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Abstract

A key challenge in evolutionary biology is the accurate quantification of selective pressure

on proteins and other biological macromolecules at single-site resolution. The evolutionary

importance of a protein site under purifying selection is typically measured by the degree of

conservation of the protein site itself. A possible alternative measure is the strength of the

site-induced conservation gradient in the rest of the protein structure. However, the quantita-

tive relationship between these two measures remains unknown. Here, we show that

despite major differences, there is a strong linear relationship between the two measures

such that more conserved protein sites also induce stronger conservation gradient in the

rest of the protein. This linear relationship is universal as it holds for different types of pro-

teins and functional sites in proteins. Our results show that the strong selective pressure act-

ing on the functional site in general percolates through the rest of the protein via residue-

residue contacts. Surprisingly however, catalytic sites in enzymes are the principal excep-

tion to this rule. Catalytic sites induce significantly stronger conservation gradients in the

rest of the protein than expected from the degree of conservation of the site alone. The

unique requirement for the active site to selectively stabilize the transition state of the cata-

lyzed chemical reaction imposes additional selective constraints on the rest of the enzyme.

Author summary

Sites within proteins which are important for stability or function are under stronger

selective pressure and evolve more slowly than other sites. Catalytic sites in enzymes are

such highly conserved sites with relatively low evolutionary rates. Recently, catalytic sites

were shown to induce a strong gradient of conservation such that the closer a residue is to

the catalytic site, the more conserved it is. Here we show that there is a universal linear

relationship between the degree of evolutionary conservation of a protein site and the con-

servation gradient it induces in the protein tertiary structure, applicable to all types of

sites. Our findings suggest that selective pressure acting on a protein site generally perco-

lates through the rest of the protein via residue-residue contacts. Remarkably however,

catalytic sites induce significantly stronger conservation gradients than expected from

their degree of conservation alone. Our results indicate that the strong conservation gradi-

ent induced by catalytic sites is driven by the unique function of enzyme catalysis, which
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requires the participation of many residues beyond the few key catalytic residues. Our

results provide insights into evolutionary conservation patterns of and surrounding pro-

teins functional sites, with implications for functional site prediction and protein design.

Introduction

The evolutionary importance of protein sites under purifying selection can be quantified in

two very different ways. The classical, “intrinsic” measure for the evolutionary importance of a

protein site is the degree of conservation or evolutionary rate of the protein site itself. Protein

residues experience different degrees of selective pressure as a result of the different roles they

play in protein stability and function[1,2]. For example, residues in a protein core are generally

under stronger selective pressure than surface residues due to their importance in stabilizing

the protein. Indeed, structural determinants such as solvent exposure[3–7] and degree of pack-

ing [8–10] were shown to explain a large portion of the variability in the observed site-specific

evolutionary rates. In addition, residues in functional sites such as catalytic sites[11] and

ligand-binding sites are also under stronger selective pressure than non-functional residues.

An alternative, “extrinsic” measure for the evolutionary importance of a protein site is the

conservation gradient the site exerts on the rest of the protein. Rather than quantifying evolu-

tionary conservation of the protein site itself, this measure captures how the evolutionary con-

servation of other residues surrounding the site gradually decreases with distance from the site

in the tertiary structure. Several studies have indicated the possibility for selective pressure to

propagate from the functional site to the rest of the protein via physical interactions between

neighboring residues in the three-dimensional structure [12–15]. While it is clear that the two

measures of the evolutionary importance of protein sites are substantially different, it remains

unknown how the two measures relate to each other.

In this paper, we addressed the fundamental question whether there is a direct relationship

between the intrinsic and extrinsic measures of the evolutionary importance of protein sites.

We have based our study on a dataset of homology-based structural models of the yeast prote-

ome [5,7]. Despite their major differences, we show here that there is a strong linear relation-

ship between the degree of conservation of a protein site and the conservation gradient

induced from it. In other words, more conserved protein sites tend to induce stronger conser-

vation gradient in the rest of the protein, as selective pressure acting on the protein site perco-

lates via residue-residue interactions. This linear evolutionary conservation-percolation

relationship is universal in that it holds for different types of proteins as well as for different

types of functional sites in proteins. Remarkably however, catalytic sites in enzymes are the

exception to this universal rule, as catalytic sites induce significantly stronger conservation gra-

dient than other types of functional sites with similar degrees of conservation. We conclude

that for many different types of functional sites, site-induced conservation gradient can be

explained by the percolation of site-specific selective pressure through the rest of the protein

via residue-residue contacts. However, catalytic sites in enzymes induce significantly stronger

conservation gradient in the rest of the protein than expected from the percolation theory.

This is likely due to the unique requirement for the enzyme active site to selectively bind to

and stabilize the transition state of the catalyzed chemical reaction [16].

Overall, we show that a more complete understanding of the selective pressure on protein

sites can be achieved by integrating the intrinsic measure of site-specific evolutionary conser-

vation with the extrinsic measure of site-induced conservation gradient, with potential impli-

cations in protein design, functional site prediction and the study of disease mutations.
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Results

Evolutionary conservation gradient induced from a protein residue in the

proteins structure is linearly correlated with the conservation of the residue

We based our study on a dataset of homology-based structural models of the S. cerevisiae pro-

teome. This basic dataset contains structural templates from the Protein Data Bank (PDB)[17]

mapped to ORFs of S. cerevisiae via sequence alignment (see Methods). We had 1274 yeast

ORFs with structural models from the PDB for which residue conservation scores are available

in ConSurf-DB [18,19]. Each residue in the dataset was ranked according to its relative conser-

vation within the protein (the residue’s rank of conservation divided by the total number of

residues). This normalized conservation rank of a residue ranges from 0 to 1, with higher rank

corresponding to higher conservation within the protein. We have also calculated for each res-

idue the Pearson correlation between the conservation scores of all other residues in the pro-

tein and their distance from that reference residue. This Pearson correlation between

conservation and distance describes the degree of percolation of the evolutionary conservation

from a residue throughout the protein tertiary structure, i.e., the ‘conservation gradient’.

A clear negative linear trend is observed between the conservation rank of a residue and the

strength of the evolutionary conservation gradient induced from it (Fig 1A). The more a resi-

due is conserved within the protein (higher conservation rank), the stronger the evolutionary

conservation gradient it induces. Similar result is shown when conservation gradients are cal-

culated using Spearman correlation rather than Pearson correlation (S1A Fig). Conservation

gradients calculated up to 30Å away from the residue, are overall lower compared to those

over the entire domain, however they exhibit higher correlation to residue conservation (S2A

and S3A Figs). The distribution of overall per-protein Pearson correlations between conserva-

tion ranks and conservation gradients (per-protein conservation-percolation trend) is mainly

between -0.2 and -0.7, and the average correlation in the dataset is -0.5 (Fig 1B), indicating

that the linear relationship between site-specific conservation and site-induced conservation

gradient is high for all types of proteins. Similarly, with conservation gradients calculated with

Spearman correlation, the average per-protein correlation between conservation gradient and

conservation rank is -0.5 as well (S1B Fig). When conservation gradients are calculated up to

30Å away, the average per-protein conservation-percolation correlation is higher, -0.6

(S2B Fig).

Fig 1. Conservation gradient induced from a protein residue is linearly correlated with its conservation within the protein. (A) Violin plots and

respective average of conservation gradient from a residue as a function of conservation rank for all residues in the dataset binned into 20 equally

spaced bins of conservation rank along with the linear fit calculated over all residues. (B) Distribution of per-protein Pearson correlation between

residues’ conservation ranks and conservation gradients.

https://doi.org/10.1371/journal.pgen.1009476.g001
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We have also examined this relationship between site-specific conservation and site-

induced conservation gradient specifically for functional sites. We identified different func-

tional sites in the dataset: catalytic sites, non-catalytic ligand-binding sites (on enzymes and on

nonenzymatic proteins), protein-protein interaction sites, and allosteric sites. We identified

catalytic sites using the Mechanism and Catalytic Site Atlas (M-CSA)[20], ligand-binding sites

using BioLip [21], allosteric sites using the Allosteric Database (ASD) [22–24] and protein-

protein interaction sites using our previous protocol of identifying protein-protein interfaces

in the yeast proteome[5]. Relative solvent accessibility (RSA) of residues was calculated and

residues were classified as buried if RSA = 0.0, exposed if RSA>0.8 and middle for

0.0<RSA�0.8. The linear relationship between site-specific conservation rank and site-

induced conservation gradient holds regardless of the residue’s location within the protein or

its functional role (Fig 2 and S1 Table). Overall, our results reveal the existence of a conserva-

tion–percolation relationship in which higher residue conservation leads to stronger percola-

tion of selective pressure to adjacent sites in the tertiary structure. Furthermore, this

relationship holds for residues in different types of functional sites.

Conservation gradient induced from a protein site is linearly correlated

with the evolutionary rate of the site

The linear trend between conservation and percolation shown above is based on conservation

ranks of residues, which are relative within a protein. In these calculations, we have lumped

Fig 2. Residues in functional and structural sites exhibit linear correlation between conservation and conservation gradient. Violin plots of conservation gradient

of residues as a function of their conservation rank within the protein along with the linear fit calculated over all residues in different types of structural and functional

sites.

https://doi.org/10.1371/journal.pgen.1009476.g002
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together residues from different proteins having similar conservation rank, however these resi-

dues, being from different proteins, can be under different selective pressure. To address this

caveat, we examined whether the conservation-percolation linear trend still holds when con-

servation is measured in terms of absolute evolutionary rate (dN/dS). The evolutionary rate is

calculated for the yeast proteins in S. cerevisiae compared with its orthologs in four closely

related yeast species (see Methods). Conservation score annotations are transferred from struc-

tural homologs onto yeast proteins using sequence alignment. Then, we binned all residues into

100 equally spaced bins of conservation rank and calculated their average evolutionary rate

(dN/dS). The average evolutionary rate increases for residues with increasing conservation rank

(decreasing conservation) (S4 Fig), showing high correlation between the evolutionary rate of

yeast protein sites and the conservation scores of their structural homologs. The conservation-

percolation linear trend is shown to still hold here, where conservation is measured in terms of

absolute evolutionary rate (Fig 3). The lower the average evolutionary rate of a protein site is,

the stronger percolation of evolutionary conservation is induced from it.

Conservation gradients calculated as Spearman correlations exhibit a similar linear trend

(S5 Fig) as well as conservation gradients calculated up to 30Å away from the reference residue

(S6 and S7 Figs).

Catalytic sites induce stronger conservation gradients than predicted by the

conservation-percolation trend

The annotation of functional and structural site residues was transferred to yeast proteins

from their structural models using sequence alignment. The average conservation gradient

induced from them is shown in Fig 3A. As expected, functional residues evolve more slowly

(low dN/dS) than other residues. The average conservation gradients induced from ligand

binding sites in enzymes, allosteric sites and protein-protein interaction sites can all be pre-

dicted reasonably well from the linear conservation-percolation trend. Remarkably, catalytic

Fig 3. Conservation gradient induced from residues is linearly (negatively) correlated with their evolutionary rate (dN/dS), with catalytic site residues inducing

stronger conservation gradient than expected by the linear trend. (A) Average conservation gradient (calculated as the average Pearson correlation between

conservation of residues and their distance from a site) as a function of average evolutionary rate (dN/dS) for all yeast protein residues binned according to their

annotated conservation rank into 100 equally spaced bins as well as the average conservation gradients of different types of functional sites. (B) Average conservation

gradient without the relative contribution of SC-WCN as a function of average evolutionary rate (dN/dS) for all yeast protein residues binned according to their

annotated conservation rank into 100 equally spaced bins as well as the average conservation gradients without the relative contribution of SC-WCN of different types

of functional sites.

https://doi.org/10.1371/journal.pgen.1009476.g003
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sites have the most significant deviation from the linear conservation-percolation trend. The

average conservation gradient induced from catalytic site residues is significantly stronger than

expected by the linear conservation-percolation trend. This can also be seen from the signifi-

cantly stronger conservation gradients from catalytic sites compared with non-functional sites

with similar high conservation rank (Fig 2). These results suggest that the strong conservation

gradient induced from catalytic residues cannot be solely attributed to the percolation of the

strong selective pressure on them. We repeated the analysis with the x-axis changed to the con-

servation rank (S8 Fig) showing agreement with Fig 3 supporting the conclusion that catalytic

sites induce stronger conservation gradients on average than other sites with similar conserva-

tion. Ligand binding sites in nonenzymes in our dataset also induce somewhat stronger conser-

vation gradients than expected (although not to the same extent as catalytic sites). This could be

caused due to undiscovered catalytic sites and further work is required to test this hypothesis.

Conservation gradients calculated as Spearman correlations exhibit similar trends to those

observed with conservation gradients expressed as Pearson correlations (S5 Fig). When con-

servation gradients measured up to 30Å (S6 and S7 Figs), the difference between those induced

from catalytic sites and those induced from other sites with similar evolutionary rate is even

higher compared with this difference when conservation gradients are calculated over the

entire protein domain. Notably, conservation gradients up to 30Å from binding sites in none-

nzymes are significantly lower compared with those from catalytic sites.

Comparing the conservation gradients from different types of functional sites, a possible

caveat is that the residues composing them have a different variety of conservation ranks.

While catalytic sites are smaller and contain mainly highly conserved residues, protein-protein

interactions sites are larger and can include residues that have a small contribution to the func-

tion and are not highly conserved. We therefore repeated our analysis taking into account only

the three most conserved residues from each functional site. These highly conserved residues

have lower evolutionary rates than the entire functional site and induce higher conservation

gradients (S9 Fig compared with Fig 3). The trend of the results is maintained showing that

the most conserved residues within catalytic sites induce significantly stronger conservation

gradients compared with the most conserved residues of other functional sites. Average con-

servation gradient from the most conserved residues of binding sites in nonenzymes is shown

to be almost identical to that from catalytic sites.

The observed differences between conservation gradients induced from different functional

sites could be dictated by structural determinants, such that tightly packed functional sites or

those that are in a groove and hence close to the protein core, exhibit stronger conservation

Table 1. Average side-chain weighted contact number (SC-WCN) and distance to the protein center as well as average conservation gradient of the different types

of functional sites.

Functional sites Mean SC-WCN Mean distance to protein center Mean conservation gradient
Catalytic sites 2.62±0.03 7.1±0.4 0.41±0.01

Non-catalytic ligand binding sites in enzymes 2.65±0.03 9.3±0.4 0.30±0.01

Ligand binding sites in nonenzymes 1.92±0.02 7.4±0.3 0.37±0.01

Protein-protein interaction sites 1.70±0.01 14.8±0.1 0.21±0.00

Allosteric sites 2.03±0.01 10.8±0.2 0.24±0.00

Buried non-functional sites# 3.32±0.00a 2.5±0.00b 0.24±0.00a

0.20±0.00b

# chosen as either
a sites for which SC-WCN>3.0
b sites for which distance to the protein center is <5.0

https://doi.org/10.1371/journal.pgen.1009476.t001
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gradients. We have previously shown that any structural determinant of the protein backbone

is unlikely to be a major determinant of the strong conservation gradients from enzymes[25].

We wanted to further test this hypothesis and control for site packing in our dataset. First, we

have calculated the SC-WCN (side-chain weighted contact number)[9,10] for each residue in

each protein in our dataset. SC-WCN is a measure of residue packing and centrality. While the

average SC-WCN for catalytic sites is higher than for other functional sites, the average

SC-WCN for catalytic sites is not significantly different from ligand binding sites in enzymes

(Table 1). In addition, conservation gradients from non-functional buried sites with high

SC-WCN induce significantly weaker conservation gradients than from other exposed func-

tional sites such as protein-protein interaction sites. These results imply that packing does not

dictate the difference in conservation gradients between these sites. Moreover, while the over-

all correlation coefficient between conservation gradients and conservation ranks over all the

residues in our dataset is 0.43, the overall correlation coefficient between conservation gradi-

ents and SC-WCN values is significantly weaker (0.24).

We then constructed a linear regression model for conservation gradients of residues as a

function of both their conservation rank and SC-WCN value. We subtracted the contribution

of SC-WCN from the conservation gradient of every residue and plotted the new conservation

gradients which are independent of SC-WCN (Fig 3B). The overall trends and differences in

conservation gradients between different types of functional sites are maintained and are not

strongly affected by controlling for the contribution of burial/packing. Similar results were

obtained when the structural measure used was the proximity to the center of the protein (cal-

culated as the distance from the residue with highest SC-WCN) (Table 1 and S10 Fig). There-

fore, structural determinants of burial/packing or proximity of the functional site to the

protein center are not the main cause of the significantly stronger conservation gradients from

catalytic sites compared with non-catalytic sites.

Catalytic site residues induce stronger conservation gradients than non-

catalytic functional site residues with similar evolutionary rates

We have shown that on average, catalytic site residues induce stronger conservation gradients

than expected by their average evolutionary rate. Next, we further reinforce this result by com-

paring the conservation gradient induced from subsets of catalytic and non-catalytic site resi-

dues with similar evolutionary rates. We have sampled 1,000 random subsets of residues from

each type of functional site. For each such subset (represented by a circle in Fig 4A), we

Fig 4. Catalytic site residues induce stronger conservation gradients than non-catalytic functional site residues with similar evolutionary rates. (A) Average

conservation gradients of subsets of functional sites residues. (B) Average conservation gradients of subsets of the three most conserved residues within each functional

site. Each circle represents a subset of residues, colored by different types of functional sites.

https://doi.org/10.1371/journal.pgen.1009476.g004
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calculated the average evolutionary rate and average conservation gradient. As expected, cata-

lytic site residue subsets span the lowest dN/dS values (x-axis), followed by non-catalytic ligand

binding sites and allosteric sites, protein-protein interaction sites, ligand binding sites in none-

nzymes and finally buried residues. The linear trend between evolutionary rate and conserva-

tion gradient holds for each of these functional site types (Fig 4A). This result indicates the

robustness of the conservation-percolation linear trend regardless of the functional or struc-

tural role of the residues. Interestingly, residue subsets from different functional sites with sim-

ilar evolutionary rates induce conservation gradients with different magnitudes. In particular,

catalytic sites induce significantly stronger conservation gradients than all other non-catalytic

sites with similar evolutionary rates, including non-catalytic ligand binding sites (Fig 4A).

Notably, highly conserved buried nonfunctional residues that have similar evolutionary rates

as those of catalytic sites, are shown here to induce significantly weaker conservation gradients

(see also S11 Fig). This further shows that burial/packing of the functional site is not the main

cause of the significantly stronger conservation gradients from catalytic sites compared with

non-catalytic sites. Finally, protein-protein interaction site residues induce lower conservation

gradients than most other functional site residues with similar evolutionary rates, possibly due

to the tendency for protein-protein interactions to rewire during evolution.

We have repeated the analysis in Fig 4A with the x-axis changed to the conservation rank

(S12 Fig). Results show broad agreement with Fig 4, supporting our main conclusion that cata-

lytic sites induce stronger conservation gradient on average than other functional and non-

functional sites, even after controlling for site-specific conservation level. In addition to cata-

lytic sites, other ligand binding sites also exhibit somewhat higher conservation gradient than

allosteric sites and protein-protein interaction sites, likely due to hidden, unannotated catalytic

sites in our dataset of ligand binding sites.

When conservation gradients from subsets of residues are calculated with Spearman corre-

lations, similar trends to those with Pearson correlations are obtained (S13 Fig). Moreover,

conservation gradients up to 30Å exhibit similar trends to those calculated over the entire pro-

tein domain (S14 and S15 Figs). Even though conservation gradients up to 30Å are generally

smaller in magnitude, the large difference between those induced from catalytic sites and those

from non-catalytic functional sites with similar evolutionary rate is even more pronounced

than conservation gradients computed over the protein domain.

When considering only the three most conserved residues from each functional site (Fig

4B), subsets of residues exhibit lower evolutionary rates and higher conservation gradients

compared with subsets from all functional sites residues (Fig 4A). Interestingly, even subsets of

non-catalytic sites residues with same or lower evolutionary rates than catalytic sites residues

induce significantly lower conservation gradients. These results further emphasize the unique

behavior of catalytic sites that induce significantly stronger conservation gradients than other

sites with similar evolutionary conservation and cannot be completely explained by their low

evolutionary rates. Conservation gradients from ligand binding sites in nonenzymes are

mostly lower than those from catalytic sites although some induce similar conservation gradi-

ents which might be caused due to possible ‘hidden catalytic sites’.

Catalytic site residues often induce stronger conservation gradients than

more conserved non-catalytic functional site residues within the same

protein

We have shown that conservation gradients induced by functional site residues in general cor-

relate linearly with the evolutionary rates of these functional site residues. We have also shown

that catalytic site residues are special in that they induce the strongest conservation gradients
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among subsets of different functional site residues with similar average evolutionary rates.

However, our analyses have so far been carried out by grouping together functional site resi-

dues from different proteins. In this section, we perform a stringent, per-protein analysis by

focusing on multi-functional proteins with at least two distinct functional sites and comparing

the evolutionary properties of different functional site residues within the same protein. Some

proteins in our dataset contain both catalytic sites as well as non-catalytic functional sites,

whereas other proteins in our dataset contain two distinct non-catalytic functional sites. We

found that for the majority of the functional site residue pairs within the same multi-functional

protein, the more conserved functional site residue indeed induces stronger conservation gra-

dient (80% if the more conserved residue is catalytic, Fig 5A; 67% if both residues are non-cat-

alytic, Fig 5B). These results agree with the hypothesis that induced conservation gradients are

largely driven by the percolation of selective pressure acting on functional sites.

Remarkably, in cases where the catalytic site residue is less conserved than the non-catalytic

functional site residue within the same multi-functional protein, the catalytic site residue still

induces stronger conservation gradient than the non-catalytic functional site for most of these

cases (discordance of 80%, Fig 5C). This large discordance shown in cases where the lower con-

servation residue is a catalytic site residue, is significantly higher compared to the cases where

the lower conservation residue is a non-catalytic site residue (binomial test P<<0.01). Similar

trends are obtained with conservation gradients calculated as Spearman correlations (S16 Fig)

as well as when the analysis is focused only on the three most conserved residues from each

functional site (S17 Fig) and when conservation gradients are computed up to 30Å (S18 Fig).

Fig 5. Catalytic site residues often induce stronger conservation gradients than more conserved non-catalytic functional site residues

within the same protein. Within the same protein, (A) more conserved catalytic site residues tend to induce stronger conservation gradient

than less conserved non-catalytic site residues (binomial test, P<<0.001); (B) more conserved non-catalytic site residues tend to induce

stronger conservation gradient than less conserved non-catalytic site residues (binomial test, P<<0.001); (C) less conserved catalytic site

residues often induce stronger conservation gradient than more conserved non-catalytic site residues (binomial test, P<<0.001). Functional

site residue pairs for which the ordering of residue conservation agrees with the ordering of induced conservation gradient (concordance) are

marked in blue. Functional site residue pairs for which the ordering of residue conservation disagrees with the ordering of induced

conservation gradient (discordance) are marked in orange.

https://doi.org/10.1371/journal.pgen.1009476.g005
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These results clearly show that within the same protein, less conserved catalytic site residues

often induce stronger conservation gradient than the more conserved non-catalytic site.

Therefore, the strong conservation gradients from catalytic sites cannot be entirely explained

by the percolation of the strong selective pressure acting on the catalytic sites.

Discussion

In this paper we have shown a linear relationship between two measures of evolutionary

importance of protein sites under purifying selection. These are the degree of evolutionary

conservation of the site itself, as well as the percolation of evolutionary conservation induced

from the site via neighboring residues in the protein tertiary structure. Despite major differ-

ences between these two measures, we have shown that the linear relationship between the two

measures is universal as it holds for different types of proteins as well as for different types of

functional sites in proteins. However, catalytic sites in enzymes are the principal exception to

this rule. We have shown here that catalytic sites in enzymes induce significantly stronger con-

servation gradients in the rest of the protein than expected from the degree of conservation of

the site alone. Catalytic sites have a unique and complex functionality as they both bind a sub-

strate as well as reduce the free energy barrier required for a chemical reaction to occur. These

catalytic sites were shown to be under stronger selective pressure compared with other func-

tional sites such as protein-protein interaction sites and ligand binding sites[13,15]. It was also

shown that they induce a significantly stronger evolutionary rate gradient than other func-

tional sites. One hypothesis regarding the origin of the strong conservation gradient from cata-

lytic sites is that it is simply due to the strong selective pressure acting on these sites

percolating through the rest of the protein via residue-residue contacts. However, we have

shown here that the strong selective pressure acting on catalytic sites cannot entirely explain

the strong conservation gradients induced from catalytic sites.

The main determinant of the conservation gradient from catalytic sites is still not

completely understood. Local structural constraints (such as residue burial and packing, WCN)

are usually potential contributors as they are known to generally have a significant effect on resi-

due evolutionary rate[1,2,5,10]. However, it was shown that generally, local structural con-

straints are not the main determinants of conservation gradients in enzymes[13,25,26].

Moreover, the fact that non-catalytic ligand binding sites and allosteric binding sites induce sig-

nificantly weaker evolutionary rate gradients implies that the ligand binding and allosteric func-

tion are not the main determinants of the conservation gradients in enzymes either[15]. We are

therefore left with the hypothesis that the uniquely strong conservation gradient in enzymes is

imposed by the special requirement for catalytic sites to differentially bind the transition state of

a chemical reaction rather than the reactants or products with very similar properties [16], a

function which is unique to catalytic sites compared with other functional binding sites. A

recent physical model of residue evolutionary rates in enzymes introduced an activation term in

addition to a stability term and showed improved predictive ability[27]. The model attributed

the activity to the free energy required to transform a distorted catalytic site upon mutation to

its native conformation. The improved ability of the model supports the hypothesis that the

main determinant of the observed conservation gradient in enzymes is a functional rather than

structural constraint. Overall, our results suggest that the stringent requirement for the catalytic

site to differentially bind to and stabilize the transition state of the catalyzed chemical reaction

imposes extensive evolutionary constraints on a large portion of the enzyme beyond just the cat-

alytic site, all of which play key roles in maintaining the catalytic function.

Accurate quantification of selective pressure on proteins at single-site resolution is an

important task in evolutionary biology [2]. We have shown here that there are two different
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methods to quantify the evolutionary importance of a protein residue. The classical, “intrinsic”

measure of conservation and the “extrinsic” measure which is conservation gradient the site

exerts on the rest of the protein. The combination of these two measures provides a complete,

quantitative picture of evolutionary conservation patterns within proteins induced by func-

tional sites. The linear relationship between the degree of conservation of a protein functional

site and the induced conservation gradient in the rest of the protein suggests that the strong

selective pressure acting on the functional site percolates through the rest of the protein via res-

idue-residue contacts. Our results also clearly show the unique evolutionary behavior of

enzymes in which the catalytic site induces significantly stronger evolutionary constraints on

their surroundings than can be explained by the percolation theory alone. Moreover, our

results emphasize that catalysis requires the participation of a much larger set of residues than

just the few key catalytic residues.

The current study is empirical, using available data on annotated functional sites and their

conservation gradient patterns. In future work it will be interesting to use simulation lattice

models[14] or biophysical models[27] to examine the effect of different factors on conserva-

tion gradient patterns and to unify the empirical and theoretical studies.

Methods

Protein dataset collection and functional site annotations

The current dataset is based on a dataset of structural homologs of yeast proteins[15]. The

dataset was created first by using gapped BLAST[28] searches between protein subunit

sequences with solved structure from the Protein Data Bank[17] and 5,861 translated open

reading frames (ORFs) of the yeast Saccharomyces cerevisiae[29]. The ORF–subunit pairs were

chosen such that both the subunit sequence and the ORF sequence had coverage of�50% in

the alignment and E-value <10−5 and could be paired with their orthologs in four other

closely-related yeast species S. paradoxus, S. mikatae, S. bayanus and S. pombe. This way, 1,555

yeast ORFs were mapped to homologs in the PDB. The procedure included the following

steps:

First, if one of the homology-based structural models of a yeast ORF had an annotated allo-

steric site, this model was chosen. For 171 yeast proteins the structural model was identified

with a known allosteric site as well as pre-calculated conservation scores in ConSurf-DB[18].

For all other yeast ORFs, if they had structural models with known ligand binding sites that do

not overlap with catalytic sites, the model with the lowest E-value out of them was chosen.

Overall, 39 nonenzymes with 42 ligand binding sites and 20 enzymes with 25 non-catalytic

ligand-binding sites were part of the dataset. For all other yeast ORFs, the structural model

with the lowest E-value was chosen. In this manner, 976 more ORFs for which the best struc-

tural model had pre-calculated conservation scores in ConSurf-DB were added to the dataset.

Overall, 1,206 ORF-subunit pairs were included in the study. Out of them, 147 yeast proteins

were identified with 282 protein-protein interactions sites and 107 proteins were identified

with catalytic sites. Full list of yeast proteins, their structural models along with identified func-

tional sites can be found in S2 Table in the Supporting Material.

Functional site annotations

Allosteric sites within the structural subunits were found and their residues annotated using

the Allosteric Database (ASD)[22–24]. Biologically-relevant ligand-binding sites were found

using Binding MOAD (Mother of all Databases)[30,31], a database of biologically significant

protein-ligand binding in the PDB. Using MOAD, sites with bound crystallographic additives,

buffers, salts, metals and sites with covalently linked ligands are excluded. Ligand-binding
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residues were identified using the BioLip[21] database. Catalytic sites within the protein struc-

tural subunits were found using the M-CSA [20], taking into account also all protein chains in

the PDB which are more than 95% identical to protein chains found in M-CSA[32]. In order

to find proteins that participate in protein-protein interactions in our dataset, we identified

structural subunits where each subunit is both in physical contact with another subunit and

the corresponding modelled ORFs are reported as interacting by at least one physical experi-

ment in the BioGRID [33,34]. Our dataset contains 147 proteins with 282 protein-protein

interaction interfaces. Interfacial residues were identified as residues with different solvent

accessibility values when in complex compared to when the interacting partner is manually

deleted from the tertiary structure. Distances between residues were calculated as distances

between their respective Cα atoms. All functional site annotations of the chosen structural sub-

units were transferred to the yeast ORF sequence according to the sequence alignment.

Evolutionary conservation and rate calculations

In this study we calculated both evolutionary conservation scores for the residues of the struc-

tural subunits as well as average absolute evolutionary rates (dN/dS) for the yeast ORFs. Evolu-

tionary conservation scores were taken from ConSurf-DB[18], which is a database of pre-

calculated conservation scores of residues in proteins with known structures in the Protein

Data Bank (PDB). ConSurf-DB conservation scores are based on collected sequence homologs

of the PDB structure and using the Rate4Site algorithm[35]. S1 Text in the Supporting Material

provides all conservation scores obtained from ConSurf-DB for all the proteins used in this

study. Calculated conservation gradients for each residue in every protein in the dataset can all

be found in Supporting S2 Text. S2 Text also lists the conservation gradients calculated using

Spearman correlation, calculated up to 30Å away from the reference residue and calculated

with the relative contribution of SC-WCN eliminated.

To calculate the average evolutionary rates (dN/dS) for residues of S. cerevisiae, we first

used the orthology assignment of the protein-coding genes of S. cerevisiae with four other

closely-related yeast species (S. paradoxus, S. mikatae, S. bayanus, and S. pombe), according to

the Fungal Orthogroup Repository[36]. We then aligned the ORFs using MAFFT[37]. Then,

evolutionary rates were calculated using the program codeml within the PAML software pack-

age[38]. The tree was specified as ((((S. cerevisiae, S. paradoxus), S. mikatae), S. bayanus), S.

pombe). Codon frequencies were assumed equal (CodonFreq = 0) and other parameters in

codeml were left to their default values. The codon alignments can be found in S3 Text in the

Supporting Material.

Statistical analysis

1000 random sample of 250 residues were collected from each type of functional site residues

for Fig 4.

Estimated standard errors in our measurements of conservation gradients (Pearson correla-

tions) and of dN/dS values were done using 50 rounds of bootstrap resampling.

Supporting information

S1 Fig. Conservation gradient induced from a protein residue is linearly correlated with its

conservation within the protein. (A) Violin plots and respective average of conservation gra-

dient (calculated as a Spearman correlation between a residue conservation and its distance

from a site) as a function of conservation rank for all residues in the dataset binned into 20

equally spaced bins of conservation rank along with the linear fit calculated over all residues.

(B) Distribution of per-protein Pearson correlation between residues’ conservation ranks and

PLOS GENETICS Quantifying evolutionary importance of protein sites

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009476 April 7, 2021 12 / 18

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009476.s001
https://doi.org/10.1371/journal.pgen.1009476


conservation gradients (conservation gradients calculated as Spearman correlations).

(TIF)

S2 Fig. Conservation gradient induced from a protein residue is linearly correlated with its

conservation within the protein. (A) Violin plots and respective average of conservation gra-

dient (calculated as a Pearson correlation between a residue conservation and its distance from

a site up to 30Å away) as a function of conservation rank for all residues in the dataset binned

into 20 equally spaced bins of conservation rank along with the linear fit calculated over all res-

idues. (B) Distribution of per-protein Pearson correlation between residues’ conservation

ranks and conservation gradients (conservation gradients calculated as Pearson correlations

up to 30Å away).

(TIF)

S3 Fig. Conservation gradient induced from a protein residue is linearly correlated with its

conservation within the protein. (A) Violin plots and respective average of conservation gra-

dient (calculated as a Pearson correlation between a residue conservation and its distance from

a site between 6 Å and 30Å away) as a function of conservation rank for all residues in the

dataset binned into 20 equally spaced bins of conservation rank along with the linear fit calcu-

lated over all residues. (B) Distribution of per-protein Pearson correlation between residues’

conservation ranks and conservation gradients (conservation gradients calculated as Pearson

correlations for between 6 Å and 30Å away).

(TIF)

S4 Fig. Evolutionary rate is correlated with conservation rank. Evolutionary rate (dN/dS) as

a function of conservation rank for all residues in the dataset grouped according to their con-

servation rank and binned into 100 equally spaced bins of conservation rank.

(TIF)

S5 Fig. Conservation gradient induced from residues is linearly (negatively) correlated

with their evolutionary rate (dN/dS), with catalytic site residues inducing stronger conser-

vation gradient than expected by the linear trend. Average conservation gradient (calculated

as the average Spearman correlation between conservation of residues and their distance from

a site) as a function of the average evolutionary rate (dN/dS) for all yeast protein residues

binned according to their annotated conservation rank into 100 equally spaced bins (black) as

well as the average conservation gradients of different types of functional sites.

(TIF)

S6 Fig. Conservation gradient induced from residues is linearly (negatively) correlated

with their evolutionary rate (dN/dS), with catalytic site residues inducing stronger conser-

vation gradient than expected by the linear trend. Average conservation gradient (calculated

as the average Pearson correlation between conservation of residues and their distance from a

site up to 30Å away) as a function of the average evolutionary rate (dN/dS) for all yeast protein

residues binned according to their annotated conservation rank into 100 equally spaced bins

(black) as well as the average conservation gradients of different types of functional sites.

(TIF)

S7 Fig. Conservation gradient induced from residues is linearly (negatively) correlated

with their evolutionary rate (dN/dS), with catalytic site residues inducing stronger conser-

vation gradient than expected by the linear trend. Average conservation gradient (calculated

as the average Pearson correlation between conservation of residues and their distance from a

site between 6Å and 30Å away) as a function of the average evolutionary rate (dN/dS) for all

yeast protein residues binned according to their annotated conservation rank into 100 equally
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spaced bins (black) as well as the average conservation gradients of different types of functional

sites.

(TIF)

S8 Fig. Conservation gradient induced from residues is linearly (negatively) correlated

with their evolutionary conservation, with catalytic site residues inducing stronger conser-

vation gradient than expected by the linear trend. Average conservation gradient as a func-

tion of average conservation rank for all yeast protein residues binned into 100 equally spaced

bins as well as the average conservation gradients of different types of functional sites.

(TIF)

S9 Fig. Conservation gradient induced from residues is linearly (negatively) correlated

with their evolutionary rate (dN/dS), with catalytic site residues inducing stronger conser-

vation gradient than expected by the linear trend. Average conservation gradients (calcu-

lated as the average Pearson correlation between conservation of residues and their distance

from a site) as a function of the average evolutionary rate (dN/dS) for all yeast protein residues

binned according to their annotated conservation rank into 100 equally spaced bins (black) as

well as the average conservation gradients of the three most-conserved residues within each

functional site.

(TIF)

S10 Fig. Average conservation gradient after reduction of the relative contribution of prox-

imity to the protein center, as a function of average evolutionary rate (dN/dS) for all yeast

protein residues binned according to their annotated conservation rank into 100 equally

spaced bins as well as the average conservation gradients without the relative contribution

of proximity to the protein center of different types of functional sites.

(TIF)

S11 Fig. Average conservation gradients of subsets of buried and exposed, non-functional

site residues. Each circle represents a subset of residues.

(TIF)

S12 Fig. Average conservation gradients of functional sites binned according to conserva-

tion rank up to 0.65.

(TIF)

S13 Fig. Catalytic site residues induce stronger conservation gradients than non-catalytic

functional site residues with similar evolutionary rates. Average conservation gradients (cal-

culated as the average Spearman correlation between conservation of residues and their dis-

tance from a site). Each circle represents a subset of residues, coloured by the different types of

functional sites.

(TIF)

S14 Fig. Catalytic site residues induce stronger conservation gradients than non-catalytic

functional site residues with similar evolutionary rates. Average conservation gradients (cal-

culated as the average Pearson correlation between conservation of residues and their distance

from a site up to 30Å away). Each circle represents a subset of residues, coloured by the differ-

ent types of functional sites.

(TIF)

S15 Fig. Catalytic site residues induce stronger conservation gradients than non-catalytic

functional site residues with similar evolutionary rates. Average conservation gradients (cal-

culated as the average Pearson correlation between conservation of residues and their distance
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from a site between 6Å and 30Å away). Each circle represents a subset of residues, coloured by

the different types of functional sites.

(TIF)

S16 Fig. Catalytic site residues often induce stronger conservation gradients than more

conserved non-catalytic functional site residues within the same protein. Within the same

protein, when conservation gradients are calculated as Spearman correlation between conser-

vation of residues and their distance from a site (A) more conserved catalytic site residues tend

to induce stronger conservation gradient than less conserved non-catalytic site residues (bino-

mial test, P<<0.001); (B) more conserved non-catalytic site residues tend to induce stronger

conservation gradient than less conserved non-catalytic site residues (binomial test, P

<<0.001); (C) less conserved catalytic site residues often induce stronger conservation gradi-

ent than more conserved non-catalytic site residues (binomial test, P<<0.001). Functional site

residue pairs for which the ordering of residue conservation agrees with the ordering of

induced conservation gradient (concordance) are marked in blue. Functional site residue pairs

for which the ordering of residue conservation disagrees with the ordering of induced conser-

vation gradient (discordance) are marked in orange.

(TIF)

S17 Fig. Catalytic site residues often induce stronger conservation gradients than more con-

served non-catalytic functional site residues within the same protein. Within the same protein,

considering only conservation gradients from the three most-conserved residues within each

functional site (A) more conserved catalytic site residues tend to induce stronger conservation

gradient than less conserved non-catalytic site residues (binomial test, P<<0.001); (B) more con-

served non-catalytic site residues tend to induce stronger conservation gradient than less con-

served non-catalytic site residues (binomial test, P<<0.001); (C) less conserved catalytic site

residues often induce stronger conservation gradient than more conserved non-catalytic site resi-

dues (binomial test, P<0.001). Functional site residue pairs for which the ordering of residue con-

servation agrees with the ordering of induced conservation gradient (concordance) are marked in

blue. Functional site residue pairs for which the ordering of residue conservation disagrees with

the ordering of induced conservation gradient (discordance) are marked in orange.

(TIF)

S18 Fig. Catalytic site residues often induce stronger conservation gradients than more

conserved non-catalytic functional site residues within the same protein. Within the same

protein, when conservation gradients are calculated as Pearson correlation between conserva-

tion of residues and their distance from a site up to 30Å away (A) more conserved catalytic site

residues tend to induce stronger conservation gradient than less conserved non-catalytic site

residues (binomial test, P<<0.001); (B) more conserved non-catalytic site residues tend to

induce stronger conservation gradient than less conserved non-catalytic site residues (bino-

mial test, P<<0.001); (C) less conserved catalytic site residues often induce stronger conserva-

tion gradient than more conserved non-catalytic site residues (binomial test, P<<0.001).

Functional site residue pairs for which the ordering of residue conservation agrees with the

ordering of induced conservation gradient (concordance) are marked in blue. Functional site

residue pairs for which the ordering of residue conservation disagrees with the ordering of

induced conservation gradient (discordance) are marked in orange.

(TIF)

S1 Table. Linear regression of conservation gradients as a function of conservation rank

over all residues in different types of functional and structural categories.

(XLSX)
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S2 Table. List of all yeast proteins, their structural models and identified functional sites.

(XLSX)

S1 Text. Conservation scores downloaded from ConSurf-DB for all the proteins participat-

ing in this study.

(RAR)

S2 Text. Calculated conservation gradients for each residue in every protein in the dataset.

The file also lists the conservation gradients calculated using Spearman correlation, calculated

up to 30Å away from the reference residue and calculated with the relative contribution of

SC-WCN eliminated.

(RAR)

S3 Text. Codon alignments of protein coding genes of S. cerevisiae with its four closely-

related yeast species (S. paradoxus, S. mikatae, S. bayanus, and S. pombe).

(RAR)
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