
INTRODUCTION

Autism spectrum disorder (ASD) is a common neurodevelop-
mental disorder characterized by a range of phenotypes, which 
vary in the severity of sensorimotor and social deficits [1-3]. 
Investigating the potential biomarkers associated with ASD is a 
meaningful issue in the field of psychiatric neuroimaging. It holds 
promise to better understanding the underlying causes of ASD, 

which would have far-reaching implications for the diagnostic aids 
as well as targeted treatment in autism. 

Recent efforts to explore ASD biomarkers [4-9] have focused 
on the connectivity analysis on regions of interest (ROIs) using 
resting-state functional magnetic resonance imaging (rs-fMRI). 
For example, Kana et al. [4] demonstrated weaker functional con-
nectivity of the anterior cingulate cortex with middle temporal 
gyrus, which might lead to poor semantic and language processing 
in ASD. Monk et al. [5] found that the severe restricted and repeti-
tive behaviors of autistic individuals were correlated with stronger 
connectivity between the posterior cingulate cortex and right 
parahippocampal gyrus. Moreover, a greater local connectivity in 
the left superior parietal lobule, precuneus and angular gyrus, and 
right supramarginal gyrus was presented to be associated with the 
deficient cognitive function of ASD [6]. Besides this, a growing 
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number of efforts [7-9] have also indicated atypical connectivity 
in the default mode network (DMN) of ASD, which might make 
a negative effect on the self-referential cognitive processes. All the 
above observations have linked variations in brain connectivity to 
the behavioral traits and mental health condition associated with 
ASD. This implies the feasibility of using measures of functional 
connectivity with rs-fMRI to identify ASD biomarkers. However, 
the involved data in these imaging studies was acquired from 
small as well as homogeneous populations, which would result in a 
limited reproduction and generalization of functional biomarkers. 

One of the possible solutions suggested in many recent studies 
[10-17] is to investigate potential biomarkers on larger and het-
erogeneous dataset, as provided by ABIDE (Autism Brain Imaging 
Data Exchange). It is an open-access repository that aggregates 
neuroimaging data from 539 autistic individuals and 573 typical 
controls (TC) across 17 international imaging sites [18]. Based 
on the rs-fMRI data from ABIDE, previous work on connectivity 
measures have made some considerable achievements, which re-
sulted in accurate prediction of ASD. For example, Kong et al. [10] 
achieved a high accuracy of 90.39% through the experiment on 
182 subjects, and Plitt et al. [11] presented 95.19% on 178 subjects. 
Moreover, Chen et al. [12] classified a number of 252 subject with 
classification accuracy of 91%, and highlighted the prominent role 
of somatosensory regions in autism. Although these efforts are de-
sired to be affirmed, the application on controlled data (<300 sub-
ject) limits their capabilities to provide more generalized findings. 
Hence, in this paper, we attended to perform connectivity analysis 
on about all subjects from ABIDE, with the purpose to extract rep-
licable as well as robust neural patterns for accurate differentiation 
between individuals with ASD and TC.

Among various sets of ROIs, CC200 atlas defined by Craddock 
et al. [19] is promising in the measurement of functional connec-
tivity. It is generated via spatially constrained spectral clustering in 
the context of resting state connectivity analyses. Compared with 
anatomically derived ROI atlases (e.g., Talairach and Tournoux 
[20], Harvard-Oxford [21], and Eickoff-Zilles [22]), CC200 atlas 
consists of such ROIs with anatomic homology that could offer 
increased interpretability. At present, there have been some studies 
on connectivity analysis with CC200 atlas and ABIDE data [13, 
14, 17], but it is not enough to build accurate prediction of ASD. 
For example, Dvornek et al. [13] achieved good accuracy of 68.5% 
using 1100 subjects from ABIDE, and highlighted functional 
networks and regions that are known to be implicated in ASD. Af-
terwards, Heinsfeld et al. [14] performed better classification (70%) 
based on 1035 subjects, and demonstrated the functional anticor-
relation between anterior and posterior areas of brain. Besides this, 
Eslami et al. [17] obtained similar results with a mean accuracy of 

70.3% to Heinsfeld et al. [14] under the same number of subjects. 
To our best knowledge, this is the best differentiation result in pre-
viously reported studies with almost all ABIDE data. 

Under this background, the present study aims to make an ac-
curate and cogent differentiation between autism and controls 
based on the connectivity features derived from CC200 atlas. 
Specifically speaking, we performed the experiments with rs-fMRI 
data from ABIDE through a combining method of Extra-Trees 
and supervised machine learning method. The former concen-
trated the attention on features with most importance for desired 
identification, and the latter is used to train available model for 
accurate classification on subjects. And besides, we make an explo-
ration of the remarkable neural patterns that would contribute to 
the clinical diagnosis of ASD. To facilitate the understanding, the 
results is interpreted in terms of the potential functional networks 
and regions in the brain. A noteworthy problem in this study is 
that the related terms with “concentration” and “attention” are only 
interpreted as the methodological aspects associated with brain 
networks, except where noted.

MATERIALS AND METHODS 

Image acquisition and preprocessing

In order to recognize efficient functional patterns for aiding 
diagnosis of ASD, our study was carried out on the heterogeneous 
rs-fMRI data from ABIDE. We successfully downloaded a dataset 
of 1102 subjects from the Preprocessed Connectomes Project, 
and then excluded subjects whose imaging data shows some miss-
ing. Finally, data of 506 ASD individuals and 548 controls was 
included in our study. Table 1 contains the aggregation of critical 
demographic information, including distribution of ASD and TC 
by sex, age, and the mean Framewise Displacement (FD) quality 
measure. The average age of subjects was 16.59 (±8.05) and 16.86 
(±7.55) years old for ASD and TD group, respectively. It is worth 
noting that the number of male subjects is significantly more than 
female in the available data. To be specific, the ASD group consist-
ed of 446 males and 60 females, and TC group 453 males and 95 
females. There was no difference in the age, sex and FD between 
cases and controls (p>0.05).

The rs-fMRI data utilized in this study was preprocessed with 
the Configurable Pipeline for the Analysis of Conenectomes (C-
PAC). The preprocessing procedure covers the operation of slice 
time and motion corrected, as well as voxel intensity normalized. 
More specifically, Nuisance signal was regressed to remove fluc-
tuations through 24 motion parameters [23], low-frequency drifts 
(linear and quadratic trends), and CompCor with 5 components 
[24]. The functional data was band-pass filtered (0.01~0.1 Hz) 
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and spatially normalized to a template space (MNI152) with the 
non-linear registration from ANTS [25]. For more details with the 
preprocessed data, please see http://preprocessed-connectomes-
project.org/abide/.

Construction of individual networks

Since the functional connectivity is characterized with extraor-
dinary complexity, the brain network plays an increasingly impor-
tant role in the investigation on brain-based disorders including 
ASD [26, 27]. Here, we made a tentative research on the construc-
tion of individual brain network with ROIs of CC200 atlas, denot-
ed as Gcc. Deserved to be mentioned, the mean rs-fMRI signals of 
each ROIs were extracted for each subject. 

For the morphological network Gcc, each ROI is defined as the 
node, and the Pearson correlation between each pair of ROIs is 
perceived as the edge. The coefficient, ranging from –1 to 1, is an 
index of the correlation between two areas in the brain. Values 
close to 1 indicate that the signals are highly correlated, whereas 
values close to –1 mean anti-correlated. Finally, each subject could 
be abstractly represented by a resultant feature with 200*(200–
1)/2=19900 dimensional vector.

Attention selection based on Extra-Trees

The resultant feature represented by functional connectivity 
between ROIs was used to identify subjects with ASD and TC. 
Due to the curse of dimensionality, effective classification on data 
with high dimensionality is an obvious challenge in neuroimaging 

studies. Some of the more common consequences are over-fitting 
of the learning models and less generalization on extended data 
[28, 29]. It is usually caused by the presence of uninformative or 
irrelevant features. To concentrate the attention on most relevant 
features for desired classification task, this paper adopted the Ex-
tra-Trees to assess relevant features, so as to reduce dimensionality 
for improved generalization performance.

Extra-Trees [30] is an effective technique making measurement 
on the discrimination of features with a range of diverse ran-
domized trees. Compared with random forest method, it is more 
generalized to select features with the concept of randomization. 
Given the feature vectors xi, i=1……m, the attention vector could 
be expressed as:
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In the above formula, the N is the number of randomized trees, 
and FIK(i ) represents the importance of i -th feature in K-th ran-
domized tree. Specifically, the values of FI  was computed using the 
Python functions in the package sklearn. It is noticeable that the 
greater the FI value, the more the discernment of this feature on 
classification may be.

Table 1. Demography summary

SITE_ID
ASD TD

Age Gender FD Age Gender FD

CALTECH 22.79±6.76 M 5, F 2 0.07 28.29±11.15 M 10, F 4 0.07
CMU 26.33±4.89 M 5, F 1 0.36 26.38±4.31 M 7, F 1 0.34
KKI 10.01±1.45 M 18, F 4 0.26 10.16±1.26 M 24, F 9 0.11
LEUVEN 17.89±2.71 M 26, F 3 0.10 18.84±2.25 M 29, F 4 0.08
MAX_MUN 26.08±14.89 M 21, F 3 0.15 26.21±9.80 M 29, F 4 0.11
NYU 14.52±6.97 M 68, F 11 0.08 15.56±6.06 M 78, F 25 0.06
OHSU 11.66±2.25 M 13, F 0 0.06 10.06±1.08 M 15, F 0 0.13
OLIN 16.70±3.42 M 17, F 3 0.19 16.94±3.68 M 14, F 2 0.17
PITT 18.93±7.20 M 26, F 4 0.15 19.00±6.74 M 22, F 4 0.16
SBL 35.29±10.76 M 14, F 0 0.14 34.21±6.58 M 14, F 0 0.16
SDSU 14.58±1.74 M 10, F 1 0.11 13.94±1.83 M 12, F 6 0.07
STANFORD 9.96±1.59 M 16, F 4 0.11 9.95±1.60 M 16, F 4 0.11
TRINITY 17.28±3.57 M 24, F 0 0.13 17.06±3.87 M 23, F 0 0.10
UCLA 12.91±2.25 M 48, F 6 0.26 12.79±1.61 M 38, F 6 0.11
UM 13.80±1.98 M 58, F 10 0.19 15.34±3.55 M 59, F 18 0.09
USM 22.65±7.73 M 58, F 0 0.16 21.36±7.64 M 43, F 0 0.10
YALE 12.63±3.04 M 19, F 8 0.13 12.68±2.75 M 20, F 8 0.09
ALL Sites 16.59±8.05 M 446, F 60 0.16 16.86±7.55 M 453, F 95 0.10

M, Male; F, Female. FD is a measurement on the head motion of experimented subjects, with a comparison of the current and previous volumes.



30 www.enjournal.org https://doi.org/10.5607/en.2020.29.1.27

Yaya Liu, et al.

Experiments: prediction on heterogeneous data

ABIDE datasets is aggregated across 17 international sites and 
without any prior coordination. The random coupling inevitably 
leads to that the measure assessments on severity of autism vary 
somewhat across sites. As a consequence, the severity could not be 
presented directly by quantitative comparison in sites. Against that 
background, the identification of ASD and TC seems to be more 
credible based on these heterogeneous data. Several imaging stud-
ies [10-17] have already demonstrated the point.

Discrimination between ASD and TC subjects could be modeled 
as a supervised learning task. We attempted to encode the resultant 
feature, derived from the individual brain network, to train the 
classifier model for good identification of ASD. In particular, most 
attention is being concentrated on the potential functional con-
nectivity that is implicated with accurate prediction. We adopted 
the linear support vector machine (SVM) model to elaborate the 
interpretability. The underlying implementation of model de-
pended on the build-in functions in the classification learner tools 
of Matlab. 

An overview of the proposed framework for ASD/TC classifi-
cation is depicted in Fig. 1. Firstly, we constructed the individual 

brain network for each subject, and then extracted connectivity 
features between ROIs from CC200 atlas. Next, we used Extra-
Trees to compute the attention vector on all features, and filtered 
out functional connectivity with negligible contribution to the 
identification model. Finally, the 1935 top features were selected to 
perform the differentiation between individuals with ASD and TC 
via the SVM classifier. 

To ensure the reliability of experimental result, we utilized 10-
fold cross-validation to measure the accuracy of predicted label. 
Any hyper-parameter operated in the method was internally set 
in the nested cross-validation. For the challenges of site-related 
variability, we also performed an intra-site prediction based on the 
stratified shuffle split cross-validation. It splits participants into 
training and testing sets as homogeneous as possible, that is, pre-
serving the ratio of samples for each site and condition. Consider-
ing of the inhomogeneity on quantity of samples, we used 80% of 
the fMRI data for training and the remaining for testing. 

Evaluation

Three declared indicators including accuracy, sensitivity, and 
specificity were calculated to make an evaluation on the perfor-

Fig. 1. An overall flowchart of proposed ASD/TC classification method.
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mance of our proposed method for desired ASD/TC classification 
task. The detailed calculation could be formulated as follows:

TN TPAccuracy
TN FN TP FP

+
=

+ + +   (2)

TPSensitivity
FN TP

=
+   (3)

TNSpecificity
TN FP

=
+   (4)

Specifically, TN, FN, TP and FP indicate the number of true 
negative subjects, false negative subjects, true positive subjects and 
false positive subjects, respectively. The larger accuracy could be 
interpreted as the better the classification performance to some 
extent. Compared with the evaluation criterion of sensitivity, the 
higher value of specificity would be more in line with the clinical 
expectation [31].

RESULTS

We employed 10-fold cross-validation strategy to evaluate the 
performance of our proposed model. To lower the potential ef-
fect caused by over-fitting, all the subjects are equally allotted into 
10 subsets {S1, S2, . . . , S10} with a random fashion. The subset S1 is 
regarded as the testing set, and {S2, . . . , S10} is further grouped into 
10 subsets as a whole dataset, in which one of the subset is denoted 
as validation set, while the others are utilized to modeling the rs-
fMRI-based classifier. 

Based on the selected features, we conducted 10 runs on the 
cross-validation procedure to determine the classification accura-
cy, as shown in Fig. 2a. An assessment on the accuracy of multiple 
experiments was presented in a way of function fitting, showing 
relatively stable trend from the overall perspective. Moreover, the 
corresponding residuals of accuracy in Fig. 2b represented a small 
fluctuation in a certainty scope of [–0.2, 0.2]. This intuitively vali-

Fig. 2. Results (a) and assess-
ment (b) of 10 runs on the 10-
fold cross-validation procedure. 
Each number (1~10) in x-axis 
denotes the numbering of times. 
The yellow line (y=0.003*x+72) 
in subplot (a) represents function 
fitting on accuracy, and corre-
sponding residuals are calculated 
in subplot (b).
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dated the feasibility and reliability of the proposed scheme. Inte-
grated simulation results revealed that the mean score on accuracy, 
sensitivity, and specificity are 72.2%, 68.8%, and 75.4% respectively. 
To our best knowledge, this result has so far not been reported in 
literatures.

By reducing the dimensionality of connectivity features, we 
achieved better differentiation between individuals with ASD 
and TC. It implied that the processed features could present more 
available patterns, which might be generalized by the learning 
model so as to identify ASD. For the intra-site cross validation, the 
highest accuracy resulted in 71.2%, and the mean classification 
accuracy was 67.7% (sensitivity=66.3%, specificity=68.9%) with a 
range of accuracy of 64.0% to 71.2% in individual folds. A recent 
study using intra-site cross validation to evaluate the prediction on 
most of ABIDE data leaded to 66.9% accuracy [32]. The slightly 
lower classification results might be attributed to the disequilib-
rium distribution of training samples in sites that affects the gener-
alization of informative patterns. 

DISCUSSION

Classification performance

To demonstrate the superiority of our proposed method on the 
tasks for ASD/TC classification, we performed a comparison of 
present experimental results with previously relative studies, as 
illustrated in Table 2. The studies to classify similar quantity of 
ABIDE data for experiments were firstly taken into account. Visual 
observation shows that our proposed method achieved the great-
est integrate capability in three evaluation indicators than other 
methods. Most notably, a recent imaging study that attempted to 
classify ASD with deep learning method achieved an accuracy 
of 70.3% (sensitivity=68.3%, specificity=72.2%) [17]. To our best 
knowledge, this is the best differentiation result in the previously 
reported studies with almost all ABIDE data. By contrast, we 
improved the classification accuracy with about 2% and specific-

ity with 3.2%. Although there was a little loss on the sensitivity 
compared with Heinsfeld et al. [14], the higher value of specificity 
would be more in line with the clinical expectation than sensitivity 
[31].

It is also worth mentioning that we achieved lower accuracy than 
some reported studies that attempted to identify ASD based on 
less imaging data. Particularly, such imaging studies [10-12] had 
achieved high classification accuracy above 80% and even 90%. 
To assess the realistic and clinical prospect of our model, we took 
into account with the calculation on another two valuable metrics 
of PPV and NPV, i.e., positive and negative prediction values [33]. 
It could provide a more comprehensive evaluation on the gener-
alization ability of the learning model. The concrete calculation 
depends on the relationship between sensitivity, specificity and 
prevalence of ASD. Analysis on the proposed model indicated 
a NPV of 68.9% and PPV of 66.4%, respectively. From a clinical 
point of view, the fact emphasizes that most people are not autistic, 
so that the high NPV is to be expected. The PPV means that the 
application of machine learning methods on brain imaging data is 
not driven by the purposes of diagnosis. Rather, it is a data-driven 
approach to inform what most likely are the neural patterns asso-
ciated with the disorder [14]. 

Besides this, a Wilcoxon Signed Ranks related groups test [34] 
was executed on the classification results for further evaluation. 
Specifically, we compared the individual label predicted by learn-
ing model to the ground truth of subjects. For the well-trained 
SVM classifier in this study, the results demonstrated no statistical 
difference between the classified labels and ground truth (p=0.633). 
Summarized and analyzed by the above, the overall performance 
and reliability on classification of ASD was improved in our study. 
That is, our proposed method achieved more considerable clas-
sification of ASD than others reported studies with ABIDE data. 
But remarkably, each one was established on different subsets with 
diverse clinical or imaging features, thus the above comparison on 
classification performance between various studies provided only 

Table 2. Classification results of methods with ABIDE data

Type Number of Subjects Accuracy (%) Sensitivity (%) Specificity  (%)

Kong et al. [10] 172 90.4 -- --
Plitt et al. [11] 178 95.2 94.9 95.6
Chen et al. [12] 252 91 89 93
Abraham et al. [32] 871 66.9 53.2 78.3
Nielsen et al. [15] 964 60.0 -- --
Dvornek et al. [13] 1100 68.5 -- --
Heinsfeld et al. [14] 1035 70 74 63
Eslami et al. [17] 1035 70.3 68.3 72.2
Ghiassian et al. [16] 1111 59.2 -- --
Proposed 1054 72.2 68.8 75.4
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the relative results. 
To be sure, the accuracy of 72.2%, obtained in the present study, 

improves the current state of the art. Several studies thus far have 
suggested that supervised learning methods are effective in identi-
fying data with high-dimensional spaces [10, 11, 14]. In this paper, 
the most obvious significance of attentional selection is to effec-
tively reduce the dimensionality of problems with an abstracted 
feature space, which attempts to represent more complex functions 
for learners. The obviously validity makes the method combining 
brain connectivity with attentional dimensionality reduction more 
reasonable to identify autism from diverse individuals.

Dataset heterogeneity

Skilled analytical thinking and learning should not be drowned 
out by the severe challenge of classifying data across multiple sites, 
such as ABIDE data. It is generated through sharing and aggregat-
ing independent data across 17 international sites with consistent 
imaging modalities (i.e., rs-fMRI). At present, a growing number of 
efforts [10-17] have revealed the potential of using ABIDE data for 
the detection and generalization of potential biomarkers associ-
ated with ASD. However, uncontrolled variation in the aggregated 
samples seems to be a major inhibitor of accurate differentiation 
between individuals with ASD and TD. 

To be specific, such variation is manifested in various hetero-
geneous factors, which might range from acquisition protocols 
(e.g., imaging sequence [35]) to recruitment strategies (e.g., age-
group, IQ-range, and level of severity in clinical symptoms [32, 
36]). There is no doubt that the existence of heterogeneity in large 
dataset might compromise the coherence of information between 
different sites. It would result in a less ideal identification of ASD, 
which was demonstrated in several recent imaging studies [14-17, 
32]. 

In this case, many researchers [10-12, 36] was motivated to limit 
the number of sites or samples for an accurate identification. For 
examples, Plitt et al. [11] achieved a high accuracy of 95.19% based 
on 252 subjects from only three sites (NYU, USM and UCLA_1). 

And Chen et al. [36] presented an accuracy of 79.17% through 
the experiments on a number of 240 subject from 6 separate sites. 
Hereinto, there are lots of valuable aspects that might enlighten the 
research and clinical settings, but in the meantime inevitably limit 
the heterogeneity - not only in the race, age, sex, severity of clinical 
symptoms, but also in the socioeconomic status.

Although fewer site-wise variations or the absence of such sen-
sitive variation in the dataset is more beneficial to discriminate 
between the individuals with ASD and TC, the variability might 
contribute to a better understanding of the brain-base disorder 
[14]. Thus, in this paper, nearly all of the rs-fMRI data from ABIDE 
(1054 of 1102 subjects) was utilized for the performance evalu-
ation of our method. This could keep the distribution of dataset 
heterogeneity at the maximum level, so as to obtain more robust 
identification of individuals and general insights in the under-
standing of underlying causes to ASD. 

Furthermore, our proposed method combines brain connectiv-
ity with attentional selection, which could encompass such varia-
tions in the aggregated samples and yield better results than those 
shallow methods. The improvement on classification could be 
explained by the Extra-Trees’ potential on coping with the latent 
factors of intricate features and by the capacity of SVM to encode 
variations in data. It is suggested that the Extra-Trees algorithm 
with randomization conception could better handle complexities 
of multi-site as well as big brain imaging datasets than Random 
Forest and the like. 

Neural patterns: connectivity in the autistic brain

A connection between two brain regions could be considered 
as informative and discriminative if it contributes to the desired 
identification for subjects with ASD and TC. To better understand 
the potential neural patterns driving the best identification, we 
made a particular investigation on the most discriminative con-
nections resulted in the highest classification accuracy, as depicted 
in Fig. 3. Analysis on the contribution of functional connections 
proved that the connections colored as red and green were stron-

Fig. 3. The most discriminative functional connections in predictive biomarkers for distinguishing controls from ASD patients, represented as lines 
with red, blue and green by importance in a descending order. Red and green connections are stronger in controls, and blue connections are stronger in 
ASD patients.
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ger in controls, and blue connection was stronger in ASD patients. 
Moreover, worth mentioning was that the respectively statistical 
hypothesis test on the three discriminative connections indicated 
significant differences on the identification of two groups: ASD 
and TC (p<0.05).

To investigate the atypical connections on identifying ASD, we 
explored the cognitive function of related informative ROIs by 
a meta-analysis tool named Neurosynth. It mainly focus on the 
comparison of desired brain map with various fMRI studies to-
taled over 10,000 and the assignation of correlations for the map 
to almost 1335 terms [37]. Table 3 shows, for each above ROIs, 
the top associated Neurosynth terms on anatomy and function. 
It could be understood as obvious similarity between the defined 
functional connectivity network by the current seed region and 
the set of diverse regions associated with a particular term in the 
Neurosynth database. The concrete implementation is described 
with the individual binary mask for each informative brain re-
gions. Visual observation on the descriptors shows that these func-
tional regions are of great significance for supporting the social 

cognition and interactions. While these functions are proved to be 
deficient in individuals with ASD [5, 12, 38].

Several recent imaging studies [13, 39] have noted that the 
informative somatosensory regions and default mode were in-
comparably more worth for the precise prediction on individuals 
with ASD. Moreover, a growing number of efforts [7-9, 40] have 
revealed lower correlation between the anterior and posterior 
DMN in autistic individuals, e.g., correlation between precuneus 
and medial prefrontal cortex. Our experiments and analysis on the 
discriminative functional connections are concordant with the re-
ported observations. This is also attested from another angle, that 
the attention mechanism discussed in our proposed framework is 
reasonable for exploring the potential biomarkers associated with 
ASD.

Based on the heterogeneous rs-fMRI data from ABIDE, we fur-
ther investigated potential brain regions that deemed co-activate 
with the above ROIs, as shown in Fig. 4. To reduce blurring of 
signals across cerebro-cerebellar and cerebro-striatal boundaries, 
the brain signals of adjacent cerebral cortex were regressed from 

Table 3. Top Neurosynth terms on anatomy and function associated with ROIs of the discriminative functional connections

ROI Anatomical Terms Functional Terms

Precuneus, Posterior Cingulate, Retrosplenial Cortex, Angular Gyrus Episodic Memory, Autobiographical Memory, Memory 
Retrieval, Cognitive Impairment

Cortex Vmpfc, Ventromedial Prefrontal, Medial Prefrontal, Posterior Cingulate Default mode, Autobiographical Memory, Choose, Reward
Auditory Cortex, Heschl Gyrus, Superior Temporal, Planum Temporale Sounds, Speech, Listening, Audiovisual
Thalamus, Thalamic, Basal Ganglia, Caudate Nucleus Finger Tapping, Pain, Supplementary Motor, Sensation
Anterior Temporal, Temporal Pole, Temporal Lobes, Lateral Temporal Mental States, Theory Mind, Comprehension, Mentalizing, 

Sentence
Medial Prefrontal, Cortex Vmpfc, Dorsomedial Prefrontal, Prefrontal Cortex Mentalizing, Mental States, Beliefs, Theory Mind

Fig. 4. Brain regions co-acti-
vated with ROIs of the top three 
functional connections. The seed 
region could be visually recog-
nized as the bright white spot in 
each map.
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the cerebellum and striatum. It is evident that these observed re-
gions groupings emphasize the neurocognitive functions known 
to be affected in individuals with ASD, such as diminished social 
reward, impaired memory and communication skills, and lacking 
theory of mind (a leading hypothesis on the social impairment of 
autism folk) [41].

There is one notable thing that our observation on the potential 
neural patterns of ASD emphasizes a well generalization to larger 
ASD population, rather than autistic individuals within specific 
scope. Since heterogeneity in the race, age, sex, severity of clinical 
symptoms, and socioeconomic status in this database may be as-
sociated with significant differences in the brain networks, similar 
experiments could be performed here by considering different cat-
egories (e.g., gender or age-group) to evaluate the special effects of 
ASD. Recent studies [36, 42] in the medical literature have bearded 
out its efficiency and demonstrated some meaningful insights for 
aiding the ASD diagnosis. For examples, Chen et al. [36] found a 
more significant correlation between social and communication 
deficits in adolescent individuals with ASD than healthy controls. 
And Subbaraju et al. [42] presented a clear shift in brain activities 
to the prefrontal cortex of male patients with ASD, but not evident 
in the females. Hence, in future, we would make a specific analysis 
on the brain networks for different categories of subjects.

Limitations and future work

The fMRI holds promise to characterize pathophysiology and 
generalize potential biomarkers for ASD, which would contribute 
to the targeting diagnosis on brain-based disorders. To solve the 
challenge of limited reproducibility and generalizability for poten-
tial biomarkers, we performed an attentional connectivity analysis 
on multisite rs-fMRI data from ABIDE. Specifically, an individual 
brain network for each enrolled subject was firstly constructed 
with the mean rs-fMRI time series of each ROIs in CC200 atlas. 
Then, we used Extra-Trees algorithm to concentrate attention on 
the informative functional connectivity features with most contri-
bution to the classifier model. Afterwards, the supervised learning 
method was applied to accomplish the ASD/TC classification 
through a straightforward way of setting the top discriminative 
features into the SVM model. The experimental results have dem-
onstrated that our proposed attention method was effective for the 
diagnostic aids in ASD. We achieved good classification accuracy 
of 72.2% that is about 2% higher than previous competitive study. 
Connectivity analysis highlighted some functional regions strong-
ly associated with social cognition and interactions, and proved 
lower correlation between the anterior and posterior default mode 
network (DMN) in autistic individuals. These observations are 
concordant with previous studies, which enables our proposed 

method to effective identify individuals with risk of ASD.
A limitation of this study on the prediction for ASD is the use of 

special atlas, i.e., CC200. Though a rather accurate classification 
was achieved on the predefined atlas of CC200, the high accuracy 
may not hold if other different atlases are applied. And of course, 
the observed significant neural patterns associated with ASD in 
the atlas also may be changed. Therefore, a further validation is 
required to assess robustness of the current approach using other 
parcellation schemes. Another limitation could arise in the com-
parison between different algorithms for evaluating the superior 
performance of our proposed method. Though all the referred 
studies were performed based on the imaging data from ABIDE, 
it might not be appropriate due to that each algorithm was estab-
lished in different subset with diverse clinical or imaging features. 
In the future, we would attempt to extend our method on other at-
las, consistent experimental data with published studies, and even 
imaging data derived from other brain-based disorders. If so, the 
robustness and applicability of our proposed framework could be 
further improved.
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