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Abstract

The question of how the structure of a neuronal network affects its functionality has gained a lot of attention in
neuroscience. However, the vast majority of the studies on structure-dynamics relationships consider few types of network
structures and assess limited numbers of structural measures. In this in silico study, we employ a wide diversity of network
topologies and search among many possibilities the aspects of structure that have the greatest effect on the network
excitability. The network activity is simulated using two point-neuron models, where the neurons are activated by noisy
fluctuation of the membrane potential and their connections are described by chemical synapse models, and statistics on
the number and quality of the emergent network bursts are collected for each network type. We apply a prediction
framework to the obtained data in order to find out the most relevant aspects of network structure. In this framework,
predictors that use different sets of graph-theoretic measures are trained to estimate the activity properties, such as burst
count or burst length, of the networks. The performances of these predictors are compared with each other. We show that
the best performance in prediction of activity properties for networks with sharp in-degree distribution is obtained when
the prediction is based on clustering coefficient. By contrast, for networks with broad in-degree distribution, the maximum
eigenvalue of the connectivity graph gives the most accurate prediction. The results shown for small (N~100) networks
hold with few exceptions when different neuron models, different choices of neuron population and different average
degrees are applied. We confirm our conclusions using larger (N~900) networks as well. Our findings reveal the relevance
of different aspects of network structure from the viewpoint of network excitability, and our integrative method could serve
as a general framework for structure-dynamics studies in biosciences.
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Introduction

There is a great interest towards understanding the structure of

neuronal networks, and ultimately, the full connectome [1,2]. The

network structure lays a foundation to all collective activity

observed in the system, and understanding this relationship is

relevant both in vivo and in vitro. Promising experimental attempts

have been made in controlling the growth of neurons to produce a

pre-designed network structure [3,4]. If successful, such experi-

ments would inform us on how the collective dynamics of the

neurons is influenced by their patterns of synaptic connectivity.

However, such information is extremely challenging to obtain

using the state-of-the-art equipment due to the complexity of

processes involved in neuronal growth. Furthermore, the connec-

tivity patterns obtained using experimental setups are always

subject to physical constraints posed by the growing platform of

the neurons. For all this, most of the nowadays studies on

structure-function relationship in neuronal networks are likely to

be conducted in silico, where the connectivity can easily be

modified and the effect on the network dynamics instantaneously

screened.

In the past few decades a lot of theoretical and computational

studies on the function of neuronal networks have been carried out

in order to examine the behavior of the network under various

circumstances and various stimuli. However, in most studies the

structure of the network is at least in part based on purely random

networks, i.e., the far and widely studied Erdös-Rényi networks.

These networks are statistically described by a single parameter,

namely, the connection probability p, and by far lack any spatial

organization. Several studies have revealed the contribution of

connection probability to various aspects of neuronal network

dynamics, e.g., emergence of large-scale network synchronization

[5,6] the amplitude of fast network oscillations [7], and emergence

of spontaneous network-wide bursts [8].

Despite their vast usage, the random networks have been found

an insufficient model for the synaptic connectivity in the brain [9–

12]. Recently, steps toward deeper understanding of the details of

the structure and their effects on the dynamics have been made,

which is shown by the devotion of a recent special issue in

Frontiers in Computational Neuroscience particularly to this topic

[13]. The framework of small-world networks [14] which allows

varying the proportion q of long-range connections in addition to

the connection probability p has hitherto been the most studied

alternative to Erdös-Rényi networks in models of neuronal

networks. Analyses on the effects of the long-range connections

on, e.g., oscillation coherency [15], modes of synchrony in models
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of epilepsy [16,17], and self-sustained activity [18] have been

carried out. However, a range of other extensions to random

networks exists as well. The scale-free [19] networks possess a

structure that is hierarchical over different scales, and are

characterized by power-law distributed degrees. These networks

have been applied in a range of neuronal modeling studies due to

their resemblance to the hierarchical connectivity of the brain

[20]. Nevertheless, the preferential attachment algorithm in [19]

(and in most generalizations for directed graphs, e.g. [21]) for

generating scale-free topology only uses the first order connectivity

statistics, i.e., the number of contacts of the nodes, as the criteria

for creating a link. In [22] the effect of second-order connectivity

statistics, which can roughly be captured by the widths and

correlation of the degree distributions, were studied. Similarly,

[23] studied the effect of degree distribution widths through a

framework where both degree distributions can be arbitrarily

predefined, and the networks are created through random

couplings. Both [22] and [23] agree on the significance of the

in-degree over the out-degree in influencing the mode of

synchrony in the network.

A frequent trend in structure-dynamics studies is to overlook the

coeffect of structural measures. The changes in activity are

monitored with respect to one graph measure, ignoring the

possible mutual changes in other structural measures [24]. In this

work we approach this problem by measuring a set of graph

properties simultaneously. In addition, we apply multiple network

generation algorithms in order to avoid too great correlation

between some particular graph measures. As an example, studying

only such networks that are described in [14] would bring about a

large correlation between geodesic path length and clustering

coefficient, which would make it difficult to tell which properties of

dynamics are due to the high path length and which are due to the

clustering.

The focus of this work is on excitability of spontaneously

bursting networks, i.e., on how frequently network bursts occur

and of what magnitude they are. Note that we adopt the term burst

from literature on neuronal networks cultured on a micro-

electrode array, where the term is widely used for a short period

of high spiking activity (alternative names are many, e.g., network

spike, population spike, and synchronized spike) [25,26]. By contrast,

when we refer to a burst of a single neuron, we use the term intrinsic

burst or single-cell burst to make a clear distinction. We apply two

point-neuron models, one of which is based on the integrate-and-

fire formalism and the other on the Hodgkin-Huxley formalism. In

both models, the neurons are connected by chemical synapses

expressing short-term plasticity. The synaptic currents (or

conductances in the Hodgkin-Huxley type of model) are instan-

taneous and decay exponentially after a presynaptic action

potential. In the case of strong enough recurrent excitation, both

models produce network bursts. Our focus is on the regime of

spontaneous bursting activity, where the bursting frequency lies

between 0 and 60 bursts/min. This is a typical range of bursting

in, e.g., cortical cultures [25].

In the present study, we apply a prediction framework to

determine the importance of different graph-theoretic measures.

Simulations of network activity are run on a large set of different

network structures, and measures of both structure and activity are

calculated. For each measure of structure we estimate its capability

to predict the outcome of the activity properties, and to an extent,

its capability to copredict the activity when used together with the

other graph measures. We show that the prediction of activity

properties in networks with sharp in-degree distribution (binomial)

is best when clustering coefficient is used, whereas in networks with

broad in-degree distribution (power-law) the predictions based on

maximum eigenvalue of the connectivity matrix are the most

accurate. Our results could serve as a general guideline for

designing experiments in which several but not all aspects of

structure are measured. With novel experimental techniques and

tools for data analysis [12,27], graph-theoretic measures of the

local connectivity could be estimated without unraveling the whole

connectivity matrix, and our results may help to choose those

measured aspects.

Materials and Methods

We restrict our study on networks in which the structure can be

fully represented by a directed unweighted graph. We use the

notation G~(V ,E), where G is the graph, V~fv1, . . . ,vNg is the

set of nodes, and E~f(x,y)Dx[V ,y[Vg is the set of egdes between

the nodes. The connectivity matrix M[f0,1gN|N
of a graph V is

a binary matrix, where each element Mij denotes the existence (1)

or nonexistence (0) of an edge from node vi to node vj . Self-

connections are excluded in this work. We call neighbors such pair

of nodes, that have at least a unidirected edge between them.

When no risk of confusion, we use the terms ‘‘node vi’’ and ‘‘node

i’’ interchangeably.

Network structure
We assess network structure using the following graph-theoretic

measures.

N Clustering coefficient (CC). The local clustering coefficient CCi of

a node vi describes the density of local connections in the

neighborhood of node vi. We say that the nodes vi , vj and vk

form a triangle if there is at least a unidirected edge between vi

and vj , between vi and vk, and between vj and vk. The local

clustering coefficient of node vi is the number of triangles that

include the node divided by the maximum number of such

triangles if all neighbors of the node were connected [14,28].

The directions of the edges are respected, hence changing a

unidirected edge to a bidirectional edge doubles the counted

triangles that include the considered edge. In mathematical

terms, we can write

CCi~
1

8
ni

2

� � XN

j~1

j=i

Xj{1

k~1

k=i

(MijzMji)(MikzMki)(MjkzMkj),

where ni is the number of neighbors of node vi. The clustering

coefficient CC of the whole network is calculated as the average

over the local clustering coefficients of the nodes – only those

nodes are taken into account that have more than one neighbor.

N Harmonic path length (PL). A geodesic path from a node to

another means the shortest traversable path between the two

nodes. To calculate the harmonic path length, the geodesic

path length PLij between each pair of nodes (vi,vj), i=j is first

calculated, where PLij~? represents the case where no path

exists from vi to vj . The harmonic path length of the network

represents the average distance between two nodes of the

network, and is computed as the harmonic mean of the

geodesic path lengths [28,29]:
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N Node-betweenness (NB). The local node-betweenness NBi is a

measure of centrality of the node vi. It is calculated as the

number of shortest paths that the considered node lies on [28].

If the node lies on a number s
(i)
jk out of s

(tot)
jk equally long

geodesic paths between nodes vj and vk, then the increment of

this pair of nodes is the fraction of the two quantities. Thus, we

can write NBi~
XN

j~1
j=i

XN

k~1
i=k=j

PLjkv?

s
(i)
jk

s
(tot)
jk

. The node-between-

ness NB of the network is the average of the local

betweennesses NBi.

N Out-degree deviation (OD). The sample standard deviation of the

realized out-degrees of the nodes.

N Degree correlation (DC). The sample correlation coefficient

between the realized in- and out-degrees of the nodes.

N Length-to-self (LtS). The mean geodesic length to self
1

N

XN

i~1
PLii.

N Maximum eigenvalue (MEig). The largest eigenvalue of the

connectivity matrix M. This is always real-valued as the

connectivity matrix is non-negative [30].

N Motif count (MotN, N~1,:::,13). The (absolute) number of

different connectivity patterns of triples of nodes [31] (see

Fig. 1).

Ideally, to study how measures of structure are linked to

measures of dynamics, one would have a direct (possibly

stochastic) function from the measures of structure to measures

of dynamics. However, to obtain the measures of dynamics or

their distributions, a network activity model has to be applied

using a certain connectivity graph. Hence, this sort of mapping is

not possible unless the measures of structure uniquely determine

the underlying graph. To go around this problem, we generate

networks with very different structural properties and simulate the

neuronal activity in them. We concentrate on a few carefully

selected random graph classes that we consider to span wide

enough diversity of network types relevant in neuroscience: Watts-

Strogatz-type networks (WS), networks with high local feed-

forward structure (FF), and networks with high number of loops of

certain length (L2,L3,L4,L6).

Let us motivate the choice of these classes. WS networks were

first introduced in [14] as a class of networks expressing the small-

world phenomenon, and have been extensively used ever since. In

neuroscientific studies the WS networks between ordered and

random topologies have been proposed as a model for, e.g.,

optimal signal propagation [15], maximal dynamical complexity

[32], and optimal pattern restoration [33]. As for the FF networks,

the feed-forward loop is a triple of nodes, vi, vj and vk, where there

is a direct connection from vi to vk, and a ‘‘secured’’ disynaptic

connection from vi through vj to vk. The feed-forward loops have

been found more abundant in C. Elegans neuronal network than in

random networks [31], and their contribution to neural processing

has been much studied [34,35]. We include these networks in the

present study as an alternative to WS networks that should show a

great number of feed-forward loops and yet lack the spatial

structure typical to WS networks. Finally, the loopy networks (L2,

L3, L4 and L6) represent a network structure, where the

connections are organized such that the feed-back loops of certain

length and direction are promoted. The synaptic feed-back

projections in general have been suggested as a mechanism for

working memory [36,37]. Several papers discuss the existence of

directed loops in the brain: [38] and [39] show that such loops

could be produced by rules of spike-timing-dependent plasticity

(STDP) in order to promote stability in the network, contradicting

with the no-strong-loops hypothesis [40]. The reason to include

loopy networks in this study is to address the question whether and

to what extent such loops contribute to the dynamics in recurrent

neuronal networks.

One of the statistically most dominant properties of recurrent

neuronal networks is the connection probability of the neurons.

Increasing or decreasing the connection probability has usually

major effects on the neuronal activity, which has been discussed in

several computational studies, including [7], [41] and [8]. In

addition to this, not only the average number but also the variance

in number of inputs to the neurons plays a significant role in the

synchronization properties of the network [22,23]. Regarding

these facts, we keep the in-degree distributions strictly constrained

while studying the other aspects in the network structure. To do

this we propose to use the following random graph algorithms in

which the in-degree distribution fID can be explicitly set.

Watts-Strogatz [14] algorithm for bidirectional

graphs. Initially, the nodes are placed in a metric space of

choice. The number of inputs is drawn from fID for each node,

and that number of spatially nearest nodes are chosen as inputs.

Finally, all existing edges are rewired with probability q such

that the postsynaptic node is held fixed but the presynaptic node

is picked by random. We call these networks WS1 and WS2

networks, where the number 1 or 2 tells the dimensionality of

the manifold where the nodes lie. In WS1 networks the nodes

are placed on the perimeter of a ring, while in WS2 networks

the nodes are placed on the surface of a torus. To be more

specific, in the ring topology the nodes are placed into a ring in

2D plane as (x,y)~( sin c, cos c), where c[f2p

N
,
4p

N
,:::,2pg.

Similarly, in the torus topology the 2D grid is nested into

4D space as (x,y,z,w)~( sin c1, cos c1, sin c2, cos c2), where

c1,c2[f
2pffiffiffiffiffi

N
p ,

4pffiffiffiffiffi
N
p ,:::,2pg, given that

ffiffiffiffiffi
N
p

is an integer. In both

1 2 3 4 5 6 7

8 9 10 11 12 13

Figure 1. The 13 network motifs of three connected nodes. See [31] for reference.
doi:10.1371/journal.pone.0069373.g001
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topologies the Euclidean distance is used as the metric. We refer

to the limit topologies of Watts-Strogatz networks with zero

rewiring (q~0) as locally connected networks (LCN1 and LCN2).

Scheme for generating graphs with high local feed-

forward occurrence. For each node the number of inputs is

drawn from fID. The inputs are selected sequentially for each

node. For the first node, the inputs are selected by random. For the

next ones, the inputs are selected in such a way, that the

emergence of feed-forward motifs is pronounced. This is done by

giving higher weights to the nodes that project disynaptically to the

considered node than to the others. A detailed scheme for

generating these networks is given in Algorithm S1 in File S1. We

refer to these networks by acronym FF. Note that this is not to be

mistaken for the general term feed-forward networks in the meaning of

opposite for recurrent networks. In this work all considered

networks are recurrent.

Scheme for generating graphs with high occurrence of

loops of length L. For each node the number of inputs is drawn

from fID. The edges are set one by one until each node has all its

inputs selected. In the selection of presynaptic nodes, the

emergence of loops of length L is promoted, while the addition

of edges that shorten these loops is discredited. This is done by

giving different weights to the nodes depending on the shortest

path from the considered node to the candidate nodes. See

Algorithm S2 in File S1 for the detailed algorithm. The resulting

networks are rich in recurrent synfire chains of length L. This is

however conditional to the choice of the in-degree distribution: If

the number of connections is too great, the excessive edges have to

create ‘‘shortcuts’’ into the loops. In this work we refer to these

networks with acronym L2, L3, L4 or L6, depending on the

promoted length of loops.

MATLAB functions to generate these networks are given in

ModelDB entry 147117. Each of these algorithms can be used to

generate both networks where the definitive property of the

respective network is very pronounced, networks where the

strength of that property is zero (random networks), and networks

that lie in between these extremes on a continuous scale. We

denote this strength parameter by W[½0,?�. In Watts-Strogatz

networks, we draw the relation between the rewiring probability q

and the strength parameter as q~ exp ({W=2). Hence, in all

network classes W~0 produces strictly random networks (RN)

and W~? produces the other extreme of networks.

In addition to these networks, we consider biologically realistic

2-dimensional neuronal networks. To generate these, we use the

NETMORPH simulator [42] with the model parameters taken

from [43]. NETMORPH simulates the growth of dendrites and

axons in a population of neurons and outputs the sites of potential

synapses. The potential synapses are formed when an axon and a

dendrite of distinct neurons come close enough to each other. To

remove the effect of boundaries, we place the somas randomly

inside a square-shaped box, and the neurites that grow outside the

box are considered to appear on the opposite side of the box. For

each simulation, we form the connectivity graph from the

simulation result once the required amount of connections has

been reached. We omit the question of to which degree the

potential synapses become functional synapses and consider every

potential synapse as an edge. Multiple synapses with the same pre-

and postsynaptic neurons are considered as one edge. The in-

degree distribution of these NETMORPH networks cannot be

explicitly set, but it is fairly well approximated by binomial

distributions (see Fig. S1 in supporting information). In the

forthcoming sections, we abbreviate the networks obtained with

the NETMORPH simulators as NM.

The different network classes are illustrated in Fig. 2. In

addition, iterations for the generation of extreme FF and L4

networks are shown. Furthermore, a set of graph measures in

extreme FF, L2, L3, L4 and L6 networks are shown. These

statistics, compared to the corresponding statistics in random and

locally connected networks, reveal that the algorithms indeed

produce networks with the desired properties. Further properties

of the networks are shown in Figs. S2, S3 and S4, and discussed in

Section S2 in File S1.

Neuronal dynamics
We apply two neuron models with rather different intrinsic

dynamics. The first one is a leaky integrate-and-fire model with

short-term plasticity [44], and the second one is a Hodgkin-Huxley

type of model with four ionic and three synaptic currents [45]. In

the latter we import a model of synaptic short-term plasticity from

[46]. In both models we input a stochastic white noise term into

the membrane potential of the neurons to make them spontane-

ously active. The models are described in detail in Section S1.3 in

File S1.

We refer to the first model as LIF model and to the latter as HH

model throughout this work, although they are extensions of the

ordinary leaky integrate-and-fire and Hodgkin-Huxley models.

These two models were chosen to represent both a simple model

that can easily be extended to larger networks, and a more

biophysically detailed model that can be extended to study the

effect of, e.g., various neurotransmitters and modulators on

network activity. The latter was introduced as a model for

studying synchronization in low extracellular magnesium concen-

tration, but it allows the use of higher concentrations as well. Here,

we use a value ½Mg2z�o~0:7mM, which is in the range of

magnesium concentrations normally used in studies of neuronal

cultures (see, e.g., [25]).

Network bursts could be produced with simpler models that do

not consider short-term plasticity, e.g., by using widely applied

models of balanced excitation/inhibition [47] or Markov binary

neurons [48]. The ending of the bursts in these models is

dependent on the activation of the inhibitory population, which

returns the elevated firing activity to a baseline level. By contrast,

applying short-term depression to the excitatory synaptic currents

allows the emergence of network bursts in both excitatory-only (E)

and excitatory-inhibitory (EI) networks [44]. This is favorable, as

the experiments carried out on neuronal cultures show that

network bursts cease even in the pathological case of blocked

inhibition (see, e.g., [49] and [26] for spinal cord cultures and [50]

and [51] for cortical cultures). In this work, we study the bursting

dynamics of both E and EI networks, and hence, we employ the

short-term depressing synapses in both cases. In the EI networks,

the structure is first generated using one of the network generation

schemes and then 20% of the neurons, randomly picked, are

assigned as the inhibitory population. The network size is N~100
unless otherwise stated.

As a major simplification to reality, we consider the synaptic

transmission to be instantaneous. The transmission delays and

their effect on neuronal network dynamics have been under wide

examination (see e.g. [52]) and have been shown to play an

important role in various contexts. Their inclusion can be,

however, carried out in multiple ways. For instance, in WS1,

WS2, and NM networks the long-range connections should have

longer delay parameters than the local connections (see e.g. [53]),

whereas for other network types such distance-delay relationship

cannot be straightforwardly defined, and hence, different

approaches should be tested. In this work we restrict our study

to non-delayed networks in order to avoid excessive simulations.

Structure & Dynamics in Bursting Neuronal Networks
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The networks are set into a regime of spontaneous network

bursting. This is done by tuning the synaptic weight g (see Section

S1.3 of File S1) so that the moderately connected networks (RN,

p~0:2, binomial in-degree) show a bursting frequency of 10

bursts/min. These values are in the range of connectivity and

bursting activity in a typical cortical culture [25]. For the applied

proportions of excitatory and inhibitory neurons and model

parameters, we found that the mean bursting frequency is a

monotonically increasing function of the synaptic weight in the

regime of interest (0–60 bursts/min), and hence we use the

bisection method to find the proper synaptic weight.

For each network simulation the spiking activity is solved for a

one minute period (in fact for 61 s, but the first second is neglected

for a possible transition stage). The model parameters and initial

conditions for both models are described in Section S1.3 of File

S1. The code files to carry out the simulations in PyNEST [54]

(LIF model) and MATLAB (HH model) are given in ModelDB

entry 147117. Fig. 3 illustrates the typical dynamics for a single

neuron and a network of neurons.

Activity in a bursting network can be characterized by the

quantity and quality of the network bursts. We employ the burst

detection scheme applied in, e.g., [55] and [56]. The spikes are

first divided into separate network bursts using a maximal inter-

spike interval of 25 ms. This means that two consecutive spikes

belong to the same network burst if and only if their distance is

25 ms or less. Those bursts which consist of less than 1:5NE

(with HH model) or 0:4NE (with LIF model) spikes, where NE

denotes the size of the excitatory population, or in which less

than 0:3NE individual neurons contributed to the burst, are

disregarded. Further, a burst profile is created by convoluting the

population spike train in the range from the first to the last spike

of the burst with a Gaussian with deviation 2.5 ms. The length of

the rising slope and the falling slope, i.e., the halfwidths of the burst

profile, are calculated with a resolution of 0.25 ms. These

L4 L6 NM

FF L2 L3

RN LCN1 LCN2

1 2 3

4 5 6

1 2 3

4 5 6 7

C

0

750

1500

2250

0

2

4

6

RN FF L2

L3 L4 L6

LCN1

#Mot5 #Mot6

LCN1: 1.68± 1.94 LCN1: 81± 20.5

LtS

A B

D E

Figure 2. Illustration of network classes. A: Examples of the extreme network types used in the present work. Network size N~6, except in
LCN2 N~36, and in NM N~30. The red arrows highlight the definitive properties of the networks. In NM the connections whose post-synaptic node
lies across the box boundaries are replaced by a link to a copy of the post-synaptic node (plotted with gray at a corresponding location outside the
box). B, C: Illustration of the generation of FF (B) and L4 (C) networks. The red dots show the node that has recently been added the inputs, and these
inputs are in turn highlighted by circles. The number at the upper-left corner of each graph shows the iteration number. D: Mean and standard
deviation of the number of motifs 5 (left) and 6 (right) in different extreme network types (RN, FF, and LCN1). The FF networks possess the greatest
number of both these two motifs. The low number of these motfis in LCN1 networks is explained by the fact that they contain much more highly
connected motifs (motifs 12 and 13) due to their locally coupled design. E: Mean and standard deviation of the length-to-self measure in different
extreme network types (RN, L2, L3, L4, L6, and LCN1). The loopy networks L2, L3, L4, and L6, express a value of LtS near to the corresponding length
of the promoted loop. In both D and E, all networks are of size N~100 and their in-degree distribution is binomial with p~0:16. Statistics are
computed from 150 independent samples.
doi:10.1371/journal.pone.0069373.g002
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measures are illustrated in Fig. 4. We consider the summed value

of these two measures the length of the burst. This measure is more

robust to addition of a single spike to the burst than the absolute

duration of the burst, which is calculated as the time from the

first spike to the last spike of the burst. To further characterize

the burst, we consider the number of spikes in a burst, which we

refer to as the burst size. To average the network activity over a

one minute simulation, we use the median burst length and

median burst size. An important characteristic of the network

activity is also the burst count, i.e. the number of bursts during the

time of simulation, which has been shown to vary substantially in

spontaneously active networks with different structures [57]. In

addition, we consider the total spike count of the network during

the one minute simulation as an indicator of the overall amount

of activity.

All above activity measures are calculated from the population

spike train of the network. In the LIF model the spike trains are

given explicitly by the model, but in the HH model they have to be

extracted from the time series of the membrane potential. In this

work, we consider any local maximum of the membrane potential

above the threshold of 230 mV a spike. It should be noted that

due to the Brownian noise injected to the membrane potential, we

only consider local maxima at the resolution of 10dt, where dt is

the simulation time step. This means that the time instant t is

considered a local maximum if and only if V (t{10dt)vV (t) and

V (t)§V(tz10dt). Given the simulation time step dt~0:0025ms,

this resolution was found scarce enough to prevent the noisy

fluctuation of the membrane potential from being registered as

spikes but on the other hand fine enough to correctly detect spikes

in an intrinsic (single-cell) burst. The chosen threshold potential, -

30 mV, is robust. In a RN with binomial in-degree distribution

(p~0:3), the change of +2:5mV in the threshold potential had no

effect on the detected spikes, and a change of +10:0mV changed

the total number of detected spikes by less than 5%.

Structure-dynamics analysis
Using the above methods, a realization of activity properties

can be obtained for any given connectivity graph by simulating

one of the two neuron models and performing the burst

detection. In purely excitatory networks the graph properties

are extracted using the entire network, while in EI networks only

the excitatory-excitatory part is considered. The activity proper-

ties are likewise calculated from the excitatory population merely.

Throughout this work, we divide the data into 24 simulation

settings, as listed in Table 1. The networks in each simulation
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Figure 3. Illustration of the HH (upper panels) and the LIF (lower panels) model dynamics. Left: Single cell membrane potential with the
spike magnified in the inset. The membrane potential at the time of spike in the LIF model explicitly set 30 mV for the sake of illustration. Middle:
Network spike train in an excitatory-inhibitory RN with p~0:2 connectivity and binomial in-degree distribution. The upmost 20 neurons represent the
inhibitory population. The red spike corresponds to the (first) spike shown in the left panel, and the burst with the red borders corresponds to the
burst shown in the right panel. Right: The selected burst highlighted.
doi:10.1371/journal.pone.0069373.g003

Rs Fs

BL

10ms

Figure 4. Illustration of the burst profile attributes. The shaded
dots represent the spikes of the excitatory neurons. The thick blue
curve represents burst profile, i.e., the smoothened firing rate curve. The
time instants when the burst profile for the first and the last time
crosses the value of half of the maximal value (shown with horizontal
dashed line) are identified. The distances of these time instants from the
time instant of the maximal firing rate (vertical line) are the lengths of
the rising (Rs) and falling (Fs) slope. The burst length (BL) is the sum of
these two attributes. The network activity in this figure is simulated
with the HH model, and the structure of the underlying network is a RN
with binomial in-degree distribution, p~0:2. Scale bar (black) 10 ms.
doi:10.1371/journal.pone.0069373.g004
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setting have a fixed average connection probability p (0.16, 0.2, or

0.3), a fixed shape of in-degree distribution (BIN as binomial or

POW as power-law), a fixed choice of population (E or EI) and a

fixed choice of model of dynamics (HH or LIF). Hence, all

variation in activity properties between networks that belong to the

same simulation setting is an effect of the network structure only.

For each setting we generate a series of network structure

realizations and for each of these we simulate a one minute

sample of activity. The chosen network types are FF, WS1 and

WS2 networks with W~1,3,6,?, and L2, L3, L4 and L6

networks with W~3,6,12,?. In addition, RNs are included, and

NM networks are considered in settings with binomial in-degree

distribution, which makes the total number of essentially different

types of network structure Nnt~29 (power-law) or 30 (binomial).

We use two methods for the data analysis, namely, a correlation

analysis and a prediction framework. We use the first to restrict the

number of analyses to be done with the latter. The correlation

coefficient between activity property and graph property is

calculated for each simulation setting separately as

P
G[G

(x(G){mx)(y(G){my)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
G[G

(x(G){mx)2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

G[G
(y(G){my)2

r : ð1Þ

In this notation, G is the set of networks (we use terms network and

network realization interchangeably here) belonging to a said

simulation setting. The term x(G) is a graph property of network

G, while the term y(G) is an activity property obtained from a

neuronal simulation done on network G, and mx and my are the

corresponding average values.

The correlation analysis is useful as a first approximation of the

relationship between the graph measures and activity measures,

but it only sheds light on the linear pair-wise dependence between

the measures. We apply a prediction framework to answer the

question: Which graph measures are the most important when

aiming to predict the activity in the network? To do this, we divide

the data into a teaching data set and a target data set. The

teaching data set consists of Nte~35 networks for each of the

Nnt~30 (29) network types, while the target data set contains only

Nta~5 repetitions. An affine predictor

y~a0z
XK

i~1

aixi ð2Þ

is built using the considered activity properties Y[RNteNnt and the

K chosen structural properties X[RNteNnt|K that are extracted

from the teaching data. We include the realized average degree in

the structural measures in order to compensate for the variety

caused by in-degree variance, and hence, we always have K§1.

Least mean squares is used to solve the predictor coefficients, i.e.,

½a0 a1 � � � aK �~ ½1 X�T ½1 X�
� �{1

½1 X�T Y,

where 1[RNteNnt is a vector consisting of 1’s.

The activity properties of the target data set can be predicted

using Eqn. 2 for each of the NntNta networks, and the prediction

error can be calculated as the average absolute difference between

the predicted and actual value of the activity property. The

prediction is repeated for 10 times in total. During the repetition

the target data are regenerated, but the teaching data are

resampled from a total pool of 100 samples of each network type.

The error distribution for a given predictor, i.e., a predictor that

uses a chosen set of structural measures, is compared to the error

distribution of other predictors. This is done using Mann-

Whitney’s U-test, which tests the null hypothesis that the medians

of the distributions are equal.

It should be noted that we do not use the term ‘‘predict’’ in the

meaning of forecasting the future based on the past. Instead, the

task of the predictor is to estimate the outcome of an activity

property in a separate, unknown network when only some aspects

of the network structure are known to the predictor. This is closely

related to classification tasks, but as the outcome of the predictor is a

continuous value instead of discrete, it is best described by the term

prediction task [58].

Results

As a first step for understanding the structure-dynamics

relationships in bursting neuronal networks, we estimated the

correlations of graph-theoretic measures and activity properties.

Fig. 5 shows the correlation coefficients between the considered

graph measures and measures of activity. We first calculated the

correlation coefficient between all pairs of measures in each

simulation setting by Eqn. 1. We then computed the mean and

standard deviation of the obtained correlations, taken over the

twelve simulation settings with the same shape (binomial or power-

law) of in-degree distribution. We focus our analysis on those

graph measures that at least for some activity property gave an absolute

mean correlation greater than 0.25 in both binomial and power-law

settings. Namely, they were CC, PL, NB, OD, MEig, Mot5, Mot12,

and Mot13. However, CC and Mot13 were very strongly

correlated with each other (correlation coefficient between these

measures ranges from 0.85 to 0.99 in the 24 simulation settings,

mean 0.94). This was the case also between PL and NB (0.91 to

0.99, mean 0.95), which is backed by the analytical derivations

shown in section S2.4 in File S1. Hence we disregarded PL and

Mot13 whenever NB and CC were considered. Other pairs of

Table 1. The list of the 24 simulation settings.

HH LIF

E EI E EI

BIN POW BIN POW BIN POW BIN POW

0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3 0.16 0.2 0.3

The first row denotes the model of dynamics, and the second row shows the choices of population. For each combination of these one may freely choose the shape
(third row) and connection probability (fourth row) of the in-degree distribution.
doi:10.1371/journal.pone.0069373.t001
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measures were considerably less correlated: The strongest corre-

lation among the remaining measures was between CC and

Mot12, where the correlation coefficient ranged from 0.59 to 0.87,

mean 0.77. It should be noted that MEig was to some extent

correlated with the average degree of the network (correlation

coefficient on range from 0.63 to 0.89, mean 0.79) as predicted by

mean-field approximations in [59]. In our framework the mean

degrees E½�dd�~(N{1)p, where �dd represents the average degree of

the nodes, were held fixed between compared networks. However,

drawing from the in-degree distribution resulted in some variance

in the network structure. In the case of binomial in-degree this

variance was negligible (Var �dd~Var
1

N

XN

i~1
di

� �
~

N{1

N
p(1{

p)&0:158 for p~0:2), where di represents the in-degree of a single

node, but in networks with power-law distributed in-degree (with

p~0:2) it was empirically found as large as Var �dd&2:96. This

variance had to be taken into account explicitly in the analyses of

the following sections.

Similarly to structural measures, there was redundancy in the

activity measures. Naturally, the total spike count was largely

dictated by the product of burst count and median burst size:

Correlation coefficient between these measures ranged from 0.866

to 0.999 with mean 0.978. In most of the following analyses we

disregarded one of these measures, namely the burst size, due to its

small coefficient of variation (mean CV 0.16, whereas those of

spike count and burst count were 0.46 and 0.62, respectively). The

low variance in burst size was also reflected in a high correlation

between the spike count and the burst count (correlation

coefficient ranged from 0.532 to 0.998, mean 0.918). Between

other pairs of activity measures, the correlation coefficient ranged

from negative to positive values. Hence, we also neglected the

spike count in most of the forthcoming results and considered it to

behave to a great degree similarly to the burst count.

Clustering coefficient regulates the bursting properties in
networks with binomial in-degree distribution

To further analyze the dependency between activity and graph

properties, we applied the prediction framework for different

activity properties in different simulation settings. Fig. 6 shows the

prediction errors of the burst count in simulation settings with

excitatory-only networks, binomial in-degree distribution, and HH

model. The error distribution (mean, std) is plotted for different

predictors. One finds that predictors using CC are significantly

better than the ‘‘null’’ predictors (the predictors where K~1, i.e.,

only the realized degree is used in the prediction). In the dense

connectivity simulations (p~0:3) the OD performs approximately

equally well, but in other connectivities the effect of OD is

insignificant. The distribution of the values of burst count with

respect to the values of CC are illustrated for the p~0:2 case.

The dominance of CC in prediction of activity properties can be

observed for all simulation settings with binomial in-degree

distribution. This is confirmed in Fig. 7, where the best predictor

was named for the prediction of each activity property in each of

the twelve simulation settings. Furthermore, Fig. 8 shows the

averaged improvements that were obtained by using the said

graph measures in the prediction of burst count and burst length.

One can observe that the predictions were best improved from

both the null predictor and from a predictor using an arbitrary

other graph measure by including CC in the predicting graph

measures. The next best predictors were Mot12 and NB. The

improvements obtained by adding OD, MEig and Mot5 were

small. The improvement in the prediction was most substantial in

the case of burst count: By using only one predicting graph

measure (CC) the error was reduced by up to 35% on average,

while the corresponding prediction error reduction for burst length

was on average 26%. The predictor using all available structural

measures reached corresponding percentages of 49% for burst

count and 45% for burst length (data not shown).

Maximum eigenvalue is the best predictor of activity
when in-degree is power-law distributed

We repeated the analyses carried out in the previous section,

now using networks with power-law distributed in-degree. The

results were substantially different: Changing between excitatory-

only and excitatory-inhibitory networks, between different activity

models, or even between different connection probabilities did not

affect the overall significance of the graph measures in the

prediction of activity measures as much as the choice of in-degree

distribution did. Fig. 9 shows the statistics corresponding to those

shown in Figs. 6, 7 and 8.

One observes a great improvement in prediction by the

inclusion of MEig in Fig. 9. This effect was most evident in the

networks with the lowest connection probability (p~0:16, Fig. 9A)

where the bursts were most rare (see Fig. S5). Fig. 9C shows the

dominance of MEig across activity properties and all simulation

settings with power-law distributed in-degree. The prediction

errors of burst count and burst length were decreased from null

predictions on average by 28% and 13% by the inclusion of MEig

(Fig. 9D), respectively. The corresponding percentages for the

predictor using all structural data were 41% and 34% (data not

shown), which suggests that it be useful to employ more than one

structural measure especially in the prediction of burst length.

In these analyses, the realized degree was included in all the

predictions in order to cancel the effect of correlation between

MEig and the average degree. If the degree was neglected, the

effect of MEig was even more pronounced. By contrast, the

exclusion of degree from the predictions of activity measures in

networks with binomial in-degree had no notable effect due to the

low intrinsic variance in the degree. Furthermore, the results

stayed the same when a neural network predictor (default feed-

forward backpropagation network in MATLAB) was used instead

of linear predictor. If a diagonally quadratic predictor ( 1 X½ �
replaced by ½1 X X(2)� where X(2) is the element-wise second

power) was used, the improvements by the addition of NB and OD

were slightly increased, however retaining the statistical domi-

nance of CC and MEig in the prediction of all activity properties

(data not shown).

We carried out corresponding simulations with larger networks,

N~900. We used the LIF model and excitatory-only networks,

and varied the in-degree distribution. Fig. S6 shows the represen-

tative data about large network activity and the predictor

performances. Our conclusions hold with large networks as well:

The activity properties in networks with binomially distributed in-

degree can be best predicted with CC, whereas the activity in

networks with power-law distributed in-degree can be best

predicted using MEig. In addition, we ran longer, 5 minute

simulations using the LIF model networks with the normal

network size N~100 (data not shown). Our results remained

qualitatively the same and confirmed that the shorter (1 minute)

simulations give statistically significant results in spite of the large

variability in the activity properties.

Discussion

In this work we studied the graph-theoretic properties of several

types of networks, and searched for the most relevant aspects of

network structure from the viewpoint of bursting properties of the
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network. Our framework for network generation allows the use of

arbitrary in-degree distribution. This allows a fair comparison

between the dynamics of different network types, given that the

distribution of in-degree plays a crucial role in determining the

network dynamics [22]. The relevance of the graph-theoretic

properties of the network are assessed in a prediction framework.

We calculated how much the prediction of an activity property,

such as burst count or average length of a burst, is improved when

the prediction is based on a given graph property. We found that

in the networks with sharp (binomial) in-degree distribution CC

plays the most crucial role (Figs. 7 and 8), whereas in networks

with wide (power-law) in-degree distribution MEig is the most

relevant graph property (Fig. 9C–D). These results are consistent

with few exceptions in the twelve combinations of the two neuron

models (HH and LIF), two choices of neuron population

(excitatory-only and excitatory-inhibitory), and three connection

probabilities (p~0:16, 0:2, and 0:3). The simulations were run

using small (N = 100) networks due to the high computational load

needed for generation and analysis of a large enough data set, but

we confirmed our main findings using a small subset of simulations

with larger (N = 900) networks (Fig. S6).

Our framework that combines the use of multiple different types

of networks allows the concurrent study of importance of different

graph measures, namely CC, PL, NB, OD, DC, LtS, MEig, and
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Figure 5. The mean and standard deviation of the correlations between graph measures (see legend) and the activity measures
(spike count, burst count, burst length, and burst size). The Eqn. 1 is used for calculating the correlation coefficients for each simulation
setting separately. The set of networks G consists of 150 repetitions of each of the Nnt~30 (29) network types. In the panels on the left the mean
correlation is taken over correlation coefficients in the twelve simulation settings that use binomial in-degree distribution, while in the panels on the
right the twelve simulation settings with power-law distribution are used. The faded bars represent pairs of measures with absolute mean
correlations smaller than 0.25. The graph measures that were finally chosen for structure-dynamics study are bolded in the legend.
doi:10.1371/journal.pone.0069373.g005
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MotN, N[f1,:::,13g. The structural measures were chosen

according to the mainstream trends in the theory of complex

networks. MEig, which is closely related to DC [59], has been

previously shown to play a crucial role in the synchronization of

the network [60], [22] using the measure of complete synchrony or

its derivatives. We found similar results for networks with power-

law distributed in-degree. We considered the measures of activity

that we find the most describing of spontaneously bursting

networks, namely, the spike count, burst count, burst length, and

burst size. The computational framework allows the study of many

other aspects of dynamics, e.g., Lyapunov exponents during the

onset of the bursts, but in this work we restrict to those measures of

activity that can be obtained experimentally as well. The effect of

variable average degree of the network that is due to the high

variance of the power-law distribution was compensated for by

including the realized degree into all predictions. Excluding the

degree from the prediction would further stress the importance of

MEig in prediction (data not shown). Moreover, the results in

Fig. 8 stay qualitatively the same if MEig is replaced by DC (data

not shown). Furthermore, the domination of MEig and DC

remains even if all 20 graph measures are included in the study or

if quadratic or mathematical neural net based prediction is used

instead of the affine predictor.

However, MEig (or DC) is not the only structural measure that

is determinant of the network activity. The sharp in-degree

distribution in networks with binomially distributed in-degree

results in little variation of MEig and DC compared to networks

with power-law distributed in-degrees. At the same time, the

measures of network dynamics, such as spike count and burst

count, show comparable – although somewhat smaller – ranges of

values for both networks. We found out that in networks with

sharp in-degree distribution the most determinant property is the

CC (or Mot13). The role of CC has been previously highlighted in

other types of systems. To name a few, in [61] the degree of local

synchrony is suggested to be dictated by CC while the global

synchrony is more influenced by PL, and in [62] CC is found

superior to PL in affecting the onset of synchronization. The result

of [61] was obtained using a pulse-coupled leaky integrate-and-fire

model, whereas in [62] the Kuramoto [63] model of oscillating

particles was used. High clustering coefficient has also been linked

with poorer performance of artificial neural (Hopfield) networks

[64], yet experimental studies show that in vivo [65] as well as in

vitro [66] networks possess much greater clustering coefficient than

random networks. Similarly to the study at hand, in our earlier

work we have found that the amount of network bursts increases

with the locality of the network (where also CC is correlated with

the locality) [57] in a network of spontaneously active neurons.

Our results are backed by [67], where the number of 3-node

triangles (comparable to motif 13, see Fig. 1) in the graphs were

positively correlated with the mean level of activity in a discrete-

state model of neuronal networks. Our results are also in line with

[68], where multiple network structures (many of which were

similar to ours) consisting of heterogeneous excitatory neuron

populations were considered. The authors of [68] found that the
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and realized number of bursts. The HH model is used in purely excitatory networks with binomial in-degree distribution and average connectivities
p~0:16 (upper), p~0:2 (middle) and p~0:3 (lower). The leftmost bar (white) shows the mean prediction error of the null predictor. The next group of
six bars shows the prediction errors of predictors with an additional graph property, in the order of descending prediction error. The next three bars
correspond to the best three predictors that use two graph measures, and the next three bars correspond the ones with three measures. The final bar
(black) shows the prediction error of the predictor that uses all available structural data (20 measures in addition to the realized degree). If the error is
significantly (U-test, pv0:05) smaller than that of the null predictor, an asterisk (*) is plotted, whereas (**) announces that the error is also significantly
smaller than that of the best predictor using one graph property (here always CC). The more graph measures are included in the prediction, the more
accurate the prediction is. The error values shown are absolute: For reference, the mean burst counts (averaged over all network types) in the three
connection probabilities are 3.4 (p~0:16), 11.7 (p~0:2) and 31.5 (p~0:3). B: Values of burst count plotted w.r.t. CC in networks with connection
probability p~0:2. Different network classes are plotted with different colors, and the different markers of WS1, WS2, FF, L2, L3, L4 and L6 networks
represent different values of parameter W (‘+’ for the lowest value, and stars for the highest value). One finds that the burst count ascends with
increasing CC, as suggested by the positive correlation of burst count and CC in Fig. 5.
doi:10.1371/journal.pone.0069373.g006
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local connections encourage (single-cell) bursting in the network,

and they propose that the high number of local feed-back loops

(which corresponds to a high CC in our terminology) could

facilitate the spreading of the bursting activity across the network.

Opposite or bilateral results were observed in [53], where the

network bursting frequency was either decreasing or increasing

with the rewiring probability q of WS networks (which is anti-

correlated with CC), depending on the fraction of the inhibitory

population. The differences between their and our results could

emerge from the differences in the burst detection procedures. In

[53] the burst detection is based on finding the peaks in the

smoothened global firing rate, as we applied the burst detection

based on maximum inter-spike interval and minimum burst size

[56]. We found the latter method more reliable in detecting bursts

of variable shape. In addition, it allows the further observation of

the burst length and burst size in a straightforward way.

We did not find consistent trends in the importance of other

structural measures. The good performance of predictors based on

Mot12 (as seen in some simulation settings with binomial in-degree

distribution in Fig. 7) is most likely an effect of the high correlation

between CC and Mot12. The importance of NB (and hence PL as

well) is mostly expressed in the prediction of burst length, but even

considering solely burst length it gives the smallest prediction error

in fewer cases than CC (in binomial in-degree, Fig. 7) or MEig (in

power-law distributed in-degree, Fig. 9C) do. The importance of

OD is highlighted in the prediction of spike count and burst count

in dense (p~0:3) networks with binomial in-degree distribution,

but only in HH model, and hence, no conclusions without deeper

investigations can be made. Similar observations on the subsidiary

effects of the width of the out-degree distribution were reported in

[22] and [23].

Another full dimensionality to the aspects of structure-dynamics

relationship would be brought about if modular networks [69] were

studied. In such networks, not only the local connectivity but also

the connectivity pattern between the clusters would greatly affect

the collective dynamics. This aspect is highly relevant when

unraveling the function of a vertebrate brain, and ground-laying

studies have already been carried out in the context of, e.g.,

emergence of sustained activity [67,70]. Promising attempts were

also done in [68], where a biologically inspired modular network

model of the mammalian pre-Bötzinger complex was studied by

computational means. In their framework, not only the network

structure was varied, but also the effect of placing neurons with

different intrinsic dynamics (three in total) in different ways was

screened. However, we consider that the use of modularly

designed networks requires intricate analysis on both intra- and

inter-modular connectivities as well as the interplay between them,

and leave them to our future studies.

In the generation of the network structure, we fixed the in-

degree distribution and allowed the other aspects of the structure

to vary. In the framework of [22], all the second-order statistics,

which roughly correspond to in-degree deviation, degree correla-

tion, and out-degree deviation, can be controlled in the generation

of the graphs. In our framework, the degree correlation and out-

degree deviation are affected by the other structural aspects of the

network that cannot be ranked by the order of connectivity, such

as the proportion of long-range connections in the generation of

WS networks. By contrast, networks comparable to FF networks

and loopy networks could in principle be generated in a

framework similar to [22], but this would require the use of

motifs of order higher than 2. In fact, to promote loops of length 6,

motifs up to 6th order should be considered, and this might not be

computationally feasible. The choice of letting the second order

statistics vary could lead to misinterpretations of results if their

effect was not screened by other means. Our correlation and

prediction framework, by contrast, ensures that the major effect of

CC on activity properties in networks with binomial in-degree is

not mediated by the other second-order connectivity statistics (or

their correlates DC and OD).

It should be noted that we cannot exclude the possibility that

there exist measures of structure that perform better than CC and

MEig in the prediction of the activity properties. In fact, there may

exist a measure that by itself performs better in the prediction task

than CC does in networks with sharp in-degree and MEig in

networks with wide in-degree distribution. However, the results

shown here restrict the properties of such measure – it should be

highly correlated with the measures of clustering (CC, Mot13) in

networks with binomial in-degree and with measures of degree-

degree correlation (MEig, DC) in networks with power-law

distributed in-degree. The correlations between graph measures

across several network types have been studied in [71], and high

correlation coefficient is found between, e.g., the mean of local

clustering coefficients (denoted by CC in the present study) and

their variance. The high correlation between these measures can

also be observed in our network types (correlation coefficient

ranges from 0.80 to 0.94, mean 0.90). Indeed, if we replace CC
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with the standard deviation of the local clustering coefficients, the

results in Fig. 7 stay the same. However, if both are included, the

mean of local clustering coefficient remains dominating (data not

shown).

The activity properties we measured lie in a noisy regime:

Multiple runs on an identical connectivity graph results in a great

variance in the dynamics (data not explicitly shown, but the trend

visible in Fig. 6B). The noisiness of the data is explained by the

spontaneous nature of the bursts. As discussed in [53], the

dynamical regime that produces the amount of spontaneous

activity that is typically seen in neuronal cultures may reside near

to the transient from regular to chaotic activity. This transient can

be observed in our results in the sparse (p~0:16) networks with

binomial in-degree distribution: These networks lie near the shift

from tonic spontaneous spiking to spontaneous bursting activity

(the mean burst count is very low in RN, L2, and L4 networks, as

seen in Fig. S5). Our results show that both in the regime of

numerous and few network bursts the prediction of activity

properties using measures of structures is feasible. Yet, in some

cases the improvements made are not that major, see e.g. the

modest difference in prediction errors of the best (black) and the

worst (white) predictors of burst count in the densest (p~0:3)

networks in Figs. 6A and 9A. In these networks, the variance of

burst count among the networks of same type is considerable,

compared to the variability of burst count across the network types

(Fig. S5). However, the statistical significance between the

prediction errors of different predictors indicates that the fine

details of structure still have an effect on the dynamics despite the

noisy nature of the bursts.

In the simulations of the excitatory-inhibitory networks, the

inhibitory subpopulation was randomly picked once the network

structure had been generated. In many brain areas, the

connections to and from the inhibitory population obey different

connectivity rules than the connections of the excitatory popula-

tion do. Many in silico studies take this diversity into account by

applying a specific structure only to the excitatory-excitatory

subnetwork, and connecting the excitatory population randomly

to the inhibitory population. We conducted our simulations on

such networks as well for comparison. The structures of the

excitatory subnetworks were first generated by the graph

generation algorithms described in the methods section and then

randomly coupled to the inhibitory populations. The NET-

MORPH networks were dismissed from these simulations. The

results on the importance of different graph-theoretic measures in

predicting activity properties in such networks were qualitatively

similar to those reported for EI networks in Figures 7 and 9C (data

not shown). Together these results confirm the importance of CC

and MEig (of the excitatory subnetwork) also in the presence of

inhibition. Due to the different choices of the synaptic weights in

excitatory-only and excitatory-inhibitory networks (see Section

S1.3 of File S1), which were chosen to restrict the number of bursts

on the same range, the difference in the overall network dynamics
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was not that significant between the two regimes. Nevertheless,

several differences exist. In the repetitive simulations of a chosen

network type, the spike count varied considerably more in the

excitatory-only networks than in excitatory-inhibitory networks

(data not shown). Hence, in this sense the inhibitory population

brought stability to the total spiking activity of the network. By

contrast, the variance in burst length was larger in excitatory-

inhibitory networks (data not shown). This could be explained by

the many alternatives when and how the inhibitory population can

become active during the network burst. Detailed analyses on how

the different ways of coupling the inhibitory population to the

excitatory population (and the different intrinsic dynamics that the

inhibitory neurons may have) affects the network excitability

should be carried out in order to draw further conclusions.

Moreover, the graph measures should be tuned to consider both

the excitatory and inhibitory populations if detailed structure-

dynamics relationships were to be uncovered.

Our simulations were conducted in different simulation settings

to argue for the generality of our results. The two neuron models

applied in this work differ from each other in many aspects: Spiking

at the crossing of a threshold membrane potential vs. spiking

through the ionic gating variable dynamics; tonic spiking vs.
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intrinsic bursting; current vs. conductance based synapses; one vs.

two excitatory synaptic current components. Although only these

two models were used, we believe that similar results would be

obtained with any neuron model that represents another combina-

tion of these four properties. In both models, the synaptic currents

decay exponentially, although in HH model the exact form of the

decay is also shaped by the effects of the presynaptic and

postsynaptic membrane potentials. A key restriction of our results

is that they apply to network bursting that emerges from

spontaneous spiking activity in the excitatory neurons. A distinction

should be made to synchronization of rhythmically active neurons,

e.g., the Kuramoto model neurons and the phase response curve

model neurons as described in [22]. In such systems, the neurons

possess a constant drive toward the ‘‘forward’’ phase, whereas in the

models used in this work such a drive is replaced by a white noise

current. The effect of CC that is observed in our work could emerge

from the deeper need of local integration to attain the network

burst. In rhythmically active systems this need may be diminished

due to the constant ‘‘forward’’ drive, and hence, only the effect of

MEig (or DC) is highlighted in such systems, as discussed in [60] and

[22]. Another restriction of our conclusions is that only such models

are considered where the network bursts are ceased by the depletion

of the excitatory synaptic resources – although in the excitatory-

inhibitory networks also the activation of the inhibitory population

can contribute to the burst cessation. The first restriction could be

relaxed by considering both networks of rhythmically active neurons

and networks with spontaneously active neurons, and possibly a

continuum between them, while the second restriction cannot be

relaxed without applying another mechanism for the cessation of

the network bursts. We leave both of these questions to be answered

by the future studies.

The focus of this paper is on the bursting properties of networks.

No unified theory on the relevance of network bursts has been

established, but they have been hypothesized as, e.g., a mechanism

of secured information transfer [72], a means for synaptic

modification [73,74], and in the case of power-law distributed

burst size, an optimal information transfer and a sign of the

network acting in a critical regime [75]. In addition to the nervous

system of a maturing (e.g. [76]) and behaving (e.g. [77]) animal,

bursts of large populations of neurons are observed in the most

primitive neuronal systems such as dissociated neuronal cultures

(see for instance [49] or [51]), which emphasizes the fundamen-

tality of the phenomenon. Earlier computational studies enlighten

the cellular mechanisms needed for bursting in neuronal networks

(see for example [45]), but few pieces of work monitor the effect of

network structure on bursting.

Network bursts represent an extreme type of synchronized

spiking activity, and understanding which aspects of structure

contribute to the emergence of this synchronization is a crucial

milestone in structure-dynamics research in neuroscience. The

implications of such knowledge are manifold. The future

techniques may allow indirect measurements of certain structural

properties of the network [12,27] although the full connectome is

unavailable. Knowing which properties are crucial for the network

dynamics could help make predictions on the statistics of the

activity basing on the measured aspects of the structure. On the

other hand, knowledge on structure-dynamics relationship in

neuronal networks could be useful in the design of artificial

intelligence in the future. The increasing computational power will

allow the use of artificial neural networks that are biologically

more realistic than the currently existing ones. Given an in silico

implementation, the designing of the structure in such networks

need not be restricted by the physical limitations, such as wiring

cost, that exist in their biological counterparts.

Supporting Information

Figure S1 In-degree distributions for NM networks with
connection probabilities p~0:16 (orange), 0:2 (purple),
and 0:3 (blue). The dashed lines show the binomial PDFs with

these connection probabilities, and the legend shows the KL-

divergence of the NM in-degree distributions from these binomial

distributions. The obtained values of DKL are considerably small –

the corresponding values between NM in-degree distributions and

the best-fit triangular distribution are 0.22 (p~0:16), 0.24

(p~0:2), and 0.24 (p~0:3), and further, the corresponding DKL

values are 1:8, 1:7 and 1:6 between NM distributions and uniform

distribution. The NM in-degree distributions are constructed from

a pool of 400 network realizations.

(EPS)

Figure S2 CC in FF networks as a function of parameter
W , and, for comparison, the respective values of RN,
LCN1, LCN2 and NETM networks. By the increase of W the

CC of FF networks approaches that of the extreme FF networks,

yet remains lower than that in LCN1, LCN2 or even NM.

Different colors represent networks with different (binomial) in-

degree distributions. The solid line shows the average over

Nsamp~400 trials, and the shaded area the standard deviation.

(EPS)

Figure S3 Number (mean and std, Nsamp~400) of FF-
motifs in FF networks as a function of parameter W ,
and, for comparison, the respective values of RN, LCN1
and NETM networks. The in-degree distribution of FF, RN

and LCN1 networks is chosen as binomial with the shown average

connectivities.

(EPS)

Figure S4 Distribution of eigenvalues l of L2, L3, L4 and
L6 networks with parameter W~3,6,12 and ?. Different

colors represent networks with different binomial in-degree

distributions, average connectivities chosen as p~0:16 (orange),

0:2 (purple), and 0:3 (blue). Each plot shows the combined spectra of

Nsamp~400 networks. The corresponding spectra for RN, LCN1,

LCN2 and NETMORPH networks are plotted for comparison. In

the extreme (W~?) L2, L3, L4 and L6 networks one can observe

the division of the eigenvalues to 2, 3, 4 and 6 distinct horns,

respectively. The number of horns reflects the frequent occurrence

of paths of the corresponding length in the graphs.

(EPS)

Figure S5 Statistics (mean and std) on the activity
properties of different network classes. For the network

classes that allow the use of the strength parameter W (WS1, WS2,

FF, L2, L3, L4 and L6), only the statistics for the extreme networks

(W~?) shown.

(EPS)

Figure S6 CC is most the determinant graph property
in large networks with binomial in-degree, while MEig
is the most relevant in large networks with power-law
distributed in-degree. The upmost panel shows the burst

count statistics for the extreme networks, see Fig. S5 for

reference. The second and third panels show the prediction

errors of burst count in large networks with binomial or power-

law distributed in-degree, respectively, and the 2D-plots show the

burst count w.r.t. dominant graph measure in mid-dense (p~0:2)

networks. The corresponding data for small networks are shown

in Figs. 6 and 9A–B. The lowest panel shows the prediction

improvements in large networks, see Figs. 8 and 9D for

comparison with small networks. In the repetition of the
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predictions both the target and teaching data are resampled from

the total number of 40 networks.

(EPS)
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62. Gómez-Gardeñes J, Moreno Y (2007) Synchronization of networks with variable

local properties. International Journal of Bifurcation and Chaos 17: 2501–2507.
63. Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer-

Verlag.

64. Kim B (2004) Performance of networks of artificial neurons: The role of
clustering. Physical Review E 69: 045101.

65. Hilgetag C, Burns G, O’Neill M, Scannell J, Young M (2000) Anatomical
connectivity defines the organization of clusters of cortical areas in the macaque

and the cat. Philosophical Transactions of the Royal Society of London Series B:

Biological Sciences 355: 91–110.
66. Shefi O, Golding I, Segev R, Ben-Jacob E, Ayali A (2002) Morphological

characterization of in vitro neuronal networks. Physical Review E 66: 021905.
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