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OBJECTIVE—Accumulation of intracellular lipid droplets (LDs)
in non-adipose tissues is recognized as a strong prognostic factor
for the development of insulin resistance in obesity. LDs are coated
with perilipin, adipose differentiation–related protein, tail interact-
ing protein of 47 kd (PAT) proteins that are thought to regulate LD
turnover by modulating lipolysis. Our hypothesis is that PAT pro-
teins modulate LD metabolism and therefore insulin resistance.

RESEARCH DESIGN AND METHODS—We used a cell cul-
ture model (murine AML12 loaded with oleic acid) and small
interfering RNA to directly assess the impact of PAT proteins on
LD accumulation, lipid metabolism, and insulin action. PAT
proteins associated with excess fat deposited in livers of diet-
induced obese (DIO) mice were also measured.

RESULTS—Cells lacking PAT proteins exhibited a dramatic
increase in LD size and a decrease in LD number. Further, the
lipolytic rate increased by �2- to 2.5-fold in association with
increased adipose triglyceride lipase (ATGL) at the LD surface.
Downregulation of PAT proteins also produced insulin resis-
tance, as indicated by decreased insulin stimulation of Akt
phosphorylation (P � 0.001). Phosphoinositide-dependent ki-
nase-1 and phosphoinositide 3-kinase decreased, and insulin
receptor substrate-1 307 phosphorylation increased. Increased
lipids in DIO mice livers were accompanied by changes in PAT
composition but also increased ATGL, suggesting a relative PAT
deficiency.

CONCLUSIONS—These data establish an important role for
PAT proteins as surfactant at the LD surface, packaging lipids in
smaller units and restricting access of lipases and thus prevent-
ing insulin resistance. We suggest that a deficiency of PAT
proteins relative to the quantity of ectopic fat could contribute to
cellular dysfunction in obesity and type 2 diabetes. Diabetes
57:2037–2045, 2008

T
he surge in obesity predicts a further increase in
associated complications, insulin resistance, di-
abetes, and heart disease (1,2). Increased fatty
acid availability in obesity is associated with

accumulation of ectopic fat, mainly in the form of triacyl-
glyerol (TAG) (3). Although ectopic fat correlates with
systemic and tissue insulin resistance (4–6), a number of
circumstances are known in which high tissue lipid stores
are not associated with insulin resistance. Endurance-
trained athletes have high intramyocellular lipids yet are
highly insulin sensitive. Importantly, the size and intracel-
lular distribution of lipid droplets (LDs) differs in muscle
from insulin-sensitive athletes compared with insulin-re-
sistant patients (7). Thus, the negative consequences of
high cellular lipids may be related to the ability of the cell
to regulate lipid storage and utilization.

LDs are energy-storage organelles but have a surpris-
ingly complex function in lipid homeostasis. LD biogenesis
is a fundamental cellular function; when exposed to non-
esterified fatty acids (NEFAs), cells store them as TAG in
LDs (8). Such LD accumulation maintains low intracellular
NEFAs, avoiding their toxic effects on cellular physiology
while supporting cellular needs by releasing NEFAs for
use in �-oxidation and membrane synthesis. LDs’ function
to sequester and release NEFAs is thus critical for proper
cellular function. Nonadipogenic tissues in patients with
metabolic syndrome are exposed to chronically elevated
serum levels of NEFAs, and these tissues respond by LD
accumulation. Such ectopic fat deposition protects from
NEFA-mediated lipotoxicity (9), but in patients with met-
abolic syndrome the LD is inadequate to prevent patho-
logical consequences. An important question arises: what
molecular mechanisms regulate lipid storage in non-
adipogenic tissues?

To date, we have only limited information on non-
adipose LDs. Recent studies (10,11) identified a proteomic
“signature,” consistently including at least one member of
the PAT protein family: perilipin, adipose differentiation–
related protein (ADFP), tail interacting protein of 47 kDa
(Tip47), S3–12, and lipid dosage droplet protein-5 (LSDP-
5). Despite tissue dependence, the ubiquitous nature of the
family suggests an important role in LD machinery. ADFP,
Tip47, and LSDP-5 are broadly distributed, notably in
nonadipogenic liver and muscle tissues that do not ex-
press perilipin (13,24). Our hypothesis is that saturation of
nonadipogenic tissue’s capacity to appropriately regulate
storage and release of NEFAs via LDs results from varia-

From the 1Geriatric Research, Education and Clinical Center, Baltimore
Veterans Affairs Health Care Center, Division of Gerontology, Department
of Medicine, School of Medicine, University of Maryland, Baltimore, Mary-
land; the 2Diabetes Unit, National Center for Complementary and Alterna-
tive Medicine, National Institutes of Health, Bethesda, Maryland; the
3Division of Endocrinology, Department of Medicine, School of Medicine,
University of Maryland, Baltimore, Maryland; and the 4Laboratory of
Cellular and Developmental Biology, National Institute of Diabetes and
Digestive and Kidney Diseases, National Institutes of Health, Bethesda,
Maryland.

Corresponding author: Carole Sztalryd, csztalry@grecc.umaryland.edu.
Received 8 February 2008 and accepted 7 May 2008.
Published ahead of print at http://diabetes.diabetesjournals.org on 16 May

2008. DOI: 10.2337/db07-1383.
© 2008 by the American Diabetes Association. Readers may use this article as

long as the work is properly cited, the use is educational and not for profit,
and the work is not altered. See http://creativecommons.org/licenses/by
-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked “advertisement” in accordance

with 18 U.S.C. Section 1734 solely to indicate this fact.

ORIGINAL ARTICLE

DIABETES, VOL. 57, AUGUST 2008 2037



tions in the expression and/or activity of PAT proteins. To
study functional consequences of downregulating two
major PAT proteins, ADFP and Tip47, on insulin resistance
and lipid metabolism, we used small interfering RNA
(siRNA) in a cell culture model. To assess the in vivo
relevance of this finding, we measured the expression of
PAT proteins associated with excess lipids accumulated in
the livers of high-fat–fed obese mice.

RESEARCH DESIGN AND METHODS

Cell culture. AML12 cells (Dr. Steven Farmer, Boston University, Boston,
MA) were grown with the standard protocol (American Type Culture Collec-
tion, Manassas, VA). For siRNA experiments, cells were plated in 24 multiwell
dishes (Costar; Thermo Fisher Scientific, Pittsburgh, PA) at a density of
1 � 104 cells per well, transfected the next day with Hyperfect (Qiagen,
Valencia, CA) according to the manufacturer’s instructions. For immuno-
cytochemistry, cells were plated in four-well chamber slides (Labtek; Thermo
Fisher Scientific). For insulin-signaling assays, cells were deprived of insulin
for 24 h and for the last 12 h were incubated in Dulbecco’s modified Eagle’s
medium (DMEM)/F-12 media (1:1) containing 1% defatted BSA (Sigma-
Aldrich, St. Louis, MO) and supplemented with 400 �mol/l oleic acid com-
plexed to 0.4% BSA to promote TAG deposition. The next day, cells were
incubated in DMEM/F-12 media (1:1) containing 1% defatted BSA (Sigma-
Aldrich) for 6 h before a 10-min incubation with insulin at the concentration
indicated. Cells were harvested in cold lysis buffer (150 mmol/l NaCl; 50
mmol/l Tris-HCl, pH 7.5; 1% Triton X-100; 0.5% NP-40; 0.25% sodium deoxy-
cholate; 1 mmol/l EDTA; 1 mmol/l EGTA; 0.2 mmol/l ortho-vanadate; 1 mmol/l
NaF; and protease inhibitor cocktail) (Roche Applied Science, Indianapolis,
IN).
Oligos. siRNA was purchased from Qiagen (HP-guaranteed siRNA). Positive
siRNA for map kinase 1 and fluorescent oligos (Qiagen) were used to establish
efficient conditions for transfection to obtain 80% inhibition by Western blot
(12) versus All Star negative control. For off-target toxicity, we used siRNA
negative for insulin signaling: a negative siRNA targeting ADFP with a
two-base mismatch (Ctl1), sense sequence 5�AACGTCTGCTTGAGCCGAAT
A-3� (online appendix Fig. S-9 [available at http://dx.doi.org/10.2337/db07-
1383]); and a negative �siRNA targeting Tip47 (Ctl2), sense sequence 5�-GC
GUGUCCAAUCAGUCAU-3� (12). Sense sequences for Tip47 (5�-AACAGCAC
AGAGAAUGAGGAG-3�) and ADFP (5�-AACGTCTGTCTGGACCGAATA-3�)
were selected by potency. Total siRNA per well was 10 nmol/l for all
transfections; for double transfection using one-third Tip47 and two-thirds
ADFP siRNA; for triple using one-fourth Tip47, one-half ADFP, and one-fourth
adipose triglyceride lipase (ATGL) siRNA; and downregulation confirmed
(online appendix Figs. S-4 and -7). siRNA for ATGL was reported (35) and
confirmed by imunoblot (Fig. S-3). siRNA efficiencies were quantified by
Western blot (Un-scan; Silk Scientific, Orem, UT) and results expressed as
percentage of control.
Liver tissues from DIO and ad libitum mice. C57BL/6 (8 weeks old) mice
were ad libitum fed either a high-fat (60% kcal fat; Research Diets, New
Brunswick, NJ) diet containing primarily lard or a low-fat (10% kcal fat,
Research Diets) diet for 12 weeks. Mice on the high-fat diet exhibited
diet-induced obesity (1.52-fold increase in body weight over low-fat–fed
control mice) and impaired glucose tolerance (data not shown). On the day of
the experiments, animals were killed by cervical dislocation and tissues were
immediately frozen in liquid nitrogen. Tissue lipid was extracted (40) and
expressed as percent lipid weight divided by total sample weight (mg/mg).
Antibodies and dyes. Rabbit anti-Tip47, LSDP-5, and goat anti-ADFP were
used (12,13). Neutral lipid dye bodipy 558/568, alexa fluor 488, hoescht, and
alexa fluor 598 species-specific secondary antibodies were from Molecular
Probes (Invitrogen, Carlsbad, CA). Rabbit antibodies against human ATGL
(Rockland Immunochemicals for Research, Gilbertsville, PA) were tested in
human preadipocytes and 3T3-L1 adipocytes and in human and mice adipose
tissues (M.B., C.S., and Mee Jeong Lee, unpublished data) or purchased, as
were Akt, phosph-Akt, PDK-1, GS3-K�, phosphor–GS3-K �, phospho-specific
antibodies to protein kinase C (PKC), extracellular signal–regulated kinase
(ERK), ERK-phosp antibodies (Cell Signaling technology, Beverly, MA),
phosphor–insulin receptor substrate (IRS)-1 (Ser307) (Upstate Biotechnology,
Lake Placid, NY), IRS-1 and Foxo-1 (Santa Cruz Biotechnology, Santa Cruz,
CA), and �-actin (Abcam, Cambridge, U.K.). CGI-58 was a gift (Dr. Brasaemle,
Rutgers University, Newark NJ) (31). Phospho-specific antibodies to PDK-1
were a gift from Dr. Quon. Immunoprecipitation for IRS-1 was performed as
described (36).
Immunocytochemistry and immunoblotting. Fixation and staining were
performed as described (12). Cells were viewed with a confocal laser
microscope using a �63 or �40 oil objective lens. LD size was determined

(LSM510; Carl Zeiss MicroImaging). Cellular extracts for immunoblot were
obtained by scraping cells in Laemmli sample buffer. Each SDS-PAGE lane
was loaded with protein from a single well of a 24-multiwell dish. Four wells
were pooled for each data point for insulin signaling immunoblots. Quantita-
tive analysis was performed using Un-scan (Silk Scientific Corporation).
32PI3P (phosphatidylinositol 3 phosphate) bands were revealed by Phospho-
rImager (Storm 860; GE Healthcare) and band intensities quantified (Image-
Quant 5.0; GE Healthcare). Live cell imaging was performed using an axiovert
200 microscope equipped with a camera (Carl Zeiss).
Cellular triglyceride turnover. Triglyceride synthesis and lipolysis were
performed (21,39). Briefly, cells were incubated for 12 h with growth medium
supplemented with 400 �mol/l oleic acid complexed to 0.4% BSA to promote
triacylglycerol deposition. [3H]oleic acid, at 1 � 106 dpm/well, was included as
a tracer. In lipolysis experiments, reesterification of fatty acids in AML12 cells
was prevented by inclusion of 10 �mol/l triacsin C (Biomol, Plymouth
Meeting, PA), an inhibitor of acylcoenzyme A synthetase, in the medium
(21,38,39). Quadruplicate wells were tested for each condition. Lipolysis was
determined by measuring radioactivity release (12,21,39).
Lipid extraction and thin-layer chromatography. Cell monolayer was
washed with ice-cold PBS and scraped into 1 ml PBS. For total TAG, lipids
were extracted by the Dole method (40) from five wells of a 24-mutiwell dish.
The total upper phase was dried down, resuspended in isopropanol, and
assayed with a triglyceride kit (Wako Chemicals, Richmond, VA). Protein was
measured by a kit (Pierce Biotechnology, Rockford, IL). For triglyceride
synthesis, lipids were extracted by the Bligh-Dyer method (41) and 10% of the
total lipids were analyzed with thin-layer chromatography extractions per-
formed as reported (37,38) (see online appendix). Intracellular diacylglycerol,
NEFAs, and ceramide were measured by analytical service (Avanti Polar
Lipids, Albaster, AL) (43).
Glucose output. Measurements were performed according to Berusi et al.
(48). Briefly, 2 days following siRNA transfection, cells were incubated in
DMEM/F12 medium containing 1% BSA, 1 �mol/l dexamethasone (Sigma-
Aldrich), and 1 �mol/l cAMP (EMD Chemicals, Gibbstown, NJ) for 24 h. Cells
were incubated in 0.35 ml (per well) of phenol red–free, glucose-free DMEM
containing 2 mmol/l pyruvate and 20 mmol/l lactate containing dexametha-
sone and cAMP. Some wells also contained insulin (10�8 mol/l concentration).
Media was collected 5 h later for glucose measurement (48) with a fluorimeter
(Molecular Devices, Union City, CA) in triplicate. Glucose output rate was
normalized by cellular protein concentration and expressed as nanomols of
glucose per milligram of protein every 5 h. Two separate experiments were
performed.
Fat cake preparation. Four 24-mutiwell dishes for each condition were
treated with siRNA negative or ADFP and Tip47. LD isolation was as reported
(25). Total homogenate protein was determined and adjusted to 1 �g/�l. The
lipid fat cake was isolated and suspended in 200 �l PBS containing 5% SDS.
Statistical analysis. Statistical significance was by one-way ANOVA or
two-tailed Student’s t test. (GraphPad software, San Diego, CA).

RESULTS

AML12 cell LDs contain mostly ADFP at the surface.
After incubation of AML12 liver cells with 400 �mol/l oleic
acid, numerous LDs appear, and most are coated with
ADFP and fewer with Tip47 (Fig. 1A). Relatively few
exhibit colocalized ADFP and Tip47 at the surface. ADFP
was found exclusively at LD surfaces, while Tip47 was
found in both cytosolic and LD compartments. Other PAT
proteins were not detected by imunocytochemistry or
immunoblot (results not shown). Hence, AML12 cells
express two PAT proteins, ADFP and Tip47.
PAT protein downregulation induces change in LD
morphology and surface profile. The effect from down-
regulation of Tip47, ADFP, or both with siRNA are shown
in Fig. 1B and C. siRNA transfection produced minimal
cellular toxicity from unchanged levels of �-actin. Effi-
ciency of Tip47 inhibition was 	95%, and efficiency of
ADFP inhibition was 80%. siRNA treatments effectively
produced droplets coated with only one of two PAT
proteins or none (Fig. 1B). ADFP downregulation led to a
dramatic increase in Tip47 protein at the LD surface,
although total Tip47 protein in homogenates was not
affected by increased exogenous oleic acid (online appen-
dix Fig. S-1). Thus, increased Tip47 at the LD surface is
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recruited from preexisting cytosolic Tip47. Behavior of
PAT proteins in control cell homogenates in response to
increased exogenous NEFAs is also different (online ap-
pendix Fig. S-1); while ADFP increased proportionally to
the exogenous lipid, Tip47 was barely affected. Impor-
tantly, knockdown of one or more PAT proteins resulted
in substantial changes in LD size and number, as observed
by bodipy staining (Fig. 2) (online appendix Figs. S-5A–D
and S-7), phase contrast microscopy (online appendix Fig.
S-2), or quantify (Fig. 3). Absence of PAT proteins induced
a marked increase in LD size and decrease in LD number
(28 
 2.6 vs. 48.09 
 6.06 for control; P � 0.05). When
Tip47 was predominant, the LD morphology appeared
similar to control treatment cells. When ADFP was pre-
dominant, LD number increased (251.7 
 22.6 vs. 48.09 

6.06 for control; P � 0.01) but LD size was smaller. Despite
changes in LD morphology, TAG content in cellular ex-
tracts of oleic acid–loaded cells was unchanged (Fig. 4B).
However, total TAG decreased in PAT protein–deprived

cells when grown without oleic loading. (Fig. 4A). This
difference prompted examination of PAT protein effects
on lipid metabolism.
Metabolic consequences of altered PAT protein
profiles
Lipid metabolism. In cells lacking either ADFP or Tip47,
no significant alteration in lipolysis was observed (Fig.
5A). However, lipolysis significantly increased up to two-
fold (Fig. 5A) (one-way ANOVA; P � 0.02) in AML12 cells
lacking both proteins. A recent phenotype reported for
ATGL-null mice suggests that ATGL is operative in liver
(14). Presence of ATGL in AML12 cells was revealed by
ATGL-targeted siRNA treatment (online appendix Fig.
S-3), which increased LD, as expected from decreased
lipolytic activity from loss of ATGL. In cells lacking PAT
proteins, ATGL increased at the LD surface (Fig. 5B)
(online appendix Fig. S-4). Immunoblot analysis revealed
an increase in both ATGL and CGI-58 in fat cakes from
these cells (Fig. 5C). CGI-58 is known to increase ATGL
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FIG. 1. Identification and downregulation of all PAT proteins (ADFP and Tip47) in AML12 cells. A: Cells were incubated with 400 �mol/l oleic
acid for 12 h before staining. Cells were costained with a polyclonal goat anti-ADFP antibody and with a rabbit polyclonal anti-Tip47 antibody
and, respectively, alexa fluor 488– or 594–conjugated secondary antibodies. Fluorescent and phase images were generated by an LSM 510
confocal laser microscope. Bar represents 50 �m. B: Coimmunostaining with ADFP and Tip47 of AML12 cells treated for 4 days with siRNA ADFP,
siRNA Tip47, both combined, or control. Cells were treated as above. C: Immunoblots of total cellular protein extract from AML12 cells treated
with control siRNA (Qiagen) (lane 1); siRNA ADFP (lane 2); siRNA Tip47 (lane 3); or both combined (lane 4). Rabbit polyclonal anti-Tip47,
anti-ADFP, and anti–�-actin antibodies were used as loading control. (Please see http://dx.doi.org/10.2337/db07-1383 for a high-quality digital
representation of this figure.)
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activity and to interact with PAT proteins (30). Increase of
ATGL at LDs in cells lacking ADFP and Tip47 supports the
hypothesis that these proteins limit access of endogenous
lipase to the LDs. In contrast, lack of PAT proteins did not
affect uptake of 3H exogenous oleic acid and had little
influence on the ability of cells to utilize exogenous NEFAs
for TAG or phospholipid synthesis (online appendix Fig.
S-4). High-performance liquid chromatography analysis
did not reveal significant differences in the intracellular
content of diacylglycerol (1.45 
 0.25% [wt/wt] for Ctl vs.
1.4 
 0.2% [wt/wt]) for cells lacking PAT proteins or
ceramide (1.1% in both conditions), but 1.25% (wt/wt)
intracellular NEFAs were found in cells lacking PAT
proteins, while NEFAs remain undetected in control cells
(n � 2 experiments).
Insulin signaling. Because dysregulation of cellular lipid
metabolism has been linked to insulin resistance, we
measured the effect of PAT siRNA treatment on insulin

activation of protein kinase B (Akt) in AML12 cells by
immunoblot analysis of cellular protein extracts using
phosphospecific antibodies. In both control- and siRNA-
treated cells, insulin stimulated phosphorylation Akt phos-

Ctl

Tip47

ADFP

Both

Bodipy Nomarski

FIG. 2. Morphological differences in AML12 cells following downregu-
lation of PAT proteins. Cells were stained with bodipy fl568, which
preferentially stained neutral lipid. Fluorescent and phase images
were generated by a LSM 510 confocal laser microscopy. Bar repre-
sents 50 �m. (Please see http://dx.doi.org/10.2337/db07-1383 for a
high-quality digital representation of this figure.)
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phorylation at Ser473, an effect previously shown to
correlate with the extent of Akt activation in hepatocytes
(16). However, absence of PAT proteins resulted in a
significant decrease in insulin responsiveness and sensi-
tivity compared with the control (Fig. 6A and B). Akt
phosphorylation was not affected when only one PAT
protein was downregulated (results not shown). Effect on
Akt phosphorylation was also observed with decreasing
concentration of oleic acid in media (online appendix Fig.
S-8). To test if increased lipolysis contributed to the
observed decrease in insulin responsiveness, cells lacking
all PAT proteins were additionally treated with ATGL
siRNA. Figure 6C shows that the triple inhibition normal-
ized insulin stimulation of Akt to control levels. The total
amount of Akt did not differ among the various treatments.
Upstream regulation of Akt was also affected by lack of
PAT proteins: phosphorylations of PDK-1 (Fig. 7A), IRS-1/
phosphoinositide 3-kinase activity were decreased in cells
lacking PAT proteins (Fig. 7B). IRS-1–Ser307 phosphory-
lation, which promotes general inhibition of IRS-1 signal-
ing (17), was increased in cells lacking PAT proteins (Fig.
7C). However, this did not result in a detectable decrease
in tyrosine phosphorylation of IRS-1 (results not shown).
Downstream targets of Akt, Foxo-1, and GS3-K�/� were
affected (Fig. 7E and F). Activation of PKC-è was previ-
ously shown to be involved in insulin resistance induced
by fatty acids (18). Upon insulin stimulation, cells lacking
PAT proteins also increased PKC-è protein and phosphor-
ylation in the total cellular membrane fraction (Fig. 6D).
ERK1/2 phosphorylation was increased in both basal and
stimulated conditions in cells lacking PAT proteins (Fig.
7G). Overall glucose output was very low in AML112 cells;
however, 10�8 mol/l insulin was able to suppress glucose
output in cells transfected with control siRNA to a greater
extent than in cells lacking ADFP and Tip47, confirming a
defect in these latter cells in insulin signaling (online
appendix Table 1)
In vivo studies. Lack of information on PAT protein and
lipase content of liver fat cake in established models of
insulin resistance prompted an examination of DIO mice.
Liver fat cakes isolated from DIO mice have fourfold-
increased lipid content (11.7 
 2.2% [wt/wt] vs. 3.4 
 1%
[wt/wt]) for ad libitum–fed mice (P � 0.05). Importantly,
ATGL content also increased (Fig. 8). Despite the large
increase in lipids, a matching increase was observed only
for LSPD-5, while a significant change in Tip47 was not
found and the increase in ADFP appears modest.

DISCUSSION

Using siRNA technology, we were able to develop evi-
dence supporting the role of the PAT proteins in the
regulation of ectopic fat deposition and demonstrate the
importance of defected LD utilization in the development
of cellular insulin resistance. First, the composition of PAT
proteins at the LD surface dictates their size and number.
Second, the affinity of ADFP may be greater than Tip47 for
binding to LDs. Third, the PAT proteins help maintain
intracellular NEFA homeostasis by protecting the LDs
against lipolysis by decreasing the recruitment of ATGL at
the LD surface. Fourth, lack of PAT proteins induces
cellular insulin resistance and affects multiple steps in the
insulin signaling pathway. Fifth, DIO liver fat cakes differ
in their content of PAT proteins and ATGL.

In this study, a loss-of-function approach was developed
using siRNA-targeting PAT proteins in a liver cell line
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because such a system provides a model for one of the
most important tissues where ectopic fat develops. The
value of a loss-of-function approach for PAT proteins has
been proven with the perilipin-null mice, which exhibit a
lean phenotype and enable identification of its regulatory
role of lipolysis (19,20). However, the ADFP-null mice
exhibit few phenotypic alterations (22), attributed tenta-
tively to a compensatory replacement by Tip47 (12).
Further analyses of ADFP-null fibroblast cells treated with
siRNA against Tip47 supported the importance of the PAT
proteins’ role in lipid metabolism (12). AML12 cells are
attractive for studies of LDs and insulin signaling (15,23).

Only two PAT proteins, ADFP and Tip47, were found in
AML12 cells, predominately ADFP at the liver LD surface
(25), whereas Tip47 was observed on some droplets but
mainly in the cytosol. This corroborates previous findings
that Tip47 and ADFP behave differently in most cells in
that Tip47 can be present both in the cytosol and at the LD
while ADFP is seen primarily at the LD upon lipid-loaded
conditions (25). Inhibition of ADFP expression resulted in
increased Tip47 at the LD surface in AML12 cells, similar
to our earlier report with cells from ADFP-null mice,
suggesting that ADFP has a greater affinity for LDs than
Tip47. Thus, when ADFP expression is inhibited, Tip47
moves to the LD surface without major change in LD size
and number. However, if Tip47 is repressed, ADFP is then
the only PAT protein present and the LD number increases
while the sizes decrease. This morphological change may
reflect ADFP’s greater ability to bind to LDs and greater
surfactant function. Finally, absence of both PAT proteins
generated fewer but larger LDs. Since PAT proteins have
surfactant properties, in their absence LDs probably fuse
to minimize surface area contact with the surrounding
aqueous cytosol. These studies demonstrate that the PAT
protein composition in liver cells is a critical determinant
of LD size and number.

Interestingly, varying the LD coat protein did not affect
the ability of cells to take up exogenous NEFAs and to
esterify it into TAG. Thus, ADFP and Tip47 are not

important factors in determining the amount of TAG
produced, but they are important factors in determining
how it is packaged. However, without PAT proteins, TAG
lipolysis increased, demonstrating a function of these two
PAT proteins to inhibit LD hydrolysis by endogenous
lipase(s). This property is a feature shared for most PAT
proteins. Perilipin is known to regulate lipid storage in
adipose cells (21,42), and published studies support that
ADFP (34), Tip47 (12), and, recently, LSDP-5 (13) protect
LD TAG against lipolysis.

Endogenous lipases in liver cells responsible for LD
turnover have not yet been catalogued to the same extent
as in adipose tissue (26). The phenotype of ATGL-null
mice indicates that it may be an important lipase not only
in adipose tissue but also in nonadipose tissue. Notably,
hepatic fat content was doubled in ATGL-null mice com-
pared with wild-type (14). Interestingly, by imunocyto-
chemistry and immunoblot analysis, we found an ATGL
increase at the LD surface when all PAT proteins were
absent, confirming a recent report (44) that the lack of
ADFP increases ATGL presence in fibroblasts. Further-
more, by downregulating ATGL expression, we could
show an active role of ATGL in LD turnover, as judged by
increased LDs in cells lacking this lipase. These results led
us to hypothesize that ATGL is one of the enzymes
participating in LD hydrolysis in liver cells and, impor-
tantly, that nonadipose tissue PAT proteins also have a
role in inhibiting LD hydrolysis.

A recent finding on ATGL regulation is that this enzyme
appears to require CGI-58 for full activity in cytosolic
extracts (27). CGI-58 is a protein that when mutated or
truncated has been found to be responsible for LD accu-
mulation in most tissues (Chanarin-Dorfman syndrome)
(28,29). Most recently, CGI-58 was identified to bind to
Perilipin and ADFP (30,31). In our studies, fat cake extract
from cells lacking PAT proteins was enriched in CGI-58
protein. This led us to hypothesize that common mecha-
nisms exist among PAT proteins to regulate ATGL access
to the LD surface, both in adipose and nonadipose tissues.
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We found that PAT protein downregulation is sufficient
to induce insulin resistance in liver cells. These results led
us to conclude that the mechanism underlying the defect
in insulin resistance in the absence of PAT proteins is due
at least in part to an increase in lipolytic rate and/or
uncoupling to NEFA utilization. Absence of PAT proteins
at the LD surface facilitates access of endogenous triglyc-
eride lipases such as ATGL to the TAG substrate, releasing

NEFAs that in turn affect the signaling cascade at multiple
levels. These findings support our working hypothesis that
ADFP and Tip47 play important roles in the regulation of
ectopic fat, similar to the key role of perilipin in adipose
tissue, and that their function can explain at least partially
the connection between ectopic fat and development of
insulin resistance. If true, then alteration in the composi-
tion and/or activity of PAT proteins will result in dysfunc-
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tional lipolysis triggering a cascade of deleterious events
in cellular function. Hence, a strong connection should be
visible in nonadipogenic tissues between PAT protein
composition, surface protein content, lipolysis, and insulin
signaling. However, an in vivo study (45) of ADFP anti-
sense downregulation in liver reported improved insulin
sensitivity; no change in VLDL secretion, contrary to cell
culture study results (47); and no compensation by Tip47,
at least in the whole cellular extract. However, no attempt
was reported to assess LPSD-5 presence/activity, while its
expression has been shown to correlate with increased

�-oxidation and is present in liver (46). Knowing the
redundancy with the PAT protein family, LSDP-5 may be
responsible for the apparent discrepancy existing between
these in vivo results and cell culture (47). The presence of
LSDP-5 in liver LDs brings another level of complexity to
the regulation of LD utilization. To date, little knowledge
exists of LD PAT protein composition in insulin resistance
models. We show here that liver LDs from the DIO disease
model differ in the ratio of PAT proteins at the LD surface
and, importantly, that ATGL is increased at the LD surface.
Since ATGL-null mice have increased insulin sensitivity,
we hypothesize that defects increasing ATGL access to the
lipid surface and/or activity will have the opposite effect
(i.e., promote insulin resistance). Thus, we hypothesize
that DIO alters liver lipid turnover, contributing to insulin
resistance.

It is widely accepted that excessive free fatty acid–
induced insulin resistance involves intramyocellular and
intrahepatocellular accumulation of TAG, activation of
several serine/threonine kinases, reduction in tyrosine
phosphorylation of IRS-1/2, and impairment of IRS/phos-
phoinositide 3-kinase pathway (32) and ERK1/2 pathway
(32). Attention has been given in the literature thus far to
a failure of mitochondrial oxidative function, but little
thought has been given to the failure of the LD compart-
ment to appropriately store the excess NEFAs (34). The
results from these studies indicate that defects in LD
lipolysis/utilization contribute to loss of ability of nonadi-
pose tissue to maintain NEFA homeostasis and thus are
responsible for deleterious consequences observed in the
signaling pathway. These defects likely occur in the func-
tion/activity of the PAT family LD surface proteins regu-
lating lipolysis. Future research focusing on LD utilization
and its regulation will provide us with important clues for
understanding regulation of cellular energy homeostasis.
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