck pain, it is reported that there is a 1 in 3
chance that he or she will develop chronic symptoms lasting
longer than 6 months, and the incidence of mechanical neck
disorders appears to be increasing [2]. Clinical neck pain
is associated with impairment of muscle performance and
the functional impairments associated with neck pain and
the cause-effect relationships between neck pain and motor
control are well investigated [3].

The Deep Cervical Flexor (DCF) muscles including
longus colli muscle, longus capitis, rectus capitis inferior,
and rectus capitis lateralis have major roles in maintaining
cervical lordosis and providing cervical joint stabilization
[3, 4]. It has been theorized that when muscle performance is
impaired, the balance between the stabilizers on the posterior
aspect of the neck and the DCFs will be disrupted, resulting

in loss of proper alignment and posture, which is then likely
to contribute to cervical impairment [5].

A strong linear relation between the electromyographic
amplitude of the DCF muscles and the incremental stages
of the craniocervical flexion test for control and individuals
with neck pain was reported [6]. Another study showed that
patients with neck pain disorders have an altered neuromotor
control strategy during craniocervical flexion characterized
by reduced activity in the DCFs and increased activity in
the superficial flexors usually accompanied by altered move-
ment strategies. Furthermore, they display reduced isometric
endurance of the DCFs [7].

These observations prompted the use of the cranio-
cervical flexion action for retraining the DCF muscles for
neck pain patients. Specific training of the DCF muscles in
womenwith chronic neck pain reduces pain and improves the
activation of these muscles, especially in those with the least
activation of their Deep Cervical Flexors before training [8].
The recruitment pattern of the DCF and sternocleidomastoid
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is investigated during the craniocervical flexion test, using
ultrasonography [9, 10], and it is further developed into an
exercise program with tools [11].

Using ultrasound image in muscle analysis is appropri-
ate for its noninvasive, inexpensive, real time responding
capabilities [12]. However, its limitations are often pointed
out; sonographic images are dependent on the qualities of
equipment and skills of expertise; thus, the diagnosis often
misleads to subjective judgments [13]. Thus, we need an
automatic image segmentation and identification tool for
anatomical landmarks that can eliminate such subjectivity in
the image analysis [14].

Unfortunately, there is almost no directly related research
for such an automatic DCF extractor/analyzer by computer
vision yet. A recent study tried to give an automatic segmen-
tation of cervical vertebrae from X-rays [15] but not related
to muscles of our interests. Probably, our previous research
that automatically detects sternocleidomastoid and longus
capitis/colli is the only one to consider [16].

In this paper, we extend our previous automatic cervical
muscle extractor/analyzer to accommodate withDCFs which
are longus capitis (Lcap) and longus colli (Lcol). While
certain part of extracting techniques is common to the
previous study that extracts sternocleidomastoid and longus
capitis/colli, the overall treatment of target muscle DCF is
different from that of other related muscles due to the muscle
characteristics and the location of the muscles.

The main methodological difference between our previ-
ous study [16] and this work is whether the system extracts
the cervical vertebrae directly or not. The brightness contrast
betweenDCF and related fascia ismuchweaker than between
SCM and its related fascia in ultrasonography. Also, the
cervical vertebrae, located directly below the DCF, have
similar brightness values to those of DCFs. Thus, when we
infer the location of cervical vertebrae using the slope of lower
boundary lines of DCFs in [16], the key point to measure
the thickness of DCF is not correctly extracted especially
when the contrast between the fascia/bones and DCFs is low.
Thus, in this paper, we extract cervical vertebrae directly and
the key points are induced based on the location of cervical
vertebrae.

2. Overall Procedure

All the digital images used in this study are acquired and
stored in DICOM (digital imaging and communications in
medicine) standard format. DICOM is a form to declare
image transfer, structure, and related information. In region
of interest (ROI) part of the image shown in Figure 1, there is
a blood vessel and two muscles are located above and below
the vessel. The muscle above blood vessel is the sternocleido-
mastoid and the muscle below the blood vessel is the DCFs.
DCFs have irregular form of border with cervical spine at
the bottom and is unclear being far from the center. The
brightness of themuscle is usually lower than that of the fascia
and the spine. The fat area that has relatively high brightness
in the muscle area should be extracted with the muscle.

Figure 2 summarizes the overall vision based system to
extract and measure the thickness of DCFs automatically.

Sternocleidomastoid muscle

Blood vessel

Deep neck flexor

Figure 1: ROI of ultrasound image.

3. Extracting Deep Cervical Flexor

From this ROI image that contains only muscles, fasciae and
spines, we try to extract candidate DCF by applying a series
of image processing algorithms as shown in Figure 3.

The ends-in search stretching method is a normalization
process that enhances the intensity contrast to differentiate
two areas more clearly as shown in Figure 3(a). Formula (1)
explains ends-in search stretching

𝑃 (𝑥, 𝑦)

=

{
{
{
{
{

{
{
{
{
{

{
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𝐺 (𝑥, 𝑦) −Min
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Min < 𝐺 (𝑥, 𝑦) < Max

255 𝐺 (𝑥, 𝑦) ≥ Max,

(1)

where Min and Max denote the maximum and minimum
intensity value of the given image and 𝐺(𝑥, 𝑦) is the intensity
value of the pixel at (𝑥, 𝑦) coordinates in the original image
and𝑃(𝑥, 𝑦) is the resultant intensity value after ends-in search
stretching.

The rationale of using ends-in search stretching is as
follows.

Due to the scattering effect of ultrasound technology,
there might be blurring that gives difficulty in discriminating
fascia, muscles, and cervical vertebrae. Thus, we need a
contrast enhancing mechanism with minimal information
loss.

In our method of extracting DCF, we first extract the
fascia lines and cervical vertebrae that are relatively brighter
than others and SCM and DCF are extracted by using
location characteristics related to the blood vessel. A typical
craniocervical sonography has largely skewed distribution of
intensity toward zero as shown in Figure 4 and those low
intensity pixels have slim chance to be related to objects of our
concern. Ends-in search stretching, a type of normalization
process, is then advantageous than other methods such
as filtering since it preserves the relative characteristics of
the intensity distribution. However, it needs proper noise
removal process afterwards.
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Figure 2: Overall system diagram.

(a) Ends-in search stretching (b) Average binarization

(c) Removing noises and unnecessary holes

Figure 3: Extracting Deep Cervical Flexor candidate.

0 255

Figure 4: Cervical vertebrae sonography and histogram.



4 Computational and Mathematical Methods in Medicine

(a) Search for the object (b) Extracting upper/lower boundary lines

(c) Filling holes to 1

Figure 5: Filling holes by searching boundaries of DCF.

Next, we apply average binarization to the enhanced
image shown in Figure 3(b). Then, we apply Blob algo-
rithm [17] to group pixels into objects. Figure 3(b) contains
unnecessary noise objects. As explained in Section 5 in
detail, we obtained 200 images from 100 healthy subjects
during a neck muscle endurance test. We know that DCFs
in consideration have specific morphological characteristics
that we can use in noise removal process. In order to quantify
such characteristics that can be generalized, we choose 50
random samples from 200 image population and observe any
size or location related features that are common to apparent
noise objects in this situation.

As shown in Figure 1, there exists blood vessel in between
SCM and DCF; thus, two muscles are apart from a certain
distance. From our samples, the distance between twomuscle
objects in 𝑦-axis is no less than 8.5% of the ROI height. Also,
we know that the lower fascia boundary lines and bones have
a long curved shape; thus, it is not at the skewed location to
the left in any of our obtained images. Thus, we can set up
a safe 𝑥-axis constraint such that an object that is no longer
than the half of the ROI width starts with the very leftmost
position (10% of the ROI width). Formula (2) below shows
our noise removal criteria used in this paper

if ((𝑆 (𝑂) < 0.085 × 𝑆 (ROI)) OR
(𝑂.lef t < 0.1 ×Width (ROI) AND
Width (𝑂) < 0.5 ×Width (ROI)))

then Remove (𝑂) ,

(2)

where 𝑆(𝑂), 𝑆(ROI) denote the size of the object in consider-
ation and that of ROI area, respectively, andO.left denote the
𝑥-coordinate of the leftmost boundary of the object 𝑂 and
Width(𝑋) is the function of returning the width of object𝑋.

There might be some unnecessary holes in between the
upper and lower boundary lines of candidate DCF. In order

to fill such holes systematically, we search upper and lower
boundary object by searching from the top and the bottom of
the ROI area as shown in Figure 5. That results in an image
like Figure 3(c).

Since we apply many image processing algorithms that
enhance the contrast of the brightness for purposes, there
might exist cases where the boundary lines are disconnected
in part. The first simple treatment for restoration is to fill
brightness values of pixels with 255 if they are neighbors of
255-valued ones and makes the line connected. The lower
boundary lines have relatively complex shape; thus, we apply
4-directional contour search [17] to determine the boundary
lines. However, again, it may have discontinued part.

Thus, we apply cubic spline interpolation to reconnect
lower boundaries. The necessary conditions of cubic spline
interpolations are as follows:
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where 𝑆
𝑖
denotes a Spline function and 𝑖 is the coordination

on the boundary and 𝑛 denotes the number of coordination
on the boundary and 𝑦

𝑖
is the functional result of 𝑃
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. Then,

the Spline function 𝑆 is defined as follows:
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, (4)

where 𝑎, 𝑏, 𝑐, and 𝑑 are constants satisfying Spline function
conditions [18].

Figure 6 demonstrates the extracted reconnected lower
boundaries of DCF Figure 6(a) and the overall shape of the
extracted candidate of cervical vertebrae Figure 6(b).
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(a) Lower boundary of DCF candidate (b) Candidate cervical vertebrae

Figure 6: Candidate cervical vertebrae extraction with image restoration.

The next step is the binarization procedure. The main
purpose of binarization is to find an optimal thresholding
value to discriminate the target organ from background of
the input image. Our goal is to find the upper bound and
lower bound lines of DCF area. Unfortunately, the brightness
contrast near DCF area is not clear in general. Thus, we need
more detailed computationally heavy binarization procedure
called fuzzy sigma binarization [19].

The major reason that we adopt computationally heavy
fuzzy binarization over simple average binarization or Otsu
binarization [20] is the environmental characteristic of the
near DCF area. Since cervical vertebrae, DCFs, and related
fascia have similar brightness values, the average binarization
may include extracting false positive objects in such a low
contrasted environment. Otsu binarization that assumes
the image contains two classes of pixels following bimodal
histogramand searches for the optimum threshold separating
the two classes so that the interclass variance is minimal is
another alternative, but, in this environment, the cervical
vertebrae are relatively brighter than nearby muscles and
fascia; thus, the interclass variance should not be minimal
since we want to extract cervical vertebrae in this case. Thus,
fuzzy sigma binarization that is designed to adapt the sen-
sitivity of environment (brightness contrast) and qualitative
membership decision by fuzzy membership function is our
choice. Figure 7 demonstrates the effects of using different
binarization methods in this environment.

The fuzzy membership function of our fuzzy sigma
binarization is defined as follows.

Let 𝑃Max, 𝑃Min, and 𝑃Mid be the highest and lowest
brightness value of the pixel and the average of 𝑃Max and
𝑃Min, respectively. Then, the membership function is defined
as follows.

Step 1. Consider the following:

𝑃
𝐹

Min = 𝑃Mid − 𝑃Min

𝑃
𝐹

Max = 𝑃Max − 𝑃Mid.
(5)

Step 2. Consider the following:

if (𝑃Mid > 𝑃Min + 0.75 (𝑃Max − 𝑃Min)) then 𝑃
𝐹

Mid

= 255 − 𝑃Mid

else 𝑃𝐹Mid = 𝑃Mid.

(6)

Step 3. Consider the following:

if (𝑃𝐹Mid > 𝑃
𝐹

Max) then

if (𝑃𝐹Min > 𝑃
𝐹

Mid) then 𝛽 = 𝑃
𝐹

Mid

else 𝛽 = 𝑃𝐹Min

else if (𝑃𝐹Max > 𝑃
𝐹

Mid) then 𝛽 = 𝑃
𝐹

Mid

else 𝛽 = 𝑃𝐹Max.

(7)

Step 4. Calculate the normalized 𝑃newMin and 𝑃newMax

𝑃
New
Min = 𝑃Mid − 𝛽,

𝑃
New
Max = 𝑃Mid + 𝛽.

(8)

Step 2 is designed to compensate overly brightly filmed
image due to filming environment while classifying 𝑃𝐹Mid
based on the three quarters of brightness contrast.

The membership degree of a pixel by sigma fuzzy bina-
rization is as follows within the interval [𝑃NewMin , 𝑃

New
Max ]:

if (𝑃 ≤ 𝑃NewMin ) , then 𝑢 (𝑃) = 0,

if (𝑃NewMin < 𝑃 < 𝑃
New
Mid ) , then 𝑢 (𝑃)

=

𝑃 − 𝑃
New
Min

𝑃
New
Mid − 𝑃

New
Min
,

if (𝑃NewMid ≥ 𝑃) , then 𝑢 (𝑃) = 1.

(9)

The membership degree 𝑢(𝑃) is applied to the a-cut (set
to 0.5 in this paper since there is no prior information or
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(a) Candidate cervical vertebrae (b) After fuzzy binarization

(c) After average binarization (d) After Otsu binarization

Figure 7: Different binarizations in candidate cervical vertebrae extraction.

u(P) = 1
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P
min I
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max

Figure 8: Membership function for sigma fuzzy binarization.

preferences.) for the binarization such that the pixel value
would be set to 255 if 𝑢(𝑃) ≥ 0.5 and 0 otherwise. Figure 8
shows the membership function of sigma type.

Again, we apply Blob algorithm to remove unnecessary
noises and apply expansion operation to restore small discon-
tinuity if exists. The result is shown in Figure 9.

After expansion operation, we can extract the lower
boundaries of DCF using relative location information
among objects appearing in the cervical vertebrae area.
Subcutaneous fat objects existing above DCFwill be removed
for the simplification of further analysis. Possible disconnec-
tions caused by fat removal are restored by simple Digital
Differential Analyzer (DDA) algorithm [19] that is a type of
simple linear interpolation of slope𝑚 between given intervals
using the following equation:

𝑄 (𝑥, 𝑦) = 𝑚 (𝑥 − 𝑥
1
) + 𝑦
1
,

𝑚 =

𝑦
2
− 𝑦
1

𝑥
2
− 𝑥
1

,

(10)

where 𝑄(𝑥, 𝑦) denotes the coordinates of a pixel in between
the left side of the extracted object and the right cervical
vertebrae. The effect of DDA algorithm can be shown in
Figure 10.

The upper bound lines of Figure 10 are the lower bound-
ary lines of DCF area. Since all other objects such as subcu-
taneous fat are removed already, it is simple to find upper
bound lines of Figure 10. However, there might be small
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(a) Fuzzy binarization applied (b) Noise removed

Figure 9: DCF area treatment for connectivity.

Figure 10: Boundary reconnection of cervical vertebrae by DDA
algorithm.

disconnections. Again, cubic spline interpolation defined as
(3) and (4) is applied to compensate lost information.

Figure 11 demonstrates the final extraction of lower
boundaries of DCF. The final extraction result of DCF is
shown in Figure 12.

4. Measuring Thickness of Deep
Cervical Flexor

Among many possible characteristic features of DCF, the
thickness is the most fundamental one, but it is also the main
source of subjectivity in measuring morphometric features.
Computer vision based approach like us aims to locate
measuring key points accurately to achieve the automaticity
of capturing such measuring standards to avoid subjectivity
as much as possible. In our proposed method, there are three
cervical vertebrae in the image and themeasuring key point is
set to be the rightmost point of the leftmost cervical vertebrae
object.Then, from that key point, two othermeasuring points
are chosen to be 1 cm left and right to the key point. The
thickness is then computed as the average of those three
vertically measured lengths passing through the DCF. The
details of such measuring process are as follows.

The leftmost cervical vertebra should be located at the
left part of the image. However, when we apply the labeling

Figure 11: Extracting lower boundaries of DCF.

Figure 12: Final extraction of DCF area.

procedure to obtain target objects, if the leftmost cervical
vertebra is found at the right part of the given image, that
means the real leftmost cervical vertebra is lost as noise dur-
ing preprocessing. Then, we apply weighted image restora-
tion process to the image after fuzzy sigma binarization
(Figure 9(a)) as shown in formula (11) to avoid unwanted
object removal

𝛼 = 1.0 +

√(𝑥 − 𝑥
1
)
2

+ (𝑦 − 𝑦
1
)
2

1000

,

𝑃 (𝑥, 𝑦) = 𝑃 (𝑥, 𝑦) × 𝛼,

(11)
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(a) Candidate cervical vertebra (b) Lowest boundary of DCF

(c) After removing fat false positives

Figure 13: Fat area noise removal.

Figure 14: Key point extraction.

where 𝛼 is the weight and this formula gives more weight to
the points of the far left points from the center point (𝑥

1
, 𝑦
1
).

This compensation process is designed to avoid candidate
cervical vertebra object located at the left side of the image.

After applying Blob algorithm and object labeling pro-
cedure, if a candidate cervical vertebra is located above the
lowest line of DCF, it is probably the fat area falsely regarded
as cervical vertebra; thus, we remove such false positives as
shown in Figure 13.

After such compensation process, the measuring key
point is set to be the rightmost point of the leftmost cervical
vertebrae object as shown in Figure 14.

5. Experiment

The proposed method is implemented with C++ under
MicrosoftVisual Studio 2010 on the IBM-compatible PCwith
Intel Core i7-2600 CPU @ 3.40GHz and 4GB RAM. The
experiment uses two hundred (200) 800 × 600 size DICOM
format ultrasound images. One hundred healthy subjects of
age in their 20s and 30s participated in this experiment.

We measured neck muscle size during a neck muscle
endurance test. The thickness of neck muscle was assessed
using ultrasonography (MyLab 25GOLD)with 12MHz linear
probe during neck muscle endurance tests. Sternocleidomas-
toideus (SCM) and the deep cervical muscles, which are
longus capitis (Lcap) and longus colli (Lcol), were measured
laterally (right and left side) at the level of C4. Subjects
performed a craniocervical flexion test (CCFT). The CCFT
is commonly used in the physiotherapeutic assessment of
neck muscle strength and endurance. During the CCFT,
subjects were instructed to perform a nodding movement,
representing the craniocervical flexion, in five incremental
levels, from 22 to 30mmHg: 22, 24, 26, 28, and 30mmHg.
The subjects were asked to maintain the test positions for as
long as possible. Each subject was asked to sit upright in an
examination chair with their arms resting on their thighs. A
head was fixed to maintain the head and neck in the neutral
position. The C4 segmental level was chosen to optimize the
image field forCCFT and thus infer the coordination between



Computational and Mathematical Methods in Medicine 9

(a1) SCM: 0.51, DCF: 1.51 (a2) SCM: 0.65, DCF: 1.66

(a) Manual

(b1) SCM: 0.56, DCF: 1.67 (b2) SCM: 0.69, DCF: 1.84

(b) Previous [16]

(c1) SCM: 0.53, DCF: 1.56 (c2) SCM: 0.66, DCF: 1.71

(c) Proposed

Figure 15: Comparison of muscle thickness measurements (cm).

the threemuscles in themidcervical spine. At the C4 level, we
captured different parts of the Lcol, Lcap, and SCM.

Figure 15 visually demonstrates the result of the pro-
posed automatic DCF extractions (c1 and c2) compared with
physical therapist’s manual inspections (a1 and a2) and our
previous attempts (b1 and b2) for the same images. One
can verify that our vision based automatic software extracts
almost identical key points/area of target muscles and the
magnitude of difference between automatic measurement
andmanualmeasurement becomesmuch smaller than that of
previous attempt. In our experiment, twomedical experts are
involved and the thickness of the manual inspection is taken
as the average of the two human experts’ evaluations.

As summarized in Table 1, the proposed method is much
better than the previous attempt [16] in DCF extraction
in sensitivity (SS), where TP, TN, FP, and FN denote the

true positive, true negative, false positive, and false negative,
respectively.

Due to the image acquisition process explained above,
there is no image that does not contain DCF and SCM.Thus,
there is no TN or FN. The decision to classify the result of
automatic extractions is based on the agreement of two field
experts involved in this experiment.

Table 2 also shows the improved sensitivity in SCM
extractions.

Also, after measuring the thickness, we compare our
result with the previous attempt as the absolute difference
from human experts’ measurement (error). The results for
the error magnitude of thickness measurement for DCF and
SCM are summarized in Tables 3 and 4, respectively.

While much improved compared to the previous attempt
[16], the distribution of error magnitude in DCF thickness



10 Computational and Mathematical Methods in Medicine

Table 1: DCF extraction performance evaluation.

Success rate DCF (longus capitis/colli)
TP TN FP FN SS

Previous [16] 147 0 53 0 73.5%
Proposed 197 0 3 0 98.5%

Table 2: SCM extraction performance evaluation.

Success rate SCM
TP TN FP FN SS

Previous [16] 169 0 31 0 84.5%
Proposed 198 0 2 0 99.0%

Table 3: Error magnitude of DCF (longus capitis/colli) thickness (#
of successes/# of tried images).

<0.1 cm <0.2 cm <0.3 cm ≥0.3 cm

Previous [16] 3/147
(2.0%)

32/147
(21.8%)

72/147
(49.0%)

40/147
(27.2%)

Proposed 13/197
(6.6%)

59/197
(29.9%)

105/197
(53.3%)

20/197
(10.2%)

Table 4: Error magnitude of SCM thickness (# of successes/# of
tried images).

Error < 0.1 cm Error ≥ 0.1 cm

Previous [16] 141/169
(83.4%)

28/169
(16.6%)

Proposed 175/198
(88.4%)

23/198
(11.6%)

measurement shows that there is a room for the improvement
in the future. At least, the proposed method is successful in
extracting DCF and SCM accurately and the sensitivity of
such extractions is much more improved compared to the
previous attempt.

6. Conclusion

In this paper, we propose a vision based fully automatic
method to extract DCF muscles (longus capitis/colli) and
SCM with measuring the thickness from cervical verte-
brae ultrasound images. DCF muscles are important in
controlling/monitoring the neck pain and/or develop effi-
cient/effective rehabilitative training procedures. However,
existing clinical method using ultrasonography often causes
operator effect, a subjective judgments of muscle extraction
and associated morphometric features measurement and
analysis. Our attempt shown in this paper is to avoid such
subjectivity as much as possible and aims to assist human
medical experts in DCF and SCM analysis.

Algorithmically, our previous attempt [16] that extracts
and analyzes sternocleidomastoid and longus capitis/colli
automatically often suffers from the distraction of ultra-
sonography. The major contribution of this paper is to over-
come that problemwith careful image processing considering

morphological characteristics of DCFs (shape and location
information) and extracting cervical vertebrae explicitly in
the process. Many image processing algorithms are involved
such as Blob for noise removal and ends-in search stretching
for image enhancement and 4-directional contour search
for boundary detection and cubic spline interpolation for
complementing disconnected lines and the fuzzy sigma bina-
rization to control the low brightness contrast environment.

The experimental result using 200 real-world cervical
vertebrae DICOM ultrasound image verifies that almost all
(98.5%) input images are well extracted and the thickness
is automatically measured with low error magnitude with
respect to those of human experts’ decision (≤0.3 cm) inmost
cases (89.8%).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] R. Fejer, K. O. Kyvik, and J. Hartvigsen, “The prevalence of neck
pain in the world population: a systematic critical review of the
literature,” European Spine Journal, vol. 15, no. 6, pp. 834–848,
2006.

[2] A.Nygren,A. Berglund, andM.VonKoch, “Neck-and-shoulder
pain, an increasing problem. Strategies for using insurance
material to follow trends,” Scandinavian Journal of Rehabilita-
tion Medicine. Supplement, vol. 32, pp. 107–112, 1995.

[3] D. Falla and D. Farina, “Neural and muscular factors associated
with motor impairment in neck pain,” Current Rheumatology
Reports, vol. 9, no. 6, pp. 497–502, 2007.

[4] L. C. Boyd-Clark, C. A. Briggs, and M. P. Galea, “Muscle
spindle distribution, morphology, and density in longus colli
and multifidus muscles of the cervical spine,” Spine, vol. 27, no.
7, pp. 694–701, 2002.

[5] Z. A. Iqbal, R. Rajan, S. A. Khan, and A. H. Alghadir, “Effect
of deep cervical flexor muscles training using pressure biofeed-
back on pain and disability of school teachers with neck pain,”
Journal of Physical Therapy Science, vol. 25, no. 6, pp. 657–661,
2013.

[6] D. L. Falla, G. A. Jull, and P. W. Hodges, “Patients with
neck pain demonstrate reduced electromyographic activity of
the deep cervical flexor muscles during performance of the
craniocervical flexion test,” Spine, vol. 29, no. 19, pp. 2108–2114,
2004.

[7] G. A. Jull, S. P. O’Leary, and D. L. Falla, “Clinical assessment of
the deep cervical flexor muscles: the craniocervical flexion test,”
Journal of Manipulative and Physiological Therapeutics, vol. 31,
no. 7, pp. 525–533, 2008.

[8] D. Falla, S. O’Leary, D. Farina, and G. Jull, “The change in
deep cervical flexor activity after training is associated with the
degree of pain reduction in patients with chronic neck pain,”
The Clinical Journal of Pain, vol. 28, no. 7, pp. 628–634, 2012.

[9] F. M. R. Jesus, P. H. Ferreira, and M. L. Ferreira, “Ultrasono-
graphic measurement of neck muscle recruitment: a prelimi-
nary investigation,” Journal of Manual &ManipulativeTherapy,
vol. 16, no. 2, pp. 89–92, 2008.

[10] I. Jun and K. Kim, “A comparison of the deep cervical flexor
muscle thicknesses in subjects with and without neck pain



Computational and Mathematical Methods in Medicine 11

during craniocervical flexion exercises,” Journal of Physical
Therapy Science, vol. 25, no. 11, pp. 1373–1375, 2013.

[11] K. H. Yun and K. Kim, “Effect of craniocervical flexion exercise
using sling on thickness of sternocleidomastoid muscle and
deep cervical flexor muscle,” Journal of the Korean Society of
Physical Medicine, vol. 8, no. 2, pp. 253–261, 2013.
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