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Abstract
Advances	in	bioacoustic	technology,	such	as	the	use	of	automatic	recording	devices,	
allow	wildlife	monitoring	at	large	spatial	scales.	However,	such	technology	can	pro-
duce	enormous	amounts	of	audio	data	 that	must	be	processed	and	analyzed.	One	
potential	solution	to	this	problem	is	the	use	of	automated	sound	recognition	tools,	
but	we	lack	a	general	framework	for	developing	and	validating	these	tools.	Recognizers	
are	computer	models	of	an	animal	sound	assembled	from	“training	data”	(i.e.,	actual	
samples	of	vocalizations).	The	 settings	of	variables	used	 to	create	 recognizers	 can	
impact	performance,	and	the	use	of	different	settings	can	result	in	large	differences	
in	error	rates	that	can	be	exploited	for	different	monitoring	objectives.	We	used	Song	
Scope	 (Wildlife	Acoustics	 Inc.)	 to	build	 recognizers	 and	 vocalizations	of	 the	wood	
frog	(Lithobates sylvaticus)	to	test	how	different	settings	and	amounts	of	training	data	
influence	recognizer	performance.	Performance	was	evaluated	using	precision	 (the	
probability	of	a	recognizer	match	being	a	true	match)	and	sensitivity	(the	proportion	
of	vocalizations	detected)	based	on	a	receiver	operating	characteristic	(ROC)	curve-	
determined	score	threshold.	Evaluations	were	conducted	using	recordings	not	used	
to	build	the	recognizer.	Wood	frog	recognizer	performance	was	sensitive	to	setting	
changes	 in	 four	 out	 of	 nine	 variables,	 and	 small	 improvements	were	 achieved	 by	
using	additional	training	data	from	different	sites	and	from	the	same	recording,	but	
not	from	different	recordings	from	the	same	site.	Overall,	the	effect	of	changes	to	
variable	 settings	 was	 much	 greater	 than	 the	 effect	 of	 increasing	 training	 data.	
Additionally,	by	testing	the	performance	of	the	recognizer	on	vocalizations	not	used	
to	build	 the	recognizer,	we	discovered	that	Type	 I	error	 rates	appear	 idiosyncratic	
and	do	not	recommend	extrapolation	from	training	to	new	data,	whereas	Type	II	er-
rors	showed	more	consistency	and	extrapolation	can	be	justified.	Optimizing	variable	
settings	on	independent	recordings	led	to	a	better	match	between	recognizer	perfor-
mance	and	monitoring	objectives.	We	provide	general	recommendations	for	applica-
tion	 of	 this	 methodology	 with	 other	 species	 and	 make	 some	 suggestions	 for	
improvements.
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1  | INTRODUCTION

Acoustic	surveys	are	commonly	used	to	monitor	the	status	or	activity	
of	animals	that	vocalize.	Several	groups	of	organisms,	such	as	anuran	
amphibians,	bats,	birds,	and	marine	mammals,	are	particularly	suited	
to	acoustic	monitoring	because	of	their	dependence	on	vocalizations	
for	major	components	of	their	life	history	including	attracting	mates,	
defending	territories,	and	locating	prey	(Capp	&	Searcy,	1991;	Kalko,	
1995;	Wells,	1977;	Winn	&	Winn,	1978).	Depending	on	the	species	
and	habitat,	acoustic	surveys	can	be	more	efficient	at	identifying	vo-
calizing	individuals	to	species,	rather	than	attempting	to	observe	the	
organism	directly	(Clark,	Brown,	&	Corkeron,	2010;	Heyer,	Donnelly,	
McDiarmid,	Hayek,	&	Foster,	1994).	Knowledge	about	the	vocal	rep-
ertoire	of	a	species	can	help	us	understand	where	the	organisms	occur	
(Weir,	 Fiske,	 &	 Royle,	 2009),	 the	 conditions	 under	which	 they	 per-
form	certain	behaviors	 (Klaus	&	Lougheed,	2013;	Villanueva-	Rivera,	
Pijanowski,	Doucette,	&	Pekin,	2011),	as	well	as	provide	estimates	of	
abundance	(Borker	et	al.,	2014;	Buxton	&	Jones,	2012).

Traditionally,	 acoustic	 surveys	 have	 been	 conducted	 by	 humans	
present	at	the	field	site	 listening	for	vocalizations.	Over	the	last	few	
decades,	however,	the	use	of	automated	recording	devices	(ARDs)	to	
assist	or	replace	manual	acoustic	surveys	has	become	more	common	
(Digby,	Towsey,	Bell,	&	Teal,	2013;	Hutto	&	Stutzman,	2009;	Peterson	
&	Dorcas,	1992;	Venier,	Holmes,	Holborn,	McIlwrick,	&	Brown,	2012).	
Whereas	manual	surveys	are	limited	by	the	amount	of	time	a	human	
can	be	present	at	a	field	site,	ARDs	can	be	deployed	and	automatically	
record	 sound	 at	 remote	 locations	 for	 long	periods	 of	time	on	user-	
defined	 schedules	 (Acevedo	 &	 Villanueva-	Rivera,	 2006).	 The	 main	
advantage	in	the	use	of	ARDs	over	manual	surveys	is	the	increase	in	
the	 amount	 and	 scope	 of	 environmental	 recordings	 and,	 therefore,	
an	 increase	 in	the	 likelihood	of	detecting	a	species	 if	 it	 is	present	at	
the	site	(i.e.,	the	detection	probability).	The	probability	of	detecting	a	
species	has	been	shown	to	vary	by,	among	others	things,	the	time	of	
year,	time	of	the	day,	temperature,	humidity,	and	abundance	(Jackson,	
Weckerly,	 Swannack,	 &	 Forstner,	 2006;	 Tanadini	 &	 Schmidt,	 2011;	
Weir,	Royle,	Nanjappa,	&	Jung,	2005).	If	surveys	are	conducted	when	
detection	probabilities	are	low,	the	species	could	be	missed	when	it	is	
actually	present.

Concern	 about	 the	 consequences	 of	 incorrectly	 concluding	 that	
a	species	is	absent	from	a	site	(i.e.,	a	false	negative)	is	a	topic	of	con-
siderable	 interest	 in	 ecology	 (MacKenzie	 et	al.,	 2006).	 It	 has	 been	
documented	 that	 estimating	 site	 occupancy	without	 controlling	 for	
detection	probability	can	result	 in	a	negative	bias	 in	the	estimate	of	
the	occupied	area	 (MacKenzie	et	al.,	2002)	as	well	as	biased	extinc-
tion	 and	 colonization	 rates	 (MacKenzie,	 Nichols,	 Hines,	 Knutson,	 &	
Franklin,	2003),	and	species	distribution	models	(Comte	&	Grenouillet,	
2013).	Automated	recording	devices	can	help	alleviate	the	problem	of	
low	detection	probabilities	and	 therefore	 increase	 the	usefulness	of	
survey	data,	by	rapidly	increasing	the	cumulative	detection	probability	
because	of	the	additional	listening	time.	For	example,	if	the	probability	
of	detecting	a	 rare	 frog	during	a	five-	minute	acoustic	 survey	 is	0.2,	
then	a	single	manual	survey	at	any	site	will	detect	the	species	when	it	
is	present	about	20%	of	the	time.	With	an	ARD	deployed	at	the	site	

with	a	recording	schedule	of	five	minutes	every	30	min	from	7	p.m.	to	
7	a.m.,	the	25	recordings	will	yield	a	cumulative	detection	probability	
of	.996	(using	the	equation	1	−	(1	−	p)N where p	is	the	detection	prob-
ability	and	N	is	the	number	of	surveys).	However,	this	only	means	there	
is	a	good	chance	that	if	the	species	is	present	it	was	recorded—it	must	
still	be	detected	on	the	recording.

The	quantity	of	samples	generated	by	ARDs	is	often	overwhelm-
ing.	With	the	deployment	of	 just	five	ARDs	on	a	standard	recording	
schedule,	the	recordings	generated	during	a	week	of	deployment	eas-
ily	 exceed	 the	hours	of	 a	 typical	work	week.	 Several	methods	have	
been	 suggested	 to	 extract	 the	 required	 information	 from	 the	 large	
quantity	 of	 recordings.	 One	 approach	 to	 processing	 large	 amounts	
of	 recorded	 data	 is	 to	 use	 automated	 sound	 recognition	 algorithms	
that	 allow	 researchers	 to	 search	 all	 the	 recordings	 with	 a	 custom-	
built	model	of	 the	vocalization	of	 interest	 (Acevedo,	Corrada-	Bravo,	
Corrada-	Bravo,	Villanueva-	Rivera,	&	Aide,	2009;	Brandes,	2008).	The	
goal	of	automated	sound	recognition	is	to	identify	the	vocalization	of	
a	target	species	within	the	recordings	among	the	other	animal	and	en-
vironmental	noises.	Software	programs	can	batch	process	hundreds	of	
digital	recording	files,	saving	tremendous	amounts	of	time	in	extract-
ing	 information	 from	 the	 recordings	 (Waddle,	 Thigpen,	 &	 Glorioso,	
2009;	Willacy,	Mahony,	&	Newell,	2015).

The	vast	quantity	of	acoustic	samples	obtainable	from	the	deploy-
ment	 of	ARDs	 coupled	with	 the	 automated	 analysis	 of	 the	 record-
ings	is	a	powerful	tool	for	developing	robust	estimates	of	occupancy,	
extinction	 and	 colonization	 rates,	 and	 activity/phenology	 patterns.	
Several	off-	the-	shelf	software	programs	are	available	for	researchers	
to	conduct	automated	analysis	of	sound	files	for	vocalizations	of	 in-
terest.	However,	the	lack	of	published	research	utilizing	these	tools	to	
answer	questions	at	large	scales	hints	at	the	difficulty	in	extracting	in-
formation	from	the	acoustic	samples	(Swiston	&	Mennill,	2009),	and/
or	the	reluctance	of	ecologists	and	wildlife	managers	to	trust	results	
from	a	fully	automated	process.

We	 used	 the	 software	 program	 Song	 Scope	 V	 4.1.3A	 (Wildlife	
Acoustics,	 Concord,	MA,	 USA)	 in	 our	 study.	 Song	 Scope	 is	 a	 com-
mercially	 available,	 multi-	purpose	 sound	 analysis	 software	 program	
that	has	been	used	by	ecologists	to	develop	automated	vocalization	
recognition	models,	or	“recognizers”	(Buxton	&	Jones,	2012;	Holmes,	
McIlwrick,	&	Venier,	2014;	Waddle	et	al.,	2009;	Willacy	et	al.,	2015).	
Developing	 recognizers	 in	 Song	 Scope	 involves	 two	 steps.	The	first	
step	 is	 locating	vocalizations	from	existing	recordings	 (i.e.,	 “annotat-
ing”	the	recordings)	to	be	used	as	training	data	upon	which	the	model	
is	to	be	based.	The	second	step	 is	selecting	the	settings	of	the	vari-
ables	used	to	create	the	recognizer	model.	At	the	first	step,	we	need	
to	answer	questions	about	how	much,	and	what	kinds	of	training	data	
provide	the	best	recognizers.	At	the	second	step,	we	need	to	identify	
the	variable	settings	that	build	the	best	model	(i.e.,	low	false-	positive	
rates,	 low	 false-	negative	 rates,	 and	good	discriminatory	 ability).	The	
manufacturers	of	Song	Scope	provide	a	general	overview	of	and	rec-
ommendations	for	the	creation	of	recognizer	models,	but	deciding	on	
the	quantity	of	 training	data	and	settings	of	 the	variables	 for	model	
creation	is	a	largely	trial-	and-	error	procedure,	and	we	have	found	no	
published	guidance.	Their	process	emphasizes	model	performance	on	
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the	training	data	(rather	than	new	data	where	it	will	invariably	be	used).	
The	primary	purpose	of	this	article	is	to	provide	guidance	for	designing	
and	validating	recognizers.	More	specifically,	we	asked	(1)	how	does	
increasing	 training	 data	 influence	 recognizer	 performance	 and	 does	
the	 source	of	 the	 training	data	matter,	 (2)	 is	 there	an	objective	and	
repeatable	way	 to	 choose	variable	 settings	and	design	a	 recognizer,	
which	explicitly	considers	Type	I	and	II	errors	in	the	process,	and	(3)	
can	we	extrapolate	recognizer	performance	from	the	training	dataset	
so	that	we	can	use	it	on	new	data	with	any	degree	of	confidence?	We	
use	vocalizations	of	the	wood	frog	(Lithobates sylvaticus)	for	all	our	ex-
periments.	Wood	frogs	are	a	common,	North	American	pond-	breeding	
anuran	and	are	a	model	organism	for	research	into	wetland	ecosystem	
structure,	amphibian	population,	and	community	ecology	(Figure	1).

2  | METHODS

2.1 | Building recognizers

2.1.1 | Song Scope software

Song	Scope	uses	hidden	Markov	models	(HMMs)	to	construct	a	model	
of	 the	vocalization	of	 interest	 from	training	data	and	compares	 this	
model	 to	 candidate	 vocalizations	 from	 the	 recordings.	 Interested	
readers	should	consult	with	Agranat	(2009)	for	the	technical	specifics	
of	the	algorithm.

2.1.2 | Recognizer development

Recognition	of	the	target	vocalization	is	accomplished	in	a	two-	step	
process.	 The	 first	 is	 detection,	 during	 which	 the	 recognizer	 model	
scans	all	sounds	within	the	recording	to	identify	the	sounds	that	are	
potential	 target	 vocalizations.	 We	 define	 “sound”	 as	 any	 signal	 or	
noise	in	the	recording—it	may	or	may	not	be	the	target	call.	We	use	
“vocalization”	and	 “call”	 synonymously	 to	 refer	 to	 the	 true	signal	of	
the	 target	 species	 and	 “match”	 or	 “hit”	when	 the	 recognizer	model	
identifies	a	sound.	Identifying	the	target	vocalizations	is	done	by	com-
paring	sounds	to	a	model	created	by	the	program	from	annotated	calls	

provided	by	the	user.	Signals	are	detected	 if	 they	stand	out	against	
background	 noise	 and	 have	 roughly	 the	 same	 frequency	 range	 and	
temporal	properties	(call	length,	syllable	structure,	etc.)	as	the	model.	
The	 second	 part	 involves	 computing	 a	 “score”	 statistic	 on	 sounds	
identified	as	potential	target	vocalizations	at	the	detection	step.	This	
is	a	measure	of	similarity	between	the	sound	and	the	model	(the	simi-
larity	score	can	vary	from	0	to	100,	with	100	being	a	perfect	match)	
and	is	generated	by	the	Viterbi	algorithm	(Agranat,	2009).	When	the	
model	encounters	a	sound,	one	of	four	outcomes	occurs—true	posi-
tive,	false	positive,	true	negative,	or	false	negative	(Figure	2).

True	 and	 false	 positives	 can	 be	 estimated	 by	manually	verifying	
the	matches	in	the	output,	and	false	negatives	can	be	determined	by	
subtracting	the	number	of	true	positives	from	the	total	number	of	vo-
calizations	 in	 the	 recording.	True	 negatives	 are	 sounds	 that	 are	 not	
calls	and	not	misidentified	as	calls.

The	objective	of	recognizer	development	is	to	minimize	the	num-
ber	of	false	positives	and	false	negatives.	There	is	an	inevitable	trade-	
off	between	false	positives	and	false	negatives	because	to	reduce	false	
positives	we	must	set	a	threshold	so	that	only	high-	quality	vocaliza-
tions	are	matched,	and	many	lower-	quality	vocalizations	are	ignored.	
When	reducing	false	negatives,	the	threshold	for	concluding	a	sound	is	
a	call	is	lower,	and	therefore,	many	lower-	quality	sounds	are	included.	
Score	 values	 can	 be	 used	 to	 distinguish	 between	 true-		 and	 false-	
positive	 matches.	 Ideally	 a	 threshold	 should	 be	 established,	 above	
which	the	match	is	certain	to	be	a	true	positive,	and	below	which	the	
match	is	certain	to	be	a	false	positive.	However,	this	is	rarely	attained	
in	practice,	and	the	objective	is	to	set	a	threshold	that	results	in	large	
reductions	in	Type	I	errors	with	only	small	increases	in	Type	II	errors.

2.1.3 | Recognizer metrics

In	the	following	experiments,	we	use	precision	and	sensitivity	as	our	
common	metrics	of	recognizer	performance.	Precision	is	also	known	
as	 the	positive	predictive	value	 in	 signal	detection	 theory	 (Fawcett,	
2006)	and	is	calculated	as	the	number	of	true	positives	divided	by	the	

F IGURE  1 Photograph	of	the	study	subject,	an	adult	male	wood	
frog	(Lithobates sylvaticus)	(Photograph	taken	by	R.	Rommel-	Crump)

F IGURE  2 Confusion	matrix	showing	the	four	possible	outcomes	
of	a	recognizer	match	on	a	candidate	vocalization

Recognizer match type
Posi
ve Nega
ve

Ca
nd

id
at

e 
vo

ca
liz

a

on

 ty
pe

Tr
ue

Fa
lse

Correctly matched 

True posi
ve

Missed call

False nega
ve
Type II error

Incorrectly matched 

False posi
ve
Type I error

Correctly ignored 

True nega
ve



3090  |     CRUMP and HOULaHan

total	number	of	 recognizer	matches.	Precision	provides	an	estimate	
of	 the	probability	of	 the	 recognizer	match	actually	being	 the	 target	
vocalization,	and	(1-	precision)	is	equal	to	the	Type	I	error	or	false	dis-
covery	rate.	Sensitivity,	also	known	as	true-	positive	rate	or	recall,	 is	
calculated	as	the	total	number	of	true	positives	divided	by	the	total	
number	of	 true	calls,	whether	detected	 (true	positives)	or	not	 (false	
negatives).	Sensitivity	provides	an	estimate	of	the	proportion	of	vo-
calizations	detected	by	the	recognizer,	and	(1-	sensitivity)	 is	equal	to	
the	Type	II	error	or	false-	negative	rate.	Sensitivity	is	also	an	estimate	
of	the	detection	probability	(p)	commonly	used	in	occupancy	modeling	
(Miller	 et	al.,	 2012).	We	conditioned	 the	estimates	of	precision	and	
sensitivity	on	an	optimal	score	threshold,	determined	using	the	area	
under	a	receiver	operating	characteristic	(ROC)	curve.	The	optimum	
threshold	for	each	recognizer	was	determined	using	Youden’s	J	statis-
tic	(Youden,	1950),	where	J	=	sensitivity	+	true-	negative	rate	–	1.	We	
used	the	term	“conditional”	when	referring	to	precision	and	sensitiv-
ity	derived	using	the	ROC	threshold	because	if	a	different	threshold	
was	used,	the	precision	and	sensitivity	would	change.	We	estimated	
the	 “conditional”	 precision	 as	 the	 number	 of	 true-	positive	matches	
above	 the	 ROC-	determined	 threshold	 divided	 by	 the	 total	 number	
of	matches	above	the	threshold	(i.e.,	1-	precision	at	the	optimal	score	
threshold	=	the	Type	I	error	rate).	Similarly,	the	“conditional”	sensitiv-
ity	 is	 estimated	 by	 the	 number	 of	 true-	positive	matches	 above	 the	
threshold	divided	by	 the	 total	number	of	calls	 in	 the	 recording	 (i.e.,	
1-	sensitivity	at	the	optimal	score	threshold	=	the	Type	II	error	rate).

2.2 | Improving recognizer performance

2.2.1 | Increasing training data

We	assessed	 the	effect	of	 increasing	 training	data	on	 the	 identifica-
tion	of	wood	frog	vocalizations.	We	started	by	collecting	training	data	
by	annotating	wood	frog	vocalizations	from	28	sites	in	southern	New	
Brunswick,	Canada,	recorded	in	2012.	The	recordings	from	which	the	
annotations	 were	 extracted	 were	 collected	 as	 part	 of	 a	 monitoring	
program	and	were	recorded	by	Song	Meter	1,	SM2,	and	SM2	+	units	
(Wildlife	Acoustics,	Concord,	MA,	USA).	We	annotated	a	total	of	4,080	
wood	 frog	 vocalizations	 with	 the	 primary	 objective	 to	 determine	
what	training	data	to	use	to	create	a	good	recognizer.	We	made	the	

assumption	that	there	is	variability	in	wood	frog	vocalizations	among	
individuals,	and	this	variability	potentially	affects	the	performance	of	
the	recognizer.	There	are	three	different	 levels	across	which	training	
data	 can	 be	 collected	 and	 thus	 variability	 in	 vocalizations	 captured.	
These	 are	 (1)	 within	 recordings	 (i.e.,	 same	 five-	minute	 recording	 at	
same	site),	(2)	among	recordings	(i.e.,	different	five-	minute	recordings	
at	same	site),	and	(3)	among	sites.	There	should	be	more	variability	in	
vocalizations	among	different	sites,	as	they	will	all	be	different	individu-
als,	than	within	a	recording,	as	they	are	likely	to	be	the	same	individuals.

For	within-	recording	variability,	we	used	1,	2,	4,	5,	6,	7,	8,	10,	11,	
and	12	calls	(with	number	of	recordings	held	at	15	and	number	of	sites	
held	at	28).	For	among-	recording	variability,	we	used	1,	2,	4,	6,	8,	9,	10,	
11,	13,	14,	and	15	recordings	from	each	site	(with	number	of	calls	per	
recording	held	at	12	and	number	of	sites	held	at	28).	For	among-	site	
variability,	we	used	1,	2,	5,	8,	11,	14,	17,	20,	23,	25,	and	28	sites	(with	
number	of	calls	per	recording	held	at	12	and	number	of	calls	per	site	
held	at	15).	This	allowed	us	to	examine	which	sources	of	variability	had	
the	largest	impact	on	recognizer	performance.	This	initial	approach	re-
sulted	in	32	recognizer	models.	We	then	created	another	11	recogniz-
ers	 to	 explore	 interactions	 among	 sources	 of	variability,	 among-	site	
(n	=	3),	among-	recording	(n	=	6),	and	within-	recording	(n	=	2)	training	
data.	This	 resulted	 in	 a	 total	 of	 43	 recognizer	models.	Occasionally,	
we	were	unable	to	find	as	many	calls	as	we	had	targeted	so,	the	exact	
number	of	calls	per	recording	and	recordings	per	site	used	in	the	rec-
ognizers	had	some	variability,	and	the	total	number	of	calls	was	often	
lower	than	our	target.	We	report	the	average	achieved	number	of	calls	
per	recording	and	recordings	per	site.	The	details	of	the	targeted	and	
achieved	training	data	sources	and	totals	for	each	recognizer	can	be	
found	in	Appendix	S1.

Each	 recognizer	was	 tested	 on	 40	 different	 five-	minute	 record-
ings	(datasets	Train	and	A–D,	Table	1),	and	we	manually	reviewed	all	
matches.	To	 estimate	 the	 effect	 of	 increasing	 the	 total	 and	 type	 of	
training	data	on	the	recognizer	performance,	we	used	beta	regressions	
(because	precision	and	sensitivity	are	values	between	zero	and	one)	
and	 a	 logit	 link	 function.	The	mean	 conditional	 precision	 and	mean	
conditional	sensitivity	across	the	40	recordings	were	dependent	vari-
ables,	 and	 the	 amount	 and	 type	 of	 training	 data	were	 independent	
variables.	We	used	Akaike’s	 information	criterion	(AICc)	adjusted	for	
small	sample	sizes	for	model	selection	(Burnham	&	Anderson,	2002).	

TABLE  1 List	of	the	characteristics	of	the	training	and	test	datasets	used	in	recognizer	evaluation.	Values	reported	in	the	table	are	means	
from	the	recordings	within	the	dataset.	SNR	is	signal-	to-	noise	ratio.	Each	dataset	is	comprised	of	eight	five-	minute	recordings;	all	recording	sets	
have	five	recordings	with	wood	frog	calls	and	three	without.	Test	set	A	has	the	same	sites	as	used	to	build	the	recognizer	and	select	the	
variable	settings	but	from	a	different	year.	Test	set	B	has	different	sites	but	from	the	same	year.	Test	set	C	is	from	different	sites	and	a	different	
year.	Test	set	D	contains	recordings	from	outside	the	study	area	in	the	USA,	specifically	the	states	Connecticut,	Massachusetts,	Michigan,	and	
New	York

Dataset Sites Year N calls SNR (dB) Noise (dB) Noise SD (dB) Air temperature (°C)

Train 1,	2,	3,	12,	14,	29,	30,	35 2013 359 13.29 63.06 7.29 9.4

A 3,	14,	24,	29,	30,	34,	37,	50 2014 725 5.07 69.23 4.18 6.0

B 5,	19,	20,	27,	33,	41,	46,	100 2013 660 5.83 74.13 2.4 6.8

C 6,	17,	23,	28	38,	45,	49,	52 2014 181 3.35 77.42 4.86 4.3

D USA 2015 571 4.93 83.02 4.96 11.6
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Analysis	was	done	in	R	3.1.3	using	the	packages	betareg	(Cribari-	Neto	
&	Zeileis,	2010)	and	AICcmodavg	 (Mazerolle,	2015).	Plots	were	cre-
ated	using	ggplot2	(Hadley,	2009).

2.2.2 | Variable sensitivity analysis

We	assessed	the	effect	of	changes	in	the	variable	settings	of	recog-
nizer	models	on	 the	 identification	of	wood	 frog	vocalizations.	 Song	
Scope	V.4.1.3a	contains	11	different	variables	that	are	used	to	build	
recognizers	that	can	be	manipulated	by	the	user.	We	excluded	maxi-
mum	and	minimum	frequencies	of	the	bandwidth	filter	from	the	sen-
sitivity	 analysis	 because	 of	 the	 consistent	 frequency	 range	of	most	
animal	signals,	and	unlike	other	settings,	the	frequency	range	can	be	
easily	determined	beforehand.	Settings	of	the	remaining	nine	different	
variables	range	from	a	few	discrete	choices	to	a	large	range	of	con-
tinuous	values	(Appendix	S2).	The	number	of	variables	combined	with	
the	number	of	possible	settings	for	each	variable	presents	some	chal-
lenges	in	recognizer	design.	With	most	variables,	there	is	no	intuitive	
or	empirical	way	to	decide	on	the	setting	a	priori;	thus,	to	determine	
the	optimal	settings	of	the	recognizer	model,	each	variable	needs	to	
be	evaluated	for	its	effect	on	error	rates.

We	employed	a	local	optimization	method	where	each	of	the	nine	
variables	was	 evaluated	 independently	 across	 the	 range	 of	 possible	
values	for	that	variable.	All	other	variable	settings	were	held	at	con-
stant	values.	Examining	interactions	among	variables	was	impractical	
because	of	the	large	number	of	possible	combinations.	As	it	was	we	
evaluated,	a	total	of	75	different	recognizer	models	(Appendix	S2)	and	
a	 total	 of	 255,966	 recognizer	 matches	were	manually	 verified.	 The	
preliminary	 recognizer	model	was	constructed	using	936	wood	 frog	
vocalizations	from	five	sites	in	southern	New	Brunswick	recorded	in	
2012	and	default	variable	settings.	We	created	a	“training”	set	of	eight	
five-	minute	recordings	from	different	sites	in	2013	to	examine	the	ef-
fect	of	changes	to	variable	settings	in	a	standardized	way.	The	record-
ings	were	manually	 inspected	 to	estimate	 the	number	of	wood	 frog	
vocalizations.	We	estimated	the	signal-	to-	noise	ratio	by	randomly	se-
lecting	two	groups	of	10	one-	second	segments,	one	group	with	wood	
frog	calls	in	them	(signal	+	noise)	and	the	other	without	wood	frog	calls	
(noise	only).	We	measured	the	dB	level	and	subtracted	the	mean	of	the	
noise	only	dB	measurements	from	the	mean	of	the	signal	+	noise	dB	
measurements	to	estimate	the	signal-	to-	noise	ratio	(Table	1).	We	used	
the	mean	conditional	precision	and	conditional	sensitivity	from	these	
recordings	in	the	dataset	to	evaluate	recognizer	performance.

After	each	recognizer	was	built	and	the	training	file	set	scanned,	
we	manually	reviewed	all	the	matches.	A	subset	of	the	recordings	was	
reviewed	by	 two	people	 so	 that	observer	error	 could	be	estimated.	
The	observer	error	rate	was	estimated	to	be	0.1%.	We	used	the	coef-
ficient	of	variation	(CV	=	standard	deviation/mean)	of	the	conditional	
precision	and	conditional	sensitivity	to	evaluate	changes	 in	the	vari-
ables	settings.	The	size	of	the	CV	is	positively	related	to	the	sensitivity	
of	recognizer	metrics	to	changes	in	the	variable	setting.

Due	 to	 the	multiple,	 almost	 identical,	 syllables	 in	wood	 frog	vo-
calizations,	 some	variable	 settings	 resulted	 in	 conditional	 sensitivity	
values	 exceeding	 one,	 indicating	 that	 the	 recognizers	 were	 making	

multiple	 “true-	positive”	matches	 by	matching	multiple	 syllables	 in	 a	
single	true	call.	Using	these	high	sensitivity	values	to	select	variables	
would	change	the	focus	of	the	recognizer	to	syllables,	rather	than	calls.	
However,	some	true	wood	frog	calls	are	single	syllable	calls	so	there	
is	no	single	“correct”	call	type	to	model.	To	attempt	to	penalize	these	
variable	settings	for	making	excess	true	matches,	instead	of	conclud-
ing	 these	 multi-	syllable	 matches	 were	 false	 positives	 (which	 tech-
nically	 they	 are	 not)	we	 randomly	 sampled	N	 true-	positive	matches	
without	replacement,	where	N	equals	the	number	of	real	calls	in	the	
recording,	and	recalculated	the	precision	and	sensitivity	using	a	sub-
set	of	the	true	positives.	For	example,	 if	there	were	1,000	true	calls	
but	1,500	true	positives	(i.e.,	the	recognizer	matched	the	two	different	
syllables	in	500	true	calls),	we	sampled	N	=	1,000	of	the	true-	positive	
matches,	scaling	sensitivity	between	zero	and	one.	We	repeated	this	
1,000	times	for	each	recording	and	used	the	mean	of	these	random-
izations	as	the	conditional	precision	and	conditional	sensitivity	values	
for	the	variable	setting	selection	process.

The	two	criteria	(conditional	precision	and	conditional	sensitivity)	
used	to	evaluate	recognizers	are	directly	linked	to	Type	I	and	II	errors	
(Type	I	error	rate	=	1-	precision	and	Type	II	error	rate	=	1-	sensitivity)	
and	thus	are	often	inversely	related.	Due	to	this	relationship,	there	is	
no	single	“best”	recognizer,	the	choice	of	whether	to	minimize	Type	I	
or	 II	errors	should	depend	on	the	objectives	of	the	monitoring	pro-
gram.	To	assess	how	assumptions	about	the	relative	costs	of	Type	 I	
and	 II	 errors	 affected	 recognizer	 optimization,	we	 evaluated	overall	
recognizer	performance	using	a	weighted	average	linked	to	the	rela-
tive	cost	of	the	errors.	The	weights	for	Type	I	and	II	errors	were	var-
ied	to	simulate	different	monitoring	objectives.	The	variable	settings	
with	 the	 lowest	weighted	average	error	 rate	were	 then	 selected	as	
the	optimal	setting	for	that	recognizer.	Value	judgments	are	inherent	
in	deciding	relative	costs,	but	by	objectively	and	explicitly	stating	the	
goals	of	the	monitoring	project	and	linking	those	goals	to	the	weights	
placed	on	the	different	recognizer	parameters	it	is	possible	to	increase	
both	transparency	and	repeatability.	Three	final	recognizers	were	cre-
ated	based	on	varied	error	weights	(equal	weight	for	Type	I	and	II	er-
rors,	weight	of	Type	I	errors	5×	greater	than	Type	II,	and	the	weight	
of	Type	II	errors	5×	greater	than	Type	I),	and	the	training	dataset	was	
then	reassessed	to	examine	final	model	performance.	For	comparison,	
we	also	assessed	a	recognizer	model	that	was	developed	by	the	more	
conventional	 trial-	and-	error	 approach	 where	 the	 best	 variable	 set-
tings	were	chosen	based	on	the	training	data	used	in	the	model.	We	
termed	this	the	“original”	recognizer.	The	effort	invested	in	evaluating	
all	the	variable	settings	was	substantial,	and	we	wanted	to	compare	a	
labor-	intensive	approach	with	a	 “quick-	and-	dirty”	approach	 (i.e.,	 the	
“original”	recognizer)	to	see	whether	the	extra	effort	was	warranted.	
We	report	mean	error	rates	and	bootstrapped	95%	confidence	inter-
vals	of	the	means.

All	data	analyses	were	done	 in	R.3.1.3	 (R	Core	Team	2015).	The	
area	under	the	receiver	operating	characteristic	curve	(AUROCC)	was	
determined	using	the	pROC	package	(Robin	et	al.,	2011).	Bootstrapped	
confidence	intervals	(Bias-	corrected	and	accelerated)	were	calculated	
using	 the	 boot	 package	 (Canty	&	 Ripley,	 2015).	 Plots	were	 created	
using	ggplot2	(Hadley,	2009).
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2.3 | Evaluating recognizer performance

The	primary	goal	in	using	recognizers	is	to	accurately	identify	vocali-
zations	at	new	sites	and	times.	The	acoustic	characteristics	of	anuran	
calls	have	been	shown	to	vary	within	a	species	among	years	(Wagner	
&	Sullivan,	1995)	and	systematically	among	populations	(Wycherley,	
Doran,	&	Beebee,	2002).	 In	addition,	 it	 is	of	 interest	 to	know	how	
well	 a	 recognizer	 created	 in	 one	place/time	performs	 at	 others	 to	
know	whether	centralized	automated	monitoring	programs	are	fea-
sible.	We	compared	the	three	recognizers	built	in	part	2	above	and	
optimized	on	independent	training	data	with	a	recognizer	built	using	
the	more	conventional	approach	of	maximizing	the	fit	to	the	training	
data	used	 for	 calls	 in	 the	model.	To	explore	how	 the	performance	
of	 these	 four	 recognizers	varied,	we	used	 them	on	 four	additional	
datasets	not	used	in	recognizer	creation	(Table	1).	We	used	the	score	
thresholds	 determined	 from	 the	 training	 data	 to	make	 the	 predic-
tions.	The	four	datasets	were	created	by	randomly	choosing	files	(A)	
from	sites	used	either	 to	 collect	 training	data	or	 to	 select	variable	
settings,	but	from	a	different	year,	(B)	from	sites	not	used	for	train-
ing	data	or	variable	setting	selection	but	from	within	the	study	area	
and	from	the	same	year,	(C)	from	different	sites	and	years	than	used	
for	 the	 training	 data	 or	 variable	 setting	 selection	 but	 from	within	
the	study	area,	and	(D)	from	sites	outside	the	study	area	(US	states	
Connecticut,	Massachusetts,	Michigan,	 and	New	York)	 and	 from	a	
different	year.

3  | RESULTS

3.1 | Increasing training data

To	evaluate	the	three	different	ways	of	increasing	training	data,	a	total	
of	385,452	recognizer	matches	were	manually	verified.	Overall,	irre-
spective	of	the	source,	increasing	annotations	from	a	minimum	of	four	
vocalizations	(one	call	from	each	of	four	recordings	at	the	same	site)	
to	a	maximum	of	4,080	(10.3	calls	from	13.5	recordings	at	28	sites)	
resulted	in	only	small	improvements	to	the	mean	conditional	precision	
and	conditional	 sensitivity	 (Figure	3).	The	fitted	values	 from	the	 full	
model	for	conditional	precision	increased	from	0.817	with	four	calls	
used	 for	 training	data	 to	0.839	with	4,080	 calls	 (i.e.,	 increasing	 the	
number	of	training	calls	by	three	orders	of	magnitude	improved	the	
precision	of	 the	 recognizer	by	~2%).	The	fitted	values	 from	 the	 full	
model	for	conditional	sensitivity	increased	from	0.435	with	four	calls	
for	 training	 data	 to	 0.479	with	 4,080	 calls	 (similarly,	 the	 sensitivity	
increased	by	~3%).

However,	the	effects	of	increasing	the	quantity	of	within-	recording	
training	 data	 (Figure	4),	 increasing	 among-	recording	 training	 data	
(Figure	5),	and	increasing	among-	site	training	data	(Figure	6)	were	dif-
ferent.	Increasing	training	data	among	sites	and	within	recordings	had	
a	positive	effect	on	conditional	precision	 (Table	2A).	For	 conditional	
sensitivity,	only	the	number	of	sites	had	a	positive	effect	 (Table	2B).	
The	effect	of	among-	recording	variation	on	both	conditional	precision	
and	conditional	sensitivity	was	negative,	but	the	95%	confidence	in-
terval	overlapped	zero.	The	model	including	only	among-	site	variation	

in	training	calls	had	the	most	support,	but	unexpectedly	the	full	model,	
including	 within-	recording,	 among-	recording	 and	 among-	site	 vari-
ation	 training	 calls,	 had	 almost	 as	much	 support	 (Table	3).	The	beta	

F IGURE  3 The	effect	of	increasing	the	total	amount	of	training	
data	(number	of	calls)	on	the	conditional	precision	(1—Type	I	
error	rate,	pseudo-	R2	=	.2238,	untransformed	logit	coefficient	
0.00002872 ± SE	0.000008085)	and	conditional	sensitivity	(1—Type	
II	error	rate,	pseudo-	R2	=	.06327,	untransformed	logit	coefficient	
0.00002014	±	SE	0.00001182)

F IGURE  4 The	effects	of	increasing	the	number	of	calls	from	
each	recording	(within	recordings)	used	to	build	the	recognizer	model	
on	the	conditional	precision	(1—Type	I	error	rate,	pseudo-	R2	=	.1212,	
untransformed	logit	coefficient	0.007175	±	SE	0.002922)	and	
conditional	sensitivity	(1—Type	II	error	rate,	pseudo-	R2	=	.008546,	
untransformed	logit	coefficient	0.002538	±	SE	0.004162)
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distributions	were	examined	separately	and	had	 the	 following	alpha	
and	beta	parameters	for	CPPV,	α	=	8.63,	β	=	1.73,	and	CTPR,	α	=	3.50,	
β	=	4.10.

The	 small	difference	 in	AICc	and	 log	 likelihood	values	between	
the	 top	models	 for	 conditional	 precision	 indicates	 that	 among-	site	
variability	is	driving	the	relationship,	but	there	was	a	minor	role	for	
additional	training	data	from	within	recordings.	For	conditional	sen-
sitivity,	 the	effect	of	among-	site	training	data	was	clear	as	seen	by	
the	change	 in	AIC	between	 the	 top	models.	 In	 summary,	 the	most	
efficient	way	to	increase	recognizer	performance	was	to	include	vo-
calizations	 from	more	 sites	 in	 the	 recognizer	model,	 but	 even	 this	
effect	was	weak.

3.2 | Variable sensitivity analysis

All	 nine	 variables	 affected	 the	 performance	 of	 the	 recognizers,	 but	
their	 effects	 differed.	 The	 conditional	 precision	 of	 the	 recognizer	
was	most	 sensitive	 to	 changes	 in	 fast	 Fourier	 transform	 (FFT)	 size	
(CV	=	0.3),	 dynamic	 range	 (CV	=	0.215),	 and	 resolution	 (CV	=	0.121)	
(CV	equal	to	or	greater	than	0.1).	The	conditional	sensitivity	was	af-
fected	most	by	changes	 in	maximum	syllable	gap	 (CV	=	0.526),	FFT	
size	 (CV	=	0.419),	 dynamic	 range	 (CV	=	0.287),	 and	 maximum	 song	
length	 (CV	=	0.104)	 (see	Appendix	 S2	 for	 a	 description	of	 the	 vari-
ables).	Figure	7	shows	rank	sensitivity	curves	of	the	all	the	variables	
against	the	CV	of	the	conditional	precision	and	conditional	sensitiv-
ity.	Overall,	conditional	sensitivity	was	more	affected	(CV	=	0.179)	by	
changes	in	variable	settings	than	conditional	precision	(CV	=	0.133).

Final	 recognizers	performed	according	 to	 the	weights	placed	on	
the	errors	when	 the	 training	dataset	was	 reassessed,	but	 there	was	
considerable	 overlap	 in	 confidence	 intervals	 (Figures	8	 and	 9).	 The	
Type	I	recognizer	had	the	highest	mean	precision	of	0.87	(CI	0.5	–	1)	
closely	 followed	 by	 the	 balanced	 recognizer	 at	 0.85	 (CI	 0.46–0.98).	
The	 Type	 II	 recognizer	 had	 the	 highest	 sensitivity	 (mean	 1.54,	 CI	
1.35–1.74),	and	despite	our	efforts	to	impose	a	penalty	for	this	at	the	
setting	selection	stage,	 it	overestimated	 the	number	of	 real	 calls	by	
making	separate	hits	on	different	syllables	of	the	same	call	(i.e.,	we	did	
not	“correct”	the	results	of	the	recognizer	to	reduce	the	sensitivity	to	
below	1;	we	attempted	to	prevent	this	from	occurring	at	the	variable	
selection	stage	but	failed).	The	ranks	of	the	recognizer	models	for	con-
ditional	sensitivity	indicate	that	selecting	variable	settings	empirically	
can	 lead	 to	 reductions	 in	 the	Type	 II	 errors	 beyond	 that	 of	 using	 a	
trial-	and-	error	approach	on	the	training	data.	This	was	not	the	case	for	
conditional	precision.

3.3 | Evaluating recognizer performance

Precision	(i.e.,	reduced	Type	I	errors)	varied	across	the	test	datasets	
A–D	but	showed	only	small	differences	among	recognizers	(Figure	8).	
Not	surprisingly,	the	recognizer	designed	to	maximize	sensitivity	(i.e.,	
reduced	Type	II	errors)	had	the	highest	sensitivity	across	all	four	data-
sets	 (Figure	9).	 Confidence	 intervals	 extending	 well	 above	 1	 again	
show	 the	 propensity	 of	 the	 recognizer	 to	 overestimate	 calls	 is	 not	
limited	to	the	training	data.	There	was	little	consistency	in	recognizer	
performance	 across	 datasets,	 and	 mean	 error	 rates	 were	 generally	
higher	when	recognizers	were	applied	to	new	data.	The	errors	were	
not	related	in	any	obvious	way	to	the	differences	 in	sites	and	times	

F IGURE  5 The	effects	of	increasing	the	number	of	recording	files	
(among	recordings)	from	each	site	used	to	build	the	recognizer	model	
on)	the	conditional	precision	(1—Type	I	error	rate,	pseudo-	R2	>	.001,	
untransformed	logit	coefficient	−0.0001286	±	SE	0.0028096)	and	
conditional	sensitivity	(1—Type	II	error	rate,	pseudo-	R2	=	.02011,	
untransformed	logit	coefficient	−0.003491	±	SE	0.003712)
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F IGURE  6 The	effects	of	increasing	the	number	of	sites	(among	
sites)	used	to	build	the	recognizer	model	on	the	conditional	precision	
(1—Type	I	error	rate,	pseudo-	R2	=	.5012,	untransformed	logit	
coefficient	0.0057268	±	SE	0.0008514)	and	conditional	sensitivity	
(1—Type	II	error	rate,	pseudo-	R2	=	.2623,	untransformed	logit	
coefficient	0.005522	±	SE	0.001418)
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between	the	training	set	and	test	datasets.	In	fact,	the	highest	preci-
sion	occurred	at	the	sites	furthest	away	from	the	sites	the	recognizer	
was	developed	from	(dataset	D,	Figure	8).

4  | DISCUSSION

Our	objective	here	was	 to	 improve	 the	utility	of	 sound	 recognition	
tools	 for	 surveying	 vocalizing	 anurans	 and	 to	 try	 to	 remove	 some	
of	 the	 barriers	 to	widespread	 use	 in	 ecology.	 The	 need	 to	monitor	
biological	 diversity	 at	 large	 spatial	 and	 temporal	 scales	 is	 becoming	
increasingly	 important	 (Yoccoz,	 Nichols,	 &	 Boulinier,	 2001).	 While	
citizen	science	(Weir	et	al.,	2009)	and	manual	surveys	by	professional	
biologists	are	widely	used,	fully	automated	platforms	using	ARDs	and	
sound	recognition	software	could	help	to	meet	new	monitoring	chal-
lenges.	We	examined	three	critical	components	in	sound	recognition	
(training	data,	variable	setting	selection,	and	prediction	to	new	data),	
and	this	provides	guidance	for	the	future	use	of	recognizers	for	moni-
toring	projects	 in	general.	The	specific	findings	(i.e.,	the	settings)	for	
optimized	wood	frogs	recognizers	are	unlikely	to	apply	to	other	spe-
cies,	 but	 the	 process	 can	 be	 generalized	 and	 used	 to	 build	 optimal	
recognizers	for	other	species.

4.1 | Increasing training data

We	found	that	increasing	training	data	resulted	in	only	slight	improve-
ments	 to	 recognizer	 performance.	 The	most	 rapid	 increases	 in	 per-
formance	were	achieved	by	adding	training	data	from	different	sites.	
Adding	calls	from	additional	sites	into	the	model	could	have	resulted	
in	small	improvements	in	performance	in	two	ways.	First,	adding	addi-
tional	sites	to	the	model,	especially	when	the	recordings	are	from	the	
same	breeding	season	(i.e.,	same	year),	could	help	capture	variation	in	
wood	frog	vocalization	characteristics	by	including	more	unique	indi-
viduals.	The	male	anuran	vocalization	contains	signals	to	conspecific	
females	and	males	 that	are	 indicators	of	competitive	ability	and	fit-
ness,	such	as	size	(Giacoma,	Cinzia,	&	Laura,	1997;	Howard	&	Young,	
1998)	and	survivorship	(Forsman,	Hagman,	&	Pfenning,	2006),	and	are	
subject	 to	 sexual	 selection.	 In	many	 anuran	 families,	 such	 as	 ranids	
(Bee,	Perrill,	&	Owen,	2000)	and	bufonids	(Zweifel,	1968),	the	domi-
nant	frequency	of	the	call	is	negatively	related	to	the	size	of	the	male.	
Although	data	on	wood	 frogs	 specifically	are	unavailable,	 it	 is	quite	
probable	 that	 size	and	age	add	variability	 to	call	 characteristics	and	
that	training	data	from	different	sites	could	capture	more	of	that	vari-
ability.	Collecting	 training	 data	 from	 recordings	made	 repeatedly	 at	
the	same	site	and	calls	from	within	the	same	recording	is	increasingly	

TABLE  2 Beta-	distributed	generalized	linear	models	with	A)	conditional	precision	and	B)	sensitivity	as	the	dependent	variable.	All	intercepts,	
coefficients,	and	standard	errors	are	in	their	untransformed	logit	linked	state

Model Intercept SE Sites SE Recordings SE Calls SE

(A)	Conditional	precision

 Sites 1.493 0.02 0.006 0.0008 – – – –

 All	sources 1.469 0.03 0.005 0.0008 −0.0004 0.002 0.005 0.002

(B)	Conditional	sensitivity

 Sites −0.271 0.03 0.006 0.001 – – – –

 All	sources −0.249 0.05 0.005 0.001 −0.002 0.003 0.001 0.003

Model K AICc ∆ AICc Model weight Log likelihood Pseudo- R2

(A) Conditional precision

A/sites 3 −282.11 0 0.51 144.36 .502

All	sources 5 −282.03 0.08 0.49 146.83 .554

Total	calls 3 −262.76 19.35 0 134.69 .224

W/recording 3 −257.37 24.74 0 131.99 .121

Intercept	only 2 −254.11 28.00 0 129.20 –

A/recordings 3 −251.80 30.32 0 129.21 >.001

(B) Conditional sensitivity

A/sites 3 −189.99 0 0.89 98.30 .262

All	sources 5 −185.48 4.50 0.09 98.55 .271

Total	calls 3 −179.74 10.25 0.01 93.18 .063

Intercept	only 2 −179.24 10.75 0 91.77 –

A/recording 3 −177.80 12.19 0 92.21 .020

W/recording 3 −177.30 12.69 0 91.96 .009

TABLE  3 Model	selection	results	for	
beta	regressions	with	A)	conditional	
precision	and	B)	sensitivity	as	the	
dependent	variable.	The	total	calls	model	
represents	the	situation	where	increasing	
training	data	results	in	better	recognizer	
performance	irrespective	of	the	source	of	
the	training	data.	Evidence	ratios	for	model	
comparisons	are	calculated	by	dividing	the	
model	weights.	A	=	among	sites	and	
recordings	and	W	=	within	recordings
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likely	 to	 resample	 the	 same	 individuals	 and	 therefore	 have	 fewer	
unique	individuals	represented	in	the	model.	This	could	then	overfit	
the	model	to	the	idiosyncrasies	of	a	subset	of	the	variation	in	wood	
frog	calls	and	result	in	poor	performance	on	recognition	of	calls	from	
individuals	 not	 used	 to	 build	 the	model	 (Ginzburg	&	 Jensen,	 2004;	
Radosavljevic	&	Anderson,	2014)	and	increase	both	Type	I	and	II	er-
rors.	 Second,	 by	 including	 additional	 sites	 in	 the	model,	we	 include	
calls	 that	 were	 recorded	 under	 different	 environmental	 conditions,	
and	this	could	have	a	positive	effect	on	the	ability	of	the	recognizer	to	
work	well	in	a	broader	range	of	conditions	(Clement,	Murray,	Solick,	
&	Gruver,	2014).	Some	conditions	such	as	wind	and	rain	 likely	vary	
as	much	among	recordings	as	among	sites.	Other	conditions	such	as	
the	recording	unit,	the	distance	of	the	recorder	to	the	vocalizing	in-
dividuals,	the	amount	and	type	of	vegetation	surrounding	and	in	the	
wetland,	and	the	amount	of	anthropogenic	sound	probably	show	less	
variation	among	recordings	than	among	sites.	While	research	into	the	
causes	of	this	observation	would	be	useful,	of	greater	importance	is	an	
evaluation	of	this	relationship	with	other	species	of	vocalizing	anurans	
to	determine	whether	the	weak	positive	effect	on	recognizer	perfor-
mance	of	including	calls	from	many	sites	is	a	general	rule.

Another	explanation	for	additional	training	calls	being	of	little	value	
is	 that	wood	 frogs	have	 a	 relatively	 simple	 call;	 the	optimal	 feature	
vector	length	in	Song	Scope	was	four,	meaning	that	the	call	could	be	
described	with	four	features.	More	complex	anuran,	bird,	and	mammal	
calls	would	require	more	features	and	could	require	additional	train-
ing	data	to	model	well.	Future	research	into	the	relationship	between	
call	complexity,	variability	within	and	between	individuals,	and	optimal	
quantities	of	training	data	would	provide	additional	insight	and	guid-
ance	for	new	monitoring	programs.

4.2 | Variable sensitivity analysis

Our	objective	with	the	variable	sensitivity	analysis	was	to	evaluate	a	
method	of	choosing	recognizer	variable	settings	that	was	reproducible	
and	considers	Type	I	and	Type	II	errors.	By	having	an	independent	set	
of	recordings	upon	which	to	evaluate	the	different	models,	we	were	
able	to	reduce	the	mean	Type	I	and	II	errors	below	that	of	a	recognizer	
that	was	created	using	the	trial-	and-	error	approach	of	maximizing	fit	
to	the	training	data.

Maximum	syllable	gap	had	more	influence	on	the	sensitivity	than	
any	other	variable.	In	the	Type	II	error	recognizer,	this	was	set	at	10	ms.	
Although	this	setting	was	the	only	one	that	came	close	to	detecting	
all	wood	frog	calls	at	a	variety	of	different	chorus	sizes,	it	resulted	in	
an	overestimation	of	the	total	number	of	calls	as	the	recognizer	made	
multiple	correct	hits	on	different	syllables	of	the	same	call.	This	is	be-
cause	wood	frog	calls	are	made	of	1–4	almost	identical	syllables.	Any	
recognizer	that	detects	all	calls	would	have	to	detect	the	single	syllable	
calls	and	thus	risk	making	several	matches	on	the	multi-	syllable	calls.	
All	three	other	recognizers	had	overlapping	confidence	intervals,	and	
the	 original	 recognizer	 had	 the	 next	 best	 sensitivity	 of	 0.3.	Overall,	

F IGURE  7 The	rank	sensitivity	of	the	conditional	precision	
and	sensitivity	of	the	nine	recognizer	variables	plotted	in	order	
of	descending	coefficient	of	variation	(CV)	values	for	conditional	
precision
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F IGURE  8 The	mean	(open	circles)	and	bootstrapped	95%	
confidence	intervals	(error	bars)	of	precision	(1—Type	I	error	rate)	
for	the	four	final	recognizer	models.	The	balanced	recognizer	is	the	
recognizer	where	Type	I	and	II	errors	are	weighted	equally,	Type	II	
is	the	recognizer	designed	to	minimize	Type	II	errors,	Type	I	is	the	
recognizer	designed	to	minimize	Type	I	errors,	and	original	is	the	
recognizer	designed	using	the	trial-	and-	error	approach.	The	“Train”	
dataset	is	the	recordings	used	to	select	the	variable	settings.	Test	set	
A	used	the	same	sites	to	build	the	recognizer	and	select	the	variable	
settings	but	from	a	different	year.	Test	set	B	has	different	sites	but	
from	the	same	year.	Test	set	C	is	from	different	sites	and	a	different	
year.	Test	set	D	contains	recordings	from	outside	the	study	area	
in	the	USA	recorded	in	2015,	specifically	the	states	Connecticut,	
Massachusetts,	Michigan,	and	New	York	(see	Table	1).	The	“Total”	
dataset	is	the	combined	datasets	A–D
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conditional	 sensitivity	 changed	more	 in	 response	 to	 adjustments	 to	
variable	 settings	 than	precision.	This	 indicates	 that	 researchers	may	
have	more	control	over	Type	II	errors	than	Type	I	errors	through	the	
use	of	alternative	variable	settings.	A	general	limitation	with	recogniz-
ers	 is	 the	 inability	 to	 detect	 overlapping	or	 synchronously	 recorded	
calls.	As	 the	 recognizer	works	by	 two-	dimensional	 spectrogram	pat-
tern	recognition,	calls	 recorded	simultaneously	are	 indistinguishable.	
Overlapping	calls	can	also	be	hard	to	distinguish	because	the	pattern	
of	the	vocalization	may	be	altered.	As	wood	frogs	are	explosive	early	
breeders,	 they	 are	 often	 observed	 at	 high	 abundances	 and	 at	 least	
some	of	the	breeding	season	in	some	habitats	can	take	place	before	
other	 species	 have	 begun	 the	vocalize.	Although	 the	 recordings	we	
used	 to	 evaluate	 recognizers	 contained	 a	 gradient	 in	 call	 rates	 and	
background	noise	 (the	calls	of	other	species	as	well	as	environmen-
tal	 noise),	 high	 abundances	 and	 the	 associated	 high	 call	 rates	 pres-
ent	 challenges.	 For	 example,	 because	 fully	 overlapping	 calls	 cannot	
be	counted	separately,	the	ability	of	the	recognizer	to	count	calls	as	
the	call	rate	increases	could	eventually	reach	an	asymptote	if	the	call	
rate	exceeds	 the	average	 length	of	 the	 recognizer	model	divided	by	
the	recording	sample	length.	Therefore,	the	utility	of	the	recognizer	is	

likely	to	vary,	not	only	as	a	function	of	the	spectral	properties	of	the	
species	call,	but	the	intra-		and	interspecific	context	within	which	the	
recordings	are	made.

Other	studies	with	Song	Scope	and	species	recognizers	have	re-
ported	“adjusting”	the	settings	(Waddle	et	al.,	2009),	or	did	not	refer	
to	this	part	of	the	recognizer	design	process	at	all	in	the	methods	sec-
tion	(Brauer,	Donovan,	Mickey,	Katz,	&	Mitchell,	2016;	Holmes	et	al.,	
2014;	Willacy	et	al.,	2015).	Under	the	assumption	that	wood	frogs	are	
not	 unique	 in	 the	 sensitivity	 of	 recognizer	 performance	 to	 variable	
settings,	 the	field	of	 recognizer	development	would	be	advanced	by	
researchers	describing	what	the	final	recognizer	setting	were	(Brauer	
et	al.,	2016;	Willacy	et	al.,	2015)	and	how	they	arrived	at	the	final	rec-
ognizer	settings	(Buxton	&	Jones,	2012).	 In	an	analogous	study	with	
species	distribution	models,	Radosavljevic	and	Anderson	(2014)	tuned	
MaxEnt	program	settings	with	the	goal	to	minimize	overfitting.	They	
discovered	 that	 settings	 2–4	 times	 higher	 than	 the	 default	 setting	
were	required	to	reduce	overfitting.	In	situations	such	as	these	where	
there	 is	no	clear	 intuitive	or	 theoretical	way	 to	determine	appropri-
ate	 program	 settings	 beforehand,	 experimentally	 manipulating	 the	
settings	and	evaluating	on	new	data	represent	the	most	likely	way	of	
arriving	at	the	optimal	choice.

While	we	are	confident	the	variable	sensitivity	analysis	identified	
the	optimal	settings	for	a	wood	frog	recognizer	based	on	our	recording	
set,	it	is	unknown	how	general	the	results	are.	Had	we	used	a	differ-
ent	set	of	recordings	upon	which	to	evaluate	Type	I	errors	we	could	
have	arrived	at	different	optimal	settings	for	the	Type	 I	error	recog-
nizer	due	to	differences	 in	background	noise.	We	are	also	confident	
that	we	identified	the	most	sensitive	variables,	and	even	if	a	different	
set	of	 recordings	was	used,	 this	 list	 should	not	 change.	However,	 it	
is	unlikely	that	recognizers	for	other	species	of	anurans	with	very	dif-
ferent	call	structures	(i.e.,	Bufonids,	Hylids,	etc.)	will	follow	the	same	
rank	of	sensitivities,	and	they	will	certainly	require	different	settings	of	
those	variables	to	construct	optimal	models.	Researchers	should	use	
the	process	presented	here	to	fine-	tune	their	recognizers.

4.3 | Evaluating recognizer performance

Although	 transferability	 is	 often	 an	 implicit	 objective	 of	 ecological	
models,	it	is	the	primary	goal	of	automated	call	recognizers.	Reporting	
Type	I	and	II	error	rates	for	the	recordings	used	to	build	the	recog-
nizer	 is	not	a	sufficient	assessment	of	 the	recognizer’s	performance	
as	they	are	almost	certainly	overly	optimistic.	Using	overly	optimistic	
error	 rates	at	new	sites/regions	can	bias	 the	 interpretation,	but	 the	
consequences	of	this	bias	depend	on	the	project	question	(occupancy,	
phenology,	or	call	counts)	and	the	degree	of	manual	verification	of	the	
automated	results.	The	challenge	in	the	lack	of	transferability	is	seen	
clearly	for	Type	I	errors	in	this	study	and	others.	For	example,	Clement	
et	al.	(2014)	evaluated	11	bat	species	classifiers	on	new	data	and	ob-
served	an	increase	in	the	average	Type	I	error	rate	from	0.06	to	0.29	
and	0.17	to	0.32	depending	on	which	library	of	calls	was	used	to	build	
or	test	the	models.	We	can	conclude	that	the	extra	time	and	effort	in-
volved	in	using	independent	data	to	reduce	Type	I	errors	are	not	war-
ranted.	In	contrast,	using	independent	data	to	help	design	recognizers	

F IGURE  9 The	mean	(open	circles)	and	bootstrapped	95%	
confidence	intervals	(error	bars)	of	sensitivity	(1—Type	II	error	rate)	
for	the	four	final	recognizer	models.	The	balanced	recognizer	is	the	
recognizer	where	Type	I	and	II	errors	are	weighted	equally,	Type	II	
is	the	recognizer	designed	to	minimize	Type	II	errors,	Type	I	is	the	
recognizer	designed	to	minimize	Type	I	errors,	and	original	is	the	
recognizer	designed	using	the	trial-	and-	error	approach.	The	“Train”	
dataset	is	the	recordings	used	to	select	the	variable	settings.	Test	set	
A	used	the	same	sites	to	build	the	recognizer	and	select	the	variable	
settings	but	from	a	different	year.	Test	set	B	has	different	sites	but	
from	the	same	year.	Test	set	C	is	from	different	sites	and	a	different	
year.	Test	set	D	contains	recordings	from	outside	the	study	area	
in	the	USA	recorded	in	2015,	specifically	the	states	Connecticut,	
Massachusetts,	Michigan,	and	New	York	(see	Table	1).	The	“Total”	
dataset	is	the	combined	datasets	A–D.
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did	reduce	Type	II	errors	on	data	from	different	places	and/or	times	
when	the	emphasis	during	recognizer	development	was	on	minimizing	
Type	II	errors.	Over	all	the	test	sets,	the	Type	II	error	recognizer	had	a	
sensitivity	of	0.98	(CI	0.77	–	1.17),	compared	with	all	other	recogniz-
ers	at	0.2–0.3.	These	sensitivity	values	in	excess	of	1	are	a	symptom	of	
the	multi-	syllable	and	variable	call	structure	of	the	wood	frog.	While	
we	attempted	to	penalize	variable	settings	that	resulted	in	sensitivity	
values	greater	than	1	at	the	setting	selection	stage,	we	did	not	alter	
the	results	of	the	evaluation	of	the	recognizer	on	the	training	or	test	
datasets	to	constrain	the	values	below	1.

What	causes	this	lack	of	transferability	in	Type	I	error	rate	but	the	
reasonable	 transferability	 of	Type	 II	 error	 rates?	 It	may	 be	 that	 the	
signal-	to-	noise	ratio	of	the	training	set	was	high	when	compared	with	
the	other	sets,	which	indicates	better	quality	recordings	in	the	training	
set.	Also,	 the	background	noise	of	 the	 training	data	was	 lower	 and	
more	variable	than	the	recordings	from	different	places	and/or	times.	
It	is	possible	that	the	optimal	variable	settings	to	reduce	Type	I	errors	
will	depend	on	local	sound	conditions.	On	the	other	hand,	choosing	
settings	to	reduce	Type	II	errors	does	not	need	to	consider	 idiosyn-
cratic	background	noise	 in	the	training	set,	only	the	detectability	of	
the	frog	call	 itself.	If	the	frog	call	varies	little	across	space	and	time,	
then	we	should	expect	less	variability	in	the	sensitivity	of	the	recog-
nizer	 (1-	Type	II	error	rate).	There	was	no	clear	relationship	between	
distance	and	time	from	where	the	model	was	developed	and	where	
it	was	 used,	 indicating	 that	 variability	 in	 recognizer	 performance	 is	
likely	a	consequence	of	environmental	recording	conditions	(Buxton	
&	Jones,	2012)	which	can	vary	over	small	spatial	scales,	rather	than	
variability	in	wood	frog	calls	per	se,	which	likely	only	vary	over	larger	
spatial	scales.

Other	 factors	 could	 affect	 the	 transferability	 of	 the	 recognizer.	
Clement	et	al.	(2014)	point	out	the	potential	for	selection	bias	to	occur	
when	high-	quality	calls	are	manually	selected	for	inclusion	into	a	bat	
call	recognition	model.	We	selected	sites	and	recordings	from	which	
to	 extract	 individual	 calls	 randomly,	 but	we	did	 not	 choose	 individ-
ual	calls	randomly.	We	selected	individual	calls	that	had	strong	signals	
relative	to	the	background	noise	and	deliberately	excluded	weak	and	
acoustically	contaminated	calls.	The	consequences	of	this	biased	se-
lection	process	could	be	of	the	development	of	recognizers	that	only	
detect	high-	quality	calls.	However,	if	this	were	true,	we	would	not	ex-
pect	the	recognizer	designed	to	avoid	Type	II	errors	to	have	such	good	
performance.

In	 summary,	 our	 data	 support	 the	 conclusions	 of	 Clement	 et	al.	
(2014)	 that	 recognizers	 trained	 at	 one	 place	 and/or	 time	will	 rarely	
be	 as	 effective	 in	 avoiding	Type	 I	 errors	when	used	 at	 other	 places	
and/or	times.	However,	models	designed	to	reduce	Type	II	error	rates	
were	almost	as	effective	at	different	places	and/or	times.	Researchers	
should,	 at	minimum,	 hold	 some	 recordings	 back	 from	use	 in	 recog-
nizer	creation	for	use	in	validation	to	guard	against	extreme	overfitting	
(Guthery,	Brennan,	Peterson,	&	Lusk,	2005)	and	obtain	estimates	of	
sensitivity/Type	II	error	rates.	The	type	of	data	held	back	for	validation	
should	be	relevant	 to	the	objectives	of	 the	monitoring	program	and	
include	sites	and	times	that	are	of	appropriate	scales	(temporal	or	geo-
graphic)	to	be	a	genuine	test	of	out-	of-	sample	predictive	performance.

4.4 | Recommendations for recognizer creation

Our	results	provide	a	preliminary	framework	and	some	recommen-
dations	 that	 researchers	 can	use	 to	 develop	 recognizers	 for	wood	
frogs	 specifically	 and,	more	generally,	 how	our	 approach	might	be	
used	 for	 other	 species.	 We	 provide	 a	 flowchart	 to	 allow	 readers	
to	visualize	 the	entire	process	 (Figure	10).	To	 summarize	 the	main	
findings,	we	 found	variable	settings	 to	be	 far	more	 important	 than	
training	data	in	creating	good	recognizers.	Adding	training	data	from	
more	sites	seems	to	be	the	most	effective	way	to	increase	recognizer	
performance,	but	again	this	effect	was	small	when	compared	to	in-
vestment	 in	evaluating	different	variable	settings.	We	showed	that	
considering	what	recognizer	error	rates	are	important	and	selecting	
variable	settings	 to	match	 these	goals	can	 reduce	 the	 rate	of	 false	
negatives	but	not	 the	 false-	positive	 rate.	Overall,	we	believe	Type	
I	 errors	 are	 a	 function	 of	 the	 environmental	 recording	 conditions	
and	 largely,	but	not	entirely,	outside	the	control	of	the	researcher,	
whereas	Type	II	errors	can	be	reduced	or	even	eliminated	with	effort	
into	selecting	appropriate	variable	settings.	Extrapolation	of	Type	I	
error	rates	for	recognizers	built	on	training	data	from	one	place	and/
or	time	 to	other	places	 and/or	times	 is	probably	unjustified	under	
most	circumstances.

4.5 | Future research in automated bioacoustic  
monitoring

Bioacoustics	research	is	advancing	rapidly	as	improvements	to	hard-
ware	and	software	are	made.	Species	recognition	models	represent	
one	of	several	ways	of	obtaining	information	about	occupancy,	phe-
nology,	and	relative	abundance	of	a	species	or	species	richness	at	a	
site.	The	use	of	other	metrics	such	as	the	acoustic	complexity	index	
(Pieretti,	Farina,	&	Morri,	2011;	Towsey,	Wimmer,	Williamson,	&	Roe,	
2014),	 acoustic	 richness,	 and	dissimilarity	 index	 (Depraetere	 et	al.,	

F IGURE  10 Flowchart	showing	all	the	steps	in	recognizer	
creation	and	evaluation

1. Training calls used to build the  
preliminary recognizer model 

2. Preliminary model of vocaliza�on 

3. Local op�miza�on of variable se�ngs 

4. Choose se�ngs based on monitoring objec�ves 

5. Final recognizer models 
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2012)	offer	different	approaches	to	the	same	problem,	as	do	many	
other	machine	 learning	methods	 (e.g.,	Gingras	&	Fitch,	 2013).	The	
recent	recognition	of	the	problems	caused	by	false-	positive	detec-
tions	and	development	of	occupancy	models	that	incorporate	false	
positives	 as	well	 as	 false	 negatives	 (McClintock,	Bailey,	 Pollock,	&	
Simons,	2010;	Miller	et	al.,	2011)	provides	a	solid	link	between	data	
collected	 and	 analyzed	 using	 an	 automated	 acoustic	 platform	 and	
occupancy	models	where	uncertainty	in	parameter	estimates	can	be	
quantified	 (Bailey,	 MacKenzie,	 &	 Nichols,	 2014).	 Approaches	 that	
compare	the	quality	of	methods	for	obtaining	data	from	recordings	
are	 needed	 to	 bridge	 this	 gap.	 Finally,	 our	 recommendations	 arise	
from	work	done	exclusively	on	wood	frogs,	and	a	similar	approach	
should	be	used	on	other	taxa	that	are	being	monitored	using	auto-
mated	sound	detection	to	assess	how	general	our	conclusions	are.
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