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Abstract: Triple-negative breast cancer (TNBC) is an aggressive, molecularly heterogeneous subtype
of breast cancer. Obesity is associated with increased incidence and worse prognosis in TNBC through
various potential mechanisms. Recent evidence suggests that the gut microbiome plays a central
role in the progression of cancer, and that imbalances or dysbiosis in the population of commensal
microbiota can lead to inflammation and contribute to tumor progression. Obesity is characterized
by low-grade inflammation, and gut dysbiosis is associated with obesity, chronic inflammation,
and failure of cancer immunotherapy. However, the debate on what constitutes a “healthy” gut
microbiome is ongoing, and the connection among the gut microbiome, obesity, and TNBC has
not yet been addressed. This study aims to characterize the role of obesity in modulating the gut
microbiome in a syngeneic mouse model of TNBC. 16S rRNA sequencing and metagenomic analyses
were performed to analyze and annotate genus and taxonomic profiles. Our results suggest that
obesity decreases alpha diversity in the gut microbiome. Metagenomic analysis revealed that obesity
was the only significant factor explaining the similarity of the bacterial communities according to
their taxonomic profiles. In contrast to the analysis of taxonomic profiles, the analysis of variation of
functional profiles suggested that obesity status, tumor presence, and the obesity–tumor interaction
were significant in explaining the variation of profiles, with obesity having the strongest correlation.
The presence of tumor modified the profiles to a greater extent in obese than in lean animals.
Further research is warranted to understand the impact of the gut microbiome on TNBC progression
and immunotherapy.

Keywords: triple-negative breast cancer (TNBC); commensal microbiota; 16S rRNA sequencing;
metagenomic analyses

1. Introduction

The human large intestine harbors 1013–1014 bacterial microorganisms, which com-
pose the gut microbiome [1,2]. The gut microbiome plays essential roles in maintaining
cellular metabolism and physiology in conjunction with human cells [1,3]. The composition
of the gut microbiome is dependent on natural selection [2]. It is dynamic, beginning after
birth and continuously changing in response to diet [3] and environmental factors, such as
medication use [4]. Multiple microbiomes exist in the human body, and their anatomical
location and function determine the degree of bacterial diversity. For example, the micro-
biome of a healthy gut has a high degree of diversity, while a healthy vaginal microbiome
has low diversity [5].

The gut microbiome is also important in the regulation of the host immune system.
If the typical microbial balance is disrupted, a state of dysbiosis occurs, which can lead
to systemic inflammation [6] through a variety of mechanisms, including the activation
of Toll-like receptors in the innate immune system [7,8]. Inflammation is involved in
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the progression of cancers, including breast and colon cancer [4,6,9]. There is evidence
that the composition of the microbiome affects cancer immunity and the response to
cancer immunotherapy, as reviewed in [10]. The absence of specific microbes can be
associated with the alteration of gut lymphoid tissue integrity [11]. Gut microorganisms
have been shown to have potential cancer-preventive properties as well; Bacteroides fragilis,
for instance, produces a polysaccharide that has been documented to correct host T-cell
deficiencies in germ-free mice [12]. These findings suggest a connection between the gut
microbiome and cancer, but a direct link [4,6] and the constitution of a “healthy” gut
microbiome [11] have not been clearly defined.

Breast cancer is the most common cancer of women worldwide. Gut microbiome
alterations play a role in breast cancer [6,13], but the mechanisms remain unclear. Estrogen
receptor-positive breast cancer is more likely associated with a hyperactive estrobolome, the
genes in commensal bacteria that code for estrogen metabolizing proteins. A high level of
deconjugation causes increased intestinal absorption of free estrogens, which increases the
risk for breast cancer [14]. Women with breast cancer have different microbiota than women
without cancer [15], so defining the gut microbiome composition and stratifying patients
based on its composition could be beneficial for diagnostic and therapeutic purposes [7,15].
Incorporating gut microbiome analyses into precision medicine protocols along with host
genomics and environmental exposures is rapidly gaining interest [10].

Obesity is one of the most prevalent comorbidities worldwide, especially in the United
States. Numerous causes and lifestyle factors, including physical activity, contribute to
obesity, but an imbalance of caloric intake is a primary factor [16]. Dietary factors are
thought to cause about 4% of cancers [17,18]. Obesity is an established risk factor for at
least 12 cancer types and a likely risk factor for several others [19]. Being overweight is
also related to 15–20% of cancer deaths [20]. Obesity is highly correlated with the incidence
of postmenopausal breast cancer. Twenty percent of breast cancer cases in postmenopausal
women and fifty percent of breast cancer deaths are attributable to obesity [21]. A meta-
analysis concluded that a greater waist-to-hip ratio (WHR) increased the risk of breast
cancer, while a reduction in WHR decreased it [22]. High body weight was also associated
with more progesterone receptor-positive breast cancer [23,24] and estrogen receptor-
positive breast cancer [23]. The metabolic and endocrine effects of obesity lead to increased
production of steroid hormones and peptide hormones, such as leptin and VEGF, which
have profound effects on breast cancer biology [20]. The mechanisms whereby obesity
contributes to breast cancer risk and outcomes are diverse and likely different for different
subtypes of breast cancer.

Triple-negative breast cancer (TNBC) is a definition encompassing all breast cancers
with no/low immunohistochemically detectable expression of estrogen receptor α and
progesterone receptor, and a lack of genomic amplification of ERBB2/HER2 [25,26]. TNBCs
are clinically aggressive and typically affect premenopausal women, especially African
American women [27–29]. Currently, chemotherapy and immunotherapy in a subset
of tumors expressing PD-L1 are the main pharmacological options for the treatment of
TNBC [30,31]. The gut microbiome composition has been reported to affect the efficacy
of chemotherapy [32–34]. Obesity is associated with increased incidence of TNBC and
poor prognosis for TNBC patients [35]. Multiple mechanisms are likely to contribute to
these effects, including increased systemic inflammation, reactive oxygen species, leptin,
hyperinsulinemia and altered metabolism [36]. A diet including high amounts of animal
products, such as animal fat, eggs, and meat, was positively correlated with TNBC, while
a plant-based diet of vegetables, vegetable fat, and nuts is negatively correlated with
TNBC [37]. Unlike other types of breast cancer, obesity is associated with an increased risk
of TNBC in premenopausal women [38]. The mechanisms of obesity-modulated TNBC
progression remain poorly understood.

Since dysbiosis in the gut microbiome and obesity are correlated with each other, it
is important to understand the potential role played by the gut microbiome and in the
crosstalk between obesity and TNBC in tumor-bearing animal models and cancer patients.
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We studied the gut microbiome in lean and obese tumor-free and tumor-bearing immune-
competent mice with a transplantable syngeneic TNBC model, using a “Western” diet to
induce obesity. Western diet-induced obesity dramatically decreased microbiome alpha
diversity in both tumor-free and tumor-bearing mice, with a significant decrease in Alistipes.
The gut microbiome of obese tumor-bearing mice was relatively enriched in Firmicutes
such as Clostridia and Mogibacteriaceae compared to lean tumor-bearing mice. Obesity
significantly explained differences in taxonomic profiles. Obesity, tumor presence, and
obesity–tumor interaction significantly explained differences in the functional profiles of
gut microbiomes.

2. Methods and Materials
2.1. Diet-Induced Obesity and Experimental Design

Mice were fed ENVIGO TD.88137, an adjusted calorie diet that mimics the “Western
diet”. It is not a high-fat diet, but a balance of fat (42.0% of kcal, of which >60% are saturated
fatty acids) and carbohydrates (42.7% of kcal, including 34% sucrose by weight), with
protein constituting 15.2% of kcal (ENVIGO, Indianapolis, IN, USA). This diet accelerates
and enhances atherosclerosis and plaque formation, leading to obesity. Due to the balance
of fats and carbohydrates, this diet was chosen because it best simulates the human
“Western diet”. FVB female mice were kept on a regular control diet (crude protein: 19%;
fat: 9%; carbohydrate: 44.9% (2019S, ENVIGO)) vs. “Western Diet” for four months.
Mouse body weight was monitored throughout this time. Then, 1 million syngeneic C0321
mouse TNBC cells [39] were injected into the mammary fat pads of mice with Matrigel
(1:1 ratio), and tumor growth was monitored for 3 weeks. After three weeks, tumors were
harvested for downstream processing, and fecal samples from the large intestine (colon)
were collected for microbiome analysis. 16s rRNA sequencing and metagenomics analyses
were performed at Microbiome Insights (Vancouver, BC, Canada).

2.2. 16s rRNA Sequencing

Bacterial 16s rRNA genes (V4 region) were sequenced on an Illumina MiSeq. Raw
Fastq files were quality-filtered and clustered into 97% similarity operational taxonomic
units (OTUs) using the mothur software package by Microbiome Insights. High-quality
reads were classified using the Greengenes reference database. We obtained a consensus
taxonomy for each OTU. We then aggregated OTU abundances into taxonomies and plotted
the relative abundances of the most abundant ones. OTU abundances were converted into
pairwise dissimilarities (Bray–Curtis index). Multidimensional scaling (MDS) was used to
visualize microbiome similarities in ordination plots. Permutational analysis of variance
(PERMANOVA) was used to test for the significance of microbiome differences. Negative
binomial tests (DESEq2 R package) were performed for differential abundance analysis.
Alpha diversity was calculated using Shannon’s diversity index.

2.3. Metagenomics
2.3.1. DNA Extraction and Library Preparation

DNA was extracted using the Qiagen’s (Germany) MagAttract PowerSoil DNA KF kit
(Formerly MO Bio PowerSoil DNA Kit) using a KingFisher robot at Microbiome Insights.
DNA quality was evaluated using gel electrophoresis and then quantified using a Qubit 3.0
fluorometer (Thermo-Fischer, Waltham, MA, USA). DNA Libraries were generated using
an Illumina Nextera library preparation kit following the standard protocol (Illumina, San
Diego, CA, USA).

2.3.2. Sequence Technology and Processing

Sequencing was performed using an Illumina NextSeq. Around 25.87 Gbases were
generated using 2 × 150 paired-end reads. Each sample yielded a median of 1.14 Gbases,
which was very close to our intended target of 1 Gbase per fecal sample. After the sequenc-
ing, reads were arranged based on the barcodes. Initial quality was evaluated using FastQC
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v0.11.5. There were three steps in the data processing: (a) paired-end read joining, (b) re-
moval of contaminants, and (c) trimming. The paired-end reads were joined using FLASH
v1.2.11 [40]. Reads were then sequentially compared to the mouse and human genomes
(Genome Reference Consortium Mouse strain FVB_NJ, Genome Reference Consortium
Mouse Build 38 patch release 6, and Genome Reference Consortium Human Reference 37),
and sequences mapped to them were removed. Finally, sequences were trimmed according
to their quality values using Trimmomatic v0.36 [41]. The paired read joining reduced
the library size on average by 29.82%. Furthermore, 39.05% of the stitched reads mapped
to the mouse and human genomes were removed. Read trimming using quality filters
removed 7.47% of the screened reads. At the end of quality control, the median number of
quality-filtered reads per sample was 3814,405.

2.4. Taxonomic and Functional Analyses

Taxonomic composition was determined using Metaphlan2 [42]. We used an ordi-
nation approach to obtain a graphical representation of similarity among samples. The
similarity between any two samples, based on their microbiome compositions, was cal-
culated using Bray–Curtis dissimilarities, which considers both presence/absence and
abundance of the species. The distances were then evaluated and represented graphically
using non-metric multidimensional scaling (NMDS) ordination. Permutational multivari-
ate analysis of variance (PERMANOVA) determined the significance of differences between
treatments. The R2 represents, when significant, the proportion of the variability that is
explained by those factors. Using an ordination approach, the taxonomic profiles were
created as a graphical representation of similarity among samples. Ordination plots were
arranged by color according to tumor presence and by shape according to the obesity of
the mice.

Functional profiles were summarized into pathways using the Metacyc pathway defi-
nition. The difference in pathway richness (the number of unique pathways) was calculated
using the Scheirer–Ray–Hare test (nonparametric test for a two-way factorial design). Func-
tional profiles include the gene family profiles generated using the Uniref database. These
genes are then integrated into different gene groups: Metacyc pathways, Metacyc reactions,
KEGG orthogroups (KOs), Pfam domains, level-4 enzyme commission (EC) categories,
EggNOG (which includes COGs), Gene Ontology (GO), and Informative GOs.

Permutational multivariate analysis of variance using distance matrices (PERMANOVA,
using the adonis R function) determined the significance of differences between treatments.
The R2 represented, when significant, the proportion of the variability that was explained
by those factors. Residuals represented the unexplained variation. Differential abun-
dance testing was performed using a Scheirer–Ray–Hare test (non-parametric ANOVA for
two factors).

3. Results

We modeled TNBC in a lean versus obese background by using a Western diet-induced
obese mouse model. This diet was chosen because its composition is similar to the standard
American diet [43]. Female FVB mice were fed a regular/control vs. Western diet for
four months to induce obesity. Lean and obese mice were then injected with syngeneic
mouse TNBC cells, and the tumors were allowed to develop for three weeks, at which
point, the tumors were collected for downstream processing, and fecal samples from
the colon were collected for 16s rRNA sequencing and metagenomics analysis. Western
diet-induced mouse body weight gain was expected (Supplemental Figure S1). Weight
differences between Western diet-fed mice and control mice remained virtually identical
in tumor-free and tumor-bearing animals. Importantly, tumors did not induce weight
loss (Supplemental Figure S1). Tumor volumes beginning 10 days after injection and
throughout the experiment were significantly higher in obese animals, consistent with an
association between obesity and TNBC progression (Supplemental Figure S1).
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3.1. Bacterial 16S rRNA Sequencing

Bacterial 16S rRNA genes (V4 region) were sequenced on an Illumina MiSeq and
analyzed by Microbiome Insights as described in the Methods section. We had to drop one
sample (number 16) due to quality control failure during sample processing at Microbiome
Insight. First, we analyzed the community composition of the relative abundances of the
most abundant taxa (Figure 1A).

Figure 1. (A) Community composition by 16S rRNA sequencing. (A) Relative abundances of the most abundant taxa;
(B) differential abundance testing: top 12 differentially abundant OTUs, sorted by q-value. In each plot, groups left to right
are lean no tumor; lean–tumor; obese–no tumor; obese–tumor.

Abundances of bacterial genera varied depending on obesity status and tumor pres-
ence. Tumor-free obese mice had a significant loss of diversity and appeared to harbor a
relatively high percentage of Akkermansia compared to all other groups. This was most likely
not due to an absolute increase in Akkermansia but to a loss of diversity among other taxa.
Obese mice with or without tumor had decreased Lachnospiraceae compared to lean mice.
Tumor-bearing obese mice had increased proportions of Clostridiales such as Clostridium and
Mogibacteriaceae compared to all other groups. Interestingly, the community composition of
the most abundant abundant taxa was altered in obese tumor-bearing animals compared
to obese tumor-free animals. We identified 12 differentially abundant OTUs according to
sorted q-value, namely, Subdoligranulum_Otu0044, Lachnospiraceae_unclassified_Otu0022,
Coprococcus_Otu0091, Clostridium_Otu0061, Lachnospiraceae _unclassified _Otu0081, Oscil-
lospira_Otu0070, L Lachnospiraceae_unclassified_Otu0028, Clostridium_Otu0010, Ruminococ-
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caceae_unclassified_Otu0041, Lactobacillus_Otu0053, Bacteria_unclassified_Otu0064 and
Lachnospiraceae_unclassified_Otu0056 (Figure 1B).

Next, the similarity of community compositions between samples was analyzed by
non-metric multidimensional scaling (NMDS). The NMDS ordination plot displays the
similarity of community compositions among samples (Figure 2A). Microbial communities
from each group of samples clustered together, suggesting their similarity. We found
four independent clusters in our samples, corresponding to the four treatment groups.
The ordination plot showed that microbiome compositions in lean mice with and with-
out tumors were the most similar, while those in obese mice with and without tumors
were the most dissimilar. In other words, the presence of tumor modified the intestinal
microbiome in obese animals, even though no significant weight loss was observed in
tumor-bearing animals.

Figure 2. (A) Ordination plot displaying similarity of community composition between samples; (B) alpha diversity among
samples was calculated using Shannon’s diversity index.

Finally, the alpha diversity of microbiomes was analyzed as a function of Shannon’s
index. We found that obesity decreased alpha diversity in both tumor- and non-tumor-
bearing mice samples (Figure 2B, Supplemental Table S2). Shannon’s index indicates that
lean mice have higher gut microbiome diversity compared to obese mice. Our results
suggested that obesity decreased average microbial species diversity in the gut microbiome.
The host immune system depends on a healthy gut microbiome that relies on rich and
diverse microbial species.

3.2. Metagenomic Profiles

Metagenomics analyses were performed, as described in the Methods section. One
tumor-bearing obese mouse sample had to be removed from the study due to quality control
failure during metagenomic analysis. The taxonomic composition was determined using
Metaphlan2. The microbiome community was dominated by bacteria, which accounted on
average for 99.885% of the entire community (Supplemental Figure S2A). Among bacteria,
the samples were dominated by Verrucomicrobia, Firmicutes, and Bacteroidetes (Supplemental
Figure S2B). At the phyla level, obese samples were dominated by Verrucomicrobia, with
relative loss of Bacterioidetes (Supplemental Figure S2B). At the genus level, obese samples
(both tumor-bearing and non-tumor-bearing animals) were dominated by Akkermansia,
with nearly complete loss of Alistipes and Lactobacillus. (Figure 3).

3.3. Community Composition: Visualizing Similarity among Microbiomes

We used an ordination approach to obtain a graphical representation of similarity
among samples. The similarity between any two samples was calculated using Bray–Curtis
dissimilarities, as described in the Methods section. The distances were then evaluated and
represented graphically using non-metric multidimensional scaling (NMDS) ordination
(Figure 4). We found separated clusters for lean and obese samples.
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Figure 3. Metagenomics analysis of taxonomic composition at the genus and species level.

Figure 4. Community composition: visualizing similarity among microbiomes using an ordina-
tion plot.

However, clusters between tumor-bearing vs. non-tumor bearing were not very
distinct in both lean and obese groups. Then, permutational multivariate analysis of
variance using distance matrices (PERMANOVA) was used to analyze the variation of
taxonomic groups. Obesity was the only significant factor (p-value 0.0002), explaining
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the similarity of bacterial communities according to their taxonomic profiles (Table 1).
The tumor–obesity interaction did not reach statistical significance (p = 0.0879), but may
warrant further investigation with larger sample sizes. We then analyzed taxa that changed
significantly according to obesity and/or tumor presence. We determined the differential
abundance of taxonomic groups using the Scheirer–Ray–Hare test. Table 2 contains data
for species that differed in abundance according to obesity, tumor, or obesity–tumor
interaction. Taxa that were changed significantly in association with obesity are listed in
Table 2 (first column). Alistipes, Ruminococcus torques, Dorea, Eubacterium plexicaudatum,
Lactobacillus johnsonii, Lactococcus lactis, Oscillibacter, Subdoligranulum, and Burkholderiales
changed significantly according to obesity. Akkermansia muciniphila was the only significant
taxa associated with tumor variability. However, when we combined obesity and tumor,
the significance of most taxa was lost, except for Parasutterella excrementihominis. Adjusted
p values for several taxa were significant for obesity (Table 2, column 4) but not for tumor
or obesity–tumor interaction (Table 2, columns 5 and 6).

Table 1. PERMANOVA (analysis of variance) of taxonomic groups: the significance of differences between treatments.

Degrees of Freedom Sum of Squares F Model R2 Pr (>F)

Obesity 1 1.133 16.831 0.457 0.0002

Tumor 1 0.156 2.321 0.063 0.1141

Obesity:Tumor
interaction 1 0.180 2.672 0.073 0.0879

Residuals 15 1.010 NA 0.407 NA

Total 18 2.479 NA 1.000 NA

Table 2. Summary of taxa that changed significantly according to obesity and tumor presence.

Taxa p-Value
Obesity

p-Value
Tumor

p-Value
Obesity–Tumor

Padj
Obesity

Padj
Tumor

Padj
Obesity–Tumor

Alistipes unclassified 0.0002 0.9674 0.8396 0.0028 0.9674 0.8885

Ruminococcus torques 0.0394 0.8186 0.8288 0.0984 0.9096 0.8885

Dorea_unclassified 0.0366 0.9074 0.3451 0.0984 0.9552 0.5582

Eubacterium plexicaudatum 0.0394 0.3590 0.3872 0.0984 0.5733 0.5582

Lactobacillus johnsonii 0.0011 0.3627 0.3908 0.0071 0.5733 0.5582

Lactococcus_lactis 0.0003 0.4789 0.4527 0.0028 0.6842 0.6036

Oscillibacter unclassified 0.0478 0.6124 0.8885 0.1062 0.7403 0.8885

Subdoligranulum unclassified 0.0141 0.6039 0.0893 0.0565 0.7403 0.5582

Burkholderiales bacterium_1_1_47 0.0030 0.3057 0.2773 0.0149 0.5733 0.5582

Parasutterella excrementihominis 0.1318 0.2084 0.0282 0.2027 0.5733 0.5582

Akkermansia muciniphila 0.5675 0.0239 0.8850 0.5973 0.4778 0.8885

3.4. Functional Profiles of Bacteria

Functional diversities were summarized into pathways using Metacyc pathway defi-
nitions. The difference in pathway richness (number of unique pathways) was calculated
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using the Scheirer–Ray–Hare test (nonparametric test for a two-way factorial design). We
found that obesity had a significant effect on pathway richness (p-value: 0.0011), while
tumor and obesity–tumor interaction were not statistically significant (p-value: 0.622)
(Figure 5 and Supplemental Table S3). We then analyzed the similarities of functional
profiles among samples using an ordination approach, as described earlier. The distances
were then evaluated and represented graphically using NMDS ordination (Figure 6).

Permutational multivariate analysis of variance using distance matrices (PERMANOVA)
determined the significance of differences between arms. The analysis of variation of
functional profiles suggested that the obesity status, tumor presence, and the obesity–tumor
interaction were significant in explaining the variation of functional profiles (Table 3).
Obesity was the most substantial explanatory factor, accounting for 57.6% of the variation.

Figure 5. Functional profiles were summarized into pathways using the Metacyc pathway definition.
Difference in pathway richness (number of unique pathways) was calculated using the Scheirer–Ray–
Hare test and presented as richness plot.

Figure 6. Functional profiles were summarized into pathways using the Metacyc pathway definition.
Difference in pathway richness (number of unique pathways) was calculated using the Scheirer–Ray–
Hare test and presented as a richness plot.



Nutrients 2021, 13, 3656 10 of 15

Table 3. PERMANOVA: analysis of variation of functional groups.

Degrees of Freedom Sum of Squares F Model R2 Pr (>F)

Obesity 1 0.872 32.560 0.576 0.0001

Tumor 1 0.127 4.725 0.084 0.0196

Obesity–Tumor interaction 1 0.113 4.219 0.075 0.0295

Residuals 15 0.402 NA 0.265 NA

Total 18 1.513 NA 1.000 NA

Differential abundance testing of functional groups was determined by using a
Scheirer–Ray–Hare test (nonparametric ANOVA for two factors). Table 4 shows the top
pathways that differed in abundance according to obesity, tumor, or obesity–tumor interac-
tion. Obesity was associated with significant variation in numerous pathways. The most
important pathways with significantly different abundance according to obesity were N10-
formyl-tetrahydrofolate biosynthesis, homolactic fermentation, arginine biosynthesis I (via
L-ornithine), arginine biosynthesis II (acetyl cycle), chorismate biosynthesis I, and others
(Table 4). The presence of tumor was significantly associated with glycolysis III (anaerobic
glycolysis), and obesity–tumor interaction was significantly associated with glycolysis
III, fucose degradation, and the super-pathway of beta D-glucuronide and D-glucuronate
degradation (Table 4). Pathway richness analysis of the four groups was also performed.

Table 4. Pathways with significantly different abundances.

Pathways with Significantly Different Abundances p-Value Obesity p-Value Tumor p-Value Obesity Tumor

1CMET2-PWY: N10-formyl-tetrahydrofolate biosynthesis 0.0010366 0.635094 0.0717867

ANAEROFRUCAT-PWY: homolactic fermentation 0.0009608 0.4753113 0.4489497

ANAGLYCOLYSIS-PWY: glycolysis III (from glucose) 0.4510959 0.0399166 0.0352809

ARGSYN-PWY: L-arginine biosynthesis I (via L-ornithine) 0.0001458 0.8326309 0.7676368

ARGSYNBSUB-PWY: L-arginine biosynthesis II (acetyl cycle) 0.0001458 0.8326309 0.7676368

ARO-PWY: chorismate biosynthesis I 0.0002371 0.4868042 0.1897699

BRANCHED-CHAIN-AA-SYN-PWY: superpathway of
branched amino acid biosynthesis 0.0054811 0.216359 0.1011976

COA-PWY-1: coenzyme A biosynthesis II (mammalian) 0.0010853 0.2266639 0.3961805

COA-PWY: coenzyme A biosynthesis I 0.0002371 0.4370334 0.2888817

COMPLETE-ARO-PWY: superpathway of aromatic amino
acid biosynthesis 0.0002326 0.4364287 0.2201606

DENOVOPURINE2-PWY: superpathway of purine
nucleotides de novo biosynthesis II 0.0305188 0.098992 0.7945958

DTDPRHAMSYN-PWY: dTDP-L-rhamnose biosynthesis I 0.007936 0.882567 0.7176804

FUCCAT-PWY: fucose degradation 0.1550304 0.2795522 0.0181659

GALACTUROCAT-PWY: D-galacturonate degradation I 0.0197737 0.4114757 0.540993

GLUCONEO-PWY: gluconeogenesis I 0.0029886 0.7411059 0.7260155

GLUCUROCAT-PWY: superpathway of &
beta;-D-glucuronide and D-glucuronate degradation 0.1550304 0.2795522 0.0181659
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Table 4. Cont.

Pathways with Significantly Different Abundances p-Value Obesity p-Value Tumor p-Value Obesity Tumor

GLUTORN-PWY: L-ornithine biosynthesis 0.0001458 0.8326309 0.7676368

GLYCOGENSYNTH-PWY: glycogen biosynthesis I (from
ADP-D-Glucose) 0.0477852 0.0726354 0.2825296

GLYCOLYSIS: glycolysis I (from glucose 6-phosphate) 0.0009608 0.4753113 0.4489497

HISDEG-PWY: L-histidine degradation I 0.0134637 0.8473453 0.6476828

Figure 5 represents the differences in functional richness or number of unique path-
ways among the four groups. In our analysis, obesity was the only determinant that
affected pathway richness. Figure 6 represents the similarity of functional profiles among
the four groups, which is a measure of the convergence of common pathways among the
four groups of mice. Once again, obese mice with or without tumors tended to cluster
together, and clearly segregated from lean animals.

4. Discussion

We examined the gut microbiome composition in lean or obese mice with or without
syngeneic TNBC tumors to model tumor progression in lean versus obese patients. Obesity
was induced with a “Western” diet, commonly used in atherogenesis and obesity studies.
Tumor growth was accelerated in obese mice, suggesting that obesity promoted tumor
progression. This is consistent with studies showing that obesity increases the risk of TNBC
in women [36]. Possible mechanisms include hypercholesterolemia and hyperinsuline-
mia [44–46], as well as systemic inflammation, which can contribute to the risk of multiple
cancers, including breast cancer [4,9].

The analysis of 16s rRNA sequences has revealed the predominant bacterial phyla
in the human gut microbiome, including Firmicutes, Bacteroidetes, Actinobacteria, Fusobac-
teria, Proteobacteria, and Verrucomicrobia [2,47,48]. Firmicutes and Bacteroidetes constitute
over 90% of the human gut microbiome [2,48]. In addition to bacteria, other microbes,
including archaea, eukaryotes, and viruses, are also present in the gut microbiome [49].
Our 16S rRNA sequence analysis revealed variation in microbiomes between tumor-free
or tumor-bearing lean and obese mice. Alpha diversity analysis showed that lean mice
had higher microbiome diversity than obese mice. This loss of alpha diversity with obesity
is consistent with the literature [50]. Functional analysis showed a large number of mi-
crobial metabolic pathways significantly altered by obesity. Interestingly, a few pathways
(anaerobic glycolysis, fucose degradation, glycuronide/glycuronic acid degradation, pepti-
doglycan biosynthesis, and CDP-diacylglycerol biosynthesis I) were selectively altered in
tumor-bearing animals. The gut microbiome can contribute to the onset of obesity through
a variety of mechanisms. The gut microbiome is important to host metabolism and energy
storage and can lead to an increase in adiposity and insulin resistance [51]. Microbiota can
directly increase the absorption of monosaccharides [51]. Metagenomics analyses show
that the microbiome of obese mice has increased energy-harvesting capacity [52]. This is
likely to reflect the increased availability of readily metabolized nutrients in obesogenic
diets. Intestinal dysbiosis promoted by obesogenic diets can promote obesity through
multiple mechanisms [53]. These include, among others, systemic inflammation promoted
by endotoxin through Toll-like receptor (TLR) binding, increased insulin secretion, and
insulin resistance [53]. Another mechanism for the interplay between the microbiome and
obesity is altered bile acid metabolism, which in turn modulates the farnesoid X receptor
in the liver [54]. The gut flora may also affect neural feeding behavior through vagal
stimulation or immune-neuroendocrine mechanisms [55]. Another possible mechanism
includes gut microbiota-induced suppression of fasting-induced activating factor (Fiaf ), a
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lipoprotein-lipase inhibitor. The suppression of Fiaf increases the deposition of triglycerides
into adipose tissue [51,56].

There is controversy surrounding the microbiome composition that contributes to
obesity [57–59]. One of the most common findings is that obesity is associated with
an increase in Firmicutes and a decrease in Bacteroides [58–62]. In contrast, some results
show a decrease in Firmicutes and no change in Bacteroides [63], and others show an
increased ratio of Bacteroides:Firmicutes [60]. Another study found that a certain enterotype
consisting of a high proportion of Bacteroides increases systemic inflammation and obesity
progression [64]. In addition, species within genera can have differing effects. In the
genus Lactobacillus, L. reuteri are associated with increased risk of obesity, while L. casi and
L. plantarum are associated with decreased risk for obesity [57]. These varying studies show
that defining a microbiome composition that promotes obesity is difficult, as confounding
variables are present, including host genotype and diet [57]. Our metagenomic analysis
at the phyla level showed a dramatic decrease in Bacteroides in obese mice, irrespective
of tumor status. This is consistent with a decreased Bacteroides/Firmicutes ratio. Obesity
was strongly associated with a decrease in Bacteroides, especially Alistipes, consistent with
several studies [58,59,61,62], but the change in Firmicutes was less consistent, as Lactobacillus
decreased and Subdilogranulum increased. The genus Alistipes has been associated with the
efficacy of checkpoint inhibitor immunotherapy in non-small cell lung cancer (NSCLC) and
generally activation of innate immunity [65]. The large relative increase in Verrucomicrobia,
particularly Akkermansia muciniphila, in obese mice, was surprising, as the abundance of
Akkermansia has been shown to be inversely correlated with obesity in mice and humans [66].
Akkermansia is a mucolytic organism that has been associated with improved fasting glucose
and reduced intestinal inflammation [66] and is decreased by high-fat diets [67]. It is
possible that this relative increase in our model may be secondary to increased mucus
production, which is stimulated by LPS and inflammatory cytokines [68]. Overnutrition
is known to increase plasma LPS through altered intestinal barrier permeability [69]. A
prolonged period of overnutrition with a Western diet may have produced sustained
endotoxemia and a secondary increase in intestinal mucus. Notably, 16S sequence data
show that in obese, tumor-bearing mice, the relative excess of Akkermansia disappeared
and was replaced by Firmicutes such as Clostridiaceae and Mogibacteriaceae, producing
a decreased Bacteroides/Firmicutes ratio that has been associated with obesity in other
studies [58–62]. In our TNBC model, the presence of tumor had a far more dramatic effect
on the intestinal microbiome in obese animals than in lean animals, even though no weight
loss was associated with the presence of the tumor. The mechanism of this difference
is unclear and may involve systemic metabolic changes and/or immunological changes
related to the presence of the tumor. Very little is known about the interplay between
TNBC and the intestinal microbiome. The possible role of the intestinal microbiome in
the effectiveness of TNBC immunotherapy is being actively investigated [70,71], but no
firm conclusions have been reached to date. Our results suggest that obesity may be an
important modifier of the relationship between TNBC and the intestinal microbiome, which
should be taken into consideration in clinical studies.

5. Conclusions

Obesity induced via “Western” diet in an immune-competent model of TNBC was
associated enhanced tumor growth and with significant loss of diversity in the intestinal
microbiome, and with a decrease in Bacteroides species, particularly Alistipes. Metabolic
pathways in intestinal bacteria were also significantly affected by obesity, particularly in
tumor-bearing animals. The contribution of the intestinal microbiome to tumor immunity
and tumor growth in obese animals and patients with TNBC deserves further investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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https://www.mdpi.com/article/10.3390/nu13103656/s1
https://www.mdpi.com/article/10.3390/nu13103656/s1


Nutrients 2021, 13, 3656 13 of 15

Table S2: Sequence statistics of alpha diversity. Supplemental Figure S2: Metagenomic analysis:
taxonomic composition at the kingdom and phylum level. Supplemental Table S3: Richness Table:
Differences in pathway richness according to Obesity and Tumor presence.

Author Contributions: Conceptualization, S.M., F.H. and L.M.; Data curation and interpretaion, S.M.,
F.H., B.A.B., J.D. and L.M.; formal analysis, Microbiome Insights.; original draft preparation, review
and editing, S.M., F.H., B.A.B., J.D. and L.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported in part by Louisiana Clinical and Translational Science
Center (LACaTS) grant U54 GM104940 and the NIH P20 CA233374 grant from the National Cancer
Institute (NCI).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Microbiome Insights, Canada, for 16S rRNA sequencing and metage-
nomics analyses.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gill, S.R.; Pop, M.; Deboy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.;

Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006, 312, 1355–1359. [CrossRef]
2. Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell

2006, 124, 837–848. [CrossRef]
3. Quercia, S.; Candela, M.; Giuliani, C.; Turroni, S.; Luiselli, D.; Rampelli, S.; Brigidi, P.; Franceschi, C.; Bacalini, M.G.; Garagnani,

P.; et al. From lifetime to evolution: Timescales of human gut microbiota adaptation. Front. Microbiol. 2014, 5, 587. [CrossRef]
4. Francescone, R.; Hou, V.; Grivennikov, S.I. Microbiome, inflammation, and cancer. Cancer J. 2014, 20, 181–189. [CrossRef]
5. Weinstock, G.M. Genomic approaches to studying the human microbiota. Nature 2012, 489, 250–256. [CrossRef]
6. Sheflin, A.M.; Whitney, A.K.; Weir, T.L. Cancer-promoting effects of microbial dysbiosis. Curr. Oncol. Rep. 2014, 16, 406. [CrossRef]
7. Eslami, S.Z.; Majidzadeh, A.K.; Halvaei, S.; Babapirali, F.; Esmaeili, R. Microbiome and Breast Cancer: New Role for an Ancient

Population. Front. Oncol. 2020, 10, 120. [CrossRef]
8. Rakoff-Nahoum, S.; Medzhitov, R. Toll-like receptors and cancer. Nat. Rev. Cancer 2009, 9, 57–63. [CrossRef] [PubMed]
9. Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [CrossRef] [PubMed]
10. Baiden-Amissah, R.E.M.; Tuyaerts, S. Contribution of Aging, Obesity, and Microbiota on Tumor Immunotherapy Efficacy and

Toxicity. Int. J. Mol. Sci. 2019, 20, 3586. [CrossRef] [PubMed]
11. Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506.

[CrossRef]
12. Mazmanian, S.K.; Liu, C.H.; Tzianabos, A.O.; Kasper, D.L. An immunomodulatory molecule of symbiotic bacteria directs

maturation of the host immune system. Cell 2005, 122, 107–118. [CrossRef]
13. McKee, A.M.; Hall, L.J.; Robinson, S.D. The microbiota, antibiotics and breast cancer. Breast Cancer Manag. 2019, 8, BMT29.

[CrossRef] [PubMed]
14. Plottel, C.S.; Blaser, M.J. Microbiome and malignancy. Cell Host Microbe 2011, 10, 324–335. [CrossRef] [PubMed]
15. Fernandez, M.F.; Reina-Perez, I.; Astorga, J.M.; Rodriguez-Carrillo, A.; Plaza-Diaz, J.; Fontana, L. Breast Cancer and Its Relation-

ship with the Microbiota. Int. J. Environ. Res. Public Health 2018, 15, 1747. [CrossRef] [PubMed]
16. Gonzalez-Muniesa, P.; Martinez-Gonzalez, M.A.; Hu, F.B.; Despres, J.P.; Matsuzawa, Y.; Loos, R.J.F.; Moreno, L.A.; Bray, G.A.;

Martinez, J.A. Obesity. Nat. Rev. Dis. Primers 2017, 3, 17034. [CrossRef] [PubMed]
17. Islami, F.; Goding Sauer, A.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; McCullough, M.L.; Patel, A.V.; Ma, J.;

Soerjomataram, I.; et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in
the United States. CA Cancer J. Clin. 2018, 68, 31–54. [CrossRef] [PubMed]

18. Sung, H.; Siegel, R.L.; Torre, L.A.; Pearson-Stuttard, J.; Islami, F.; Fedewa, S.A.; Goding Sauer, A.; Shuval, K.; Gapstur, S.M.; Jacobs,
E.J.; et al. Global patterns in excess body weight and the associated cancer burden. CA Cancer J. Clin. 2019, 69, 88–112. [CrossRef]

19. Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K.; International Agency for Research on Cancer
Handbook Working Group. Body Fatness and Cancer—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375,
794–798. [CrossRef]

20. Calle, E.E.; Kaaks, R. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer
2004, 4, 579–591. [CrossRef]

http://doi.org/10.1126/science.1124234
http://doi.org/10.1016/j.cell.2006.02.017
http://doi.org/10.3389/fmicb.2014.00587
http://doi.org/10.1097/PPO.0000000000000048
http://doi.org/10.1038/nature11553
http://doi.org/10.1007/s11912-014-0406-0
http://doi.org/10.3389/fonc.2020.00120
http://doi.org/10.1038/nrc2541
http://www.ncbi.nlm.nih.gov/pubmed/19052556
http://doi.org/10.1016/j.cell.2010.01.025
http://www.ncbi.nlm.nih.gov/pubmed/20303878
http://doi.org/10.3390/ijms20143586
http://www.ncbi.nlm.nih.gov/pubmed/31340438
http://doi.org/10.1038/s41422-020-0332-7
http://doi.org/10.1016/j.cell.2005.05.007
http://doi.org/10.2217/bmt-2019-0015
http://www.ncbi.nlm.nih.gov/pubmed/31857826
http://doi.org/10.1016/j.chom.2011.10.003
http://www.ncbi.nlm.nih.gov/pubmed/22018233
http://doi.org/10.3390/ijerph15081747
http://www.ncbi.nlm.nih.gov/pubmed/30110974
http://doi.org/10.1038/nrdp.2017.34
http://www.ncbi.nlm.nih.gov/pubmed/28617414
http://doi.org/10.3322/caac.21440
http://www.ncbi.nlm.nih.gov/pubmed/29160902
http://doi.org/10.3322/caac.21499
http://doi.org/10.1056/NEJMsr1606602
http://doi.org/10.1038/nrc1408


Nutrients 2021, 13, 3656 14 of 15

21. Carmichael, A.R. Obesity as a risk factor for development and poor prognosis of breast cancer. BJOG 2006, 113, 1160–1166.
[CrossRef]

22. Connolly, B.S.; Barnett, C.; Vogt, K.N.; Li, T.; Stone, J.; Boyd, N.F. A meta-analysis of published literature on waist-to-hip ratio and
risk of breast cancer. Nutr. Cancer 2002, 44, 127–138. [CrossRef]

23. Neuhouser, M.L.; Aragaki, A.K.; Prentice, R.L.; Manson, J.E.; Chlebowski, R.; Carty, C.L.; Ochs-Balcom, H.M.; Thomson, C.A.;
Caan, B.J.; Tinker, L.F.; et al. Overweight, Obesity, and Postmenopausal Invasive Breast Cancer Risk: A Secondary Analysis of the
Women’s Health Initiative Randomized Clinical Trials. JAMA Oncol. 2015, 1, 611–621. [CrossRef] [PubMed]

24. Maehle, B.O.; Tretli, S.; Skjaerven, R.; Thorsen, T. Premorbid body weight and its relations to primary tumour diameter in breast
cancer patients; its dependence on estrogen and progesteron receptor status. Breast Cancer Res. Treat. 2001, 68, 159–169. [CrossRef]
[PubMed]

25. Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a
heterogeneous disease. Nat. Rev. Clin. Oncol. 2016, 13, 674–690. [CrossRef] [PubMed]

26. Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A.
Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [CrossRef]

27. Dietze, E.C.; Sistrunk, C.; Miranda-Carboni, G.; O’Regan, R.; Seewaldt, V.L. Triple-negative breast cancer in African-American
women: Disparities versus biology. Nat. Rev. Cancer 2015, 15, 248–254. [CrossRef] [PubMed]

28. Prakash, O.; Hossain, F.; Danos, D.; Lassak, A.; Scribner, R.; Miele, L. Racial Disparities in Triple Negative Breast Cancer: A
Review of the Role of Biologic and Non-biologic Factors. Front. Public Health 2020, 8, 576964. [CrossRef] [PubMed]

29. Siddharth, S.; Sharma, D. Racial Disparity and Triple-Negative Breast Cancer in African-American Women: A Multifaceted Affair
between Obesity, Biology, and Socioeconomic Determinants. Cancers 2018, 10, 514. [CrossRef]

30. Emens, L.A. Immunotherapy in Triple-Negative Breast Cancer. Cancer J. 2021, 27, 59–66. [CrossRef]
31. Won, K.A.; Spruck, C. Triplenegative breast cancer therapy: Current and future perspectives (Review). Int. J. Oncol. 2020, 57,

1245–1261. [CrossRef]
32. Deleemans, J.M.; Chleilat, F.; Reimer, R.A.; Henning, J.W.; Baydoun, M.; Piedalue, K.A.; McLennan, A.; Carlson, L.E. The

chemo-gut study: Investigating the long-term effects of chemotherapy on gut microbiota, metabolic, immune, psychological and
cognitive parameters in young adult Cancer survivors; study protocol. BMC Cancer 2019, 19, 1243. [CrossRef]

33. Ma, W.; Mao, Q.; Xia, W.; Dong, G.; Yu, C.; Jiang, F. Gut Microbiota Shapes the Efficiency of Cancer Therapy. Front. Microbiol.
2019, 10, 1050. [CrossRef]

34. Pouncey, A.L.; Scott, A.J.; Alexander, J.L.; Marchesi, J.; Kinross, J. Gut microbiota, chemotherapy and the host: The influence of
the gut microbiota on cancer treatment. Ecancermedicalscience 2018, 12, 868. [CrossRef]

35. Pierobon, M.; Frankenfeld, C.L. Obesity as a risk factor for triple-negative breast cancers: A systematic review and meta-analysis.
Breast Cancer Res. Treat. 2013, 137, 307–314. [CrossRef]

36. Tiwari, P.; Blank, A.; Cui, C.; Schoenfelt, K.Q.; Zhou, G.; Xu, Y.; Khramtsova, G.; Olopade, F.; Shah, A.M.; Khan, S.A.; et al.
Metabolically activated adipose tissue macrophages link obesity to triple-negative breast cancer. J. Exp. Med. 2019, 216, 1345–1358.
[CrossRef] [PubMed]

37. Go, Y.; Chung, M.; Park, Y. Dietary Patterns for Women with Triple-negative Breast Cancer and Dense Breasts. Nutr. Cancer 2016,
68, 1281–1288. [CrossRef]

38. Chen, L.; Cook, L.S.; Tang, M.T.; Porter, P.L.; Hill, D.A.; Wiggins, C.L.; Li, C.I. Body mass index and risk of luminal, HER2-
overexpressing, and triple negative breast cancer. Breast Cancer Res. Treat. 2016, 157, 545–554. [CrossRef] [PubMed]

39. Zhang, S.; Chung, W.C.; Miele, L.; Xu, K. Targeting Met and Notch in the Lfng-deficient, Met-amplified triple-negative breast
cancer. Cancer Biol. Ther. 2014, 15, 633–642. [CrossRef] [PubMed]

40. Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27,
2957–2963. [CrossRef] [PubMed]

41. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.
[CrossRef]

42. Truong, D.T.; Franzosa, E.A.; Tickle, T.L.; Scholz, M.; Weingart, G.; Pasolli, E.; Tett, A.; Huttenhower, C.; Segata, N. MetaPhlAn2
for enhanced metagenomic taxonomic profiling. Nat. Methods 2015, 12, 902–903. [CrossRef]

43. Odermatt, A. The Western-style diet: A major risk factor for impaired kidney function and chronic kidney disease. Am. J. Physiol.
Renal Physiol. 2011, 301, F919–F931. [CrossRef]

44. Gunter, M.J.; Hoover, D.R.; Yu, H.; Wassertheil-Smoller, S.; Rohan, T.E.; Manson, J.E.; Li, J.; Ho, G.Y.; Xue, X.; Anderson, G.L.; et al.
Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J. Natl. Cancer Inst. 2009, 101, 48–60.
[CrossRef]

45. Hernandez, A.V.; Guarnizo, M.; Miranda, Y.; Pasupuleti, V.; Deshpande, A.; Paico, S.; Lenti, H.; Ganoza, S.; Montalvo, L.; Thota,
P.; et al. Association between insulin resistance and breast carcinoma: A systematic review and meta-analysis. PLoS ONE 2014,
9, e99317. [CrossRef]

46. Nelson, E.R.; Wardell, S.E.; Jasper, J.S.; Park, S.; Suchindran, S.; Howe, M.K.; Carver, N.J.; Pillai, R.V.; Sullivan, P.M.; Sondhi,
V.; et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 2013, 342, 1094–1098.
[CrossRef] [PubMed]

http://doi.org/10.1111/j.1471-0528.2006.01021.x
http://doi.org/10.1207/S15327914NC4402_02
http://doi.org/10.1001/jamaoncol.2015.1546
http://www.ncbi.nlm.nih.gov/pubmed/26182172
http://doi.org/10.1023/A:1011977118921
http://www.ncbi.nlm.nih.gov/pubmed/11688519
http://doi.org/10.1038/nrclinonc.2016.66
http://www.ncbi.nlm.nih.gov/pubmed/27184417
http://doi.org/10.1158/1078-0432.CCR-06-3045
http://doi.org/10.1038/nrc3896
http://www.ncbi.nlm.nih.gov/pubmed/25673085
http://doi.org/10.3389/fpubh.2020.576964
http://www.ncbi.nlm.nih.gov/pubmed/33415093
http://doi.org/10.3390/cancers10120514
http://doi.org/10.1097/PPO.0000000000000497
http://doi.org/10.3892/ijo.2020.5135
http://doi.org/10.1186/s12885-019-6473-8
http://doi.org/10.3389/fmicb.2019.01050
http://doi.org/10.3332/ecancer.2018.868
http://doi.org/10.1007/s10549-012-2339-3
http://doi.org/10.1084/jem.20181616
http://www.ncbi.nlm.nih.gov/pubmed/31053611
http://doi.org/10.1080/01635581.2016.1225102
http://doi.org/10.1007/s10549-016-3825-9
http://www.ncbi.nlm.nih.gov/pubmed/27220749
http://doi.org/10.4161/cbt.28180
http://www.ncbi.nlm.nih.gov/pubmed/24556651
http://doi.org/10.1093/bioinformatics/btr507
http://www.ncbi.nlm.nih.gov/pubmed/21903629
http://doi.org/10.1093/bioinformatics/btu170
http://doi.org/10.1038/nmeth.3589
http://doi.org/10.1152/ajprenal.00068.2011
http://doi.org/10.1093/jnci/djn415
http://doi.org/10.1371/journal.pone.0099317
http://doi.org/10.1126/science.1241908
http://www.ncbi.nlm.nih.gov/pubmed/24288332


Nutrients 2021, 13, 3656 15 of 15

47. Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al.
Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [CrossRef]

48. Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut
Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14.
[CrossRef]

49. Ursell, L.K.; Metcalf, J.L.; Parfrey, L.W.; Knight, R. Defining the human microbiome. Nutr. Rev. 2012, 70 (Suppl. 1), S38–S44.
[CrossRef] [PubMed]

50. Stanislawski, M.A.; Dabelea, D.; Lange, L.A.; Wagner, B.D.; Lozupone, C.A. Gut microbiota phenotypes of obesity. NPJ Biofilms
Microbiomes 2019, 5, 18. [CrossRef]

51. Backhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an
environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [CrossRef]

52. Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with
increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [CrossRef]

53. Boulange, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.E. Impact of the gut microbiota on inflammation, obesity, and
metabolic disease. Genome Med. 2016, 8, 42. [CrossRef] [PubMed]

54. Parseus, A.; Sommer, N.; Sommer, F.; Caesar, R.; Molinaro, A.; Stahlman, M.; Greiner, T.U.; Perkins, R.; Backhed, F. Microbiota-
induced obesity requires farnesoid X receptor. Gut 2017, 66, 429–437. [CrossRef] [PubMed]

55. Torres-Fuentes, C.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol. Hepatol.
2017, 2, 747–756. [CrossRef]

56. Backhed, F.; Manchester, J.K.; Semenkovich, C.F.; Gordon, J.I. Mechanisms underlying the resistance to diet-induced obesity in
germ-free mice. Proc. Natl. Acad. Sci. USA 2007, 104, 979–984. [CrossRef] [PubMed]

57. Gerard, P. Gut microbiota and obesity. Cell Mol. Life Sci. 2016, 73, 147–162. [CrossRef] [PubMed]
58. John, G.K.; Mullin, G.E. The Gut Microbiome and Obesity. Curr. Oncol. Rep. 2016, 18, 45. [CrossRef]
59. Walters, W.A.; Xu, Z.; Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014, 588,

4223–4233. [CrossRef]
60. Jumpertz, R.; Le, D.S.; Turnbaugh, P.J.; Trinidad, C.; Bogardus, C.; Gordon, J.I.; Krakoff, J. Energy-balance studies reveal

associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 2011, 94, 58–65. [CrossRef]
61. Ley, R.E.; Backhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl.

Acad. Sci. USA 2005, 102, 11070–11075. [CrossRef]
62. Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444,

1022–1023. [CrossRef] [PubMed]
63. Duncan, S.H.; Lobley, G.E.; Holtrop, G.; Ince, J.; Johnstone, A.M.; Louis, P.; Flint, H.J. Human colonic microbiota associated with

diet, obesity and weight loss. Int. J. Obes. 2008, 32, 1720–1724. [CrossRef] [PubMed]
64. Vieira-Silva, S.; Falony, G.; Belda, E.; Nielsen, T.; Aron-Wisnewsky, J.; Chakaroun, R.; Forslund, S.K.; Assmann, K.; Valles-Colomer,

M.; Nguyen, T.T.D.; et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 2020, 581,
310–315. [CrossRef]

65. Parker, B.J.; Wearsch, P.A.; Veloo, A.C.M.; Rodriguez-Palacios, A. The Genus Alistipes: Gut Bacteria with Emerging Implications
to Inflammation, Cancer, and Mental Health. Front. Immunol. 2020, 11, 906. [CrossRef] [PubMed]

66. Hills, R.D., Jr.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications
for Diet and Disease. Nutrients 2019, 11, 1613. [CrossRef]

67. Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne,
N.M.; et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl.
Acad. Sci. USA 2013, 110, 9066–9071. [CrossRef]

68. Paone, P.; Cani, P.D. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut 2020, 69, 2232–2243. [CrossRef]
69. He, L. Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. Int. J. Mol.

Sci. 2021, 22, 2121. [CrossRef]
70. Tarantino, P.; Curigliano, G. Defining the immunogram of breast cancer: A focus on clinical trials. Expert Opin. Biol. Ther. 2019, 19,

383–385. [CrossRef]
71. Thomas, R.; Al-Khadairi, G.; Decock, J. Immune Checkpoint Inhibitors in Triple Negative Breast Cancer Treatment: Promising

Future Prospects. Front. Oncol. 2020, 10, 600573. [CrossRef]

http://doi.org/10.1038/nature09944
http://doi.org/10.3390/microorganisms7010014
http://doi.org/10.1111/j.1753-4887.2012.00493.x
http://www.ncbi.nlm.nih.gov/pubmed/22861806
http://doi.org/10.1038/s41522-019-0091-8
http://doi.org/10.1073/pnas.0407076101
http://doi.org/10.1038/nature05414
http://doi.org/10.1186/s13073-016-0303-2
http://www.ncbi.nlm.nih.gov/pubmed/27098727
http://doi.org/10.1136/gutjnl-2015-310283
http://www.ncbi.nlm.nih.gov/pubmed/26740296
http://doi.org/10.1016/S2468-1253(17)30147-4
http://doi.org/10.1073/pnas.0605374104
http://www.ncbi.nlm.nih.gov/pubmed/17210919
http://doi.org/10.1007/s00018-015-2061-5
http://www.ncbi.nlm.nih.gov/pubmed/26459447
http://doi.org/10.1007/s11912-016-0528-7
http://doi.org/10.1016/j.febslet.2014.09.039
http://doi.org/10.3945/ajcn.110.010132
http://doi.org/10.1073/pnas.0504978102
http://doi.org/10.1038/4441022a
http://www.ncbi.nlm.nih.gov/pubmed/17183309
http://doi.org/10.1038/ijo.2008.155
http://www.ncbi.nlm.nih.gov/pubmed/18779823
http://doi.org/10.1038/s41586-020-2269-x
http://doi.org/10.3389/fimmu.2020.00906
http://www.ncbi.nlm.nih.gov/pubmed/32582143
http://doi.org/10.3390/nu11071613
http://doi.org/10.1073/pnas.1219451110
http://doi.org/10.1136/gutjnl-2020-322260
http://doi.org/10.3390/ijms22042121
http://doi.org/10.1080/14712598.2019.1598372
http://doi.org/10.3389/fonc.2020.600573

	Introduction 
	Methods and Materials 
	Diet-Induced Obesity and Experimental Design 
	16s rRNA Sequencing 
	Metagenomics 
	DNA Extraction and Library Preparation 
	Sequence Technology and Processing 

	Taxonomic and Functional Analyses 

	Results 
	Bacterial 16S rRNA Sequencing 
	Metagenomic Profiles 
	Community Composition: Visualizing Similarity among Microbiomes 
	Functional Profiles of Bacteria 

	Discussion 
	Conclusions 
	References

