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Abstract
Purpose: Magnetic resonance-guided online adaptive radiation therapy (MRgOART) requires accurate and efficient segmentation.
However, the performance of current autosegmentation tools is generally poor for magnetic resonance imaging (MRI) owing to day-to-
day variations in image intensity and patient anatomy. In this study, we propose a patient-specific autosegmentation strategy using
multiple-input deformable image registration (DIR; PASSMID) to improve segmentation accuracy and efficiency for MRgOART.
Methods and materials: Longitudinal MRI scans acquired on a 1.5T MRI-Linac for 10 patients with abdominal cancer were used. The
proposed PASSMID includes 2 steps: applying a patient-specific image processing pipeline to longitudinal MRI scans, and populating
all contours from previous sessions/fractions to a new fractional MRI using multiple DIRs and combining the resulted contours using
simultaneous truth and performance level estimation (STAPLE) to obtain the final consensus segmentation. Five contour propagation
strategies were compared: planning computed tomography to fractional MRI scans through rigid body registration (RDR), pretreatment
MRI to fractional MRI scans through RDR and DIR, and the proposed multi-input DIR/STAPLE without preprocessing, and the
PASSMID. Dice similarity coefficient (DSC) and mean distance to agreement (MDA) with ground truth contours were calculated slice
by slice to quantify the contour accuracy. A quantitative index, defined as the ratio of acceptable slices, was introduced using a criterion
of DSC > 0.8 and MDA < 2 mm.
Results: The proposed PASSMID performed well with an average 2-dimensional DSC/MDA of 0.94/1.78 mm, 0.93/1.04 mm, 0.93/
1.06 mm, 0.93/1.14 mm, 0.92/0.83 mm, 0.84/1.53 mm, 0.86/2.39 mm, 0.81/2.49 mm, 0.72/5.48 mm, and 0.70/5.03 mm for the liver,
left kidney, right kidney, spleen, aorta, pancreas, stomach, duodenum, small bowel, and colon, respectively. Starting from the third
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fractions, the contour accuracy was significantly improved with PASSMID compared with the single-DIR strategy (P < .05). The mean
ratio of acceptable slices were 13.9%, 17.5%, 60.8%, 70.6%, and 71.8% for the 5 strategies, respectively.
Conclusions: The proposed PASSMID solution, by combining image processing, multi-input DIRs, and STAPLE, can significantly
improve the accuracy of autosegmentation for intrapatient MRI scans, reducing the time required for further contour editing, thereby
facilitating the routine practice of MRgOART.
� 2020 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

With the incorporation of a magnetic resonance im-
aging (MRI) scanner into a traditional linac machine (eg,
MRI_Linac),1 MRI-guided (MRg) online adaptive radia-
tion therapy (OART) is being introduced into the clinic.
For each fraction, MRI with superior soft tissue contrast
and possibly functional information is acquired before
treatment delivery to provide patient anatomy of the day
without additional radiation exposure. Thus, an adaptive
treatment plan can be developed using the fractional MRI.
MRgOART has to be efficient because the plan adapta-
tion must be accomplished online while the patient is on
the couch awaiting treatment.2 Currently, the bottleneck
in the process is the efficiency and accuracy of seg-
menting the patient’s daily anatomy because the seg-
mentation affects all subsequent processes, such as plan
optimization, evaluation, and accumulation.

Manual segmentation is tedious and time-consuming,
and can take >30 minutes,3 presenting a barrier to wide-
spread implementation for OART. Registration-based con-
tour propagation is a way to accelerate the contouring
process, whereby organ contours from a reference image are
mapped to the fractional image through image registration,
either rigidly or deformably. The performance of the rigid
registration is usually limited by patient anatomic changes,
such as weight loss, tumor shrinkage, and organ motion.
To account for these changes, deformable image registration
(DIR)ebased contour propagation is performed by estab-
lishing voxel-to-voxel spatial correspondence through an
iterative optimization process that maximizes the similarity
between the fractional and reference images.4 With the
availability of several commercial systems, DIR has gained
widespread acceptance for the application of automatic
contouring for specific treatment sites.5 For instance, clini-
cally acceptable DIR-based autosegmentations have been
reported in regions that experience minimal deformation,
such as the head and neck region.6 However, current DIR
algorithms for organs that may exhibit large deformations,
such as the abdominal organs, frequently do not yield
acceptable results.5

In current use of the DIR-based contour propagation
method, only 1 single reference image set is used.7 The
reference is typically chosen to be a precontoured image
set from the same subject (ie, previously acquired images)
or from other subjects.8 McLaren et al proposed
population-based average contour templates for DIR using
multiple trainning images/contours to better accomodate
subject variations.9 Intrapatient fractional MRI scans ac-
quired during MRgOART share inherently higher anatomic
and image similarity over interpatient images. In current
MRgOART practice, target(s) and critical structures are
usually autocontoured and then manually modified for plan
adaptation for each fraction.10 Longitudinal images acquired
from a patient’s previous fractions contain the anatomy
variation for the patient. Therefore, these images are poten-
tially useful to provide patient-specific information that
would aid in the autosegmentation of new fractional
images. However, these intrapatient image characteristics
have been ignored in general autosegmentation solutions.

Unlike standardized computed tomography (CT) im-
ages, MRI intensities do not possess tissue-specific
numeric meanings.11 Significant intensity variations have
been observed among images across subjects, protocols,
and scanners. Intensity inhomogeneities exist even for the
same patient using the same protocol on the same scan-
ner.12 This inherent feature of MRI scans can adversely
impact the accuracy and precision of any intensity-based
image analysis procedure, such as registration, segmenta-
tion, and quantitative radiomics studies.13,14 Image pro-
cessing methods that can improve the image quality or
similarity between the subject and reference images may
potentially improve the performance of DIR and DIR-
based autosegmentation.

In this study, we proposed a novel patient-specific
autosegmentation strategy using multi-input DIR (PASS-
MID) that combines an image processing pipeline and
multi-input DIRs to improve the accuracy and efficiency of
autosegmentation. The feasibility and effectiveness of the
proposed approach was demonstrated using fractional MRI
scans from patients who underwent MRgOART with a
1.5T MRI-Linac (Unity, Elekta AB) at our institution. To
the best of our knowledge, there is no similar approach
reported in the literature.
Methods and Materials

Images and contours

Fractional MRI scans acquired before treatment de-
livery from 10 patients with abdominal cancer (4

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Magnetic resonance imaging acquisition parameters for each patient

Patient no. Tumor site No. of images Protocol Echo Time/msec Repetition time in ms Flip angle in degrees

1 Pancreas 7 FFE 1.44 4.11 4
3.30 6.80 25

2 Liver 7 FFE 1.44 4.11 4
3.30 6.80 25

3 Liver 7 FFE 1.44 4.11 4
3.30 6.80 25

4 Pancreas 7 FFE 3.30 6.80 25
5 Liver 6 tFE2 1.85 4.60 25
6 Liver 7 tFE 1.85 4.60 25
7 Pancreas 7 btFE3 2.07 4.30 50
8 Left adrenal 7 btFE 2.07 4.30 50
9 Liver 7 btFE_f4 2.07 4.30 50
10 Pancreas 7 btFE 2.07 4.30 50

Abbreviations: btFE Z balanced turbo field echo; btFE_f Z fat suppressed balanced fast field echo; FFE Z fast-field echo; tFE Z turbo-field echo.
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pancreas, 5 liver, and 1 adrenal) treated with MRgOART
on the MRI-Linac were used to demonstrate the proposed
method. For each patient, 7 longitudinal MRI scans from
the MRI-Linac, including a pretreatment MRI scan (for
imaging optimization) taken before the first fraction and
6 fractional MRI scans (except for 1 patient with liver
cancer with only 5 fractional MRI scans) were used. MRI
acquisition parameters, including protocol time, echo
time, repetition time, and flip angle, are summarized in
Table 1 for each patient. Each MRI scan consisted of 63
to 100 slices with a spatial resolution of 1.6 mm in each
2-dimensional (2D) transversal slice and 5 mm in slice
thickness. For each patient, an optimal scanning protocol
for better tumor/organs-at-risk visualization was deter-
mined in the imaging optimization session before the first
treatment. In our current clinical practice of MRgOART,
a set of free-breathing 4-dimensional MRI scans15 were
acquired to reconstruct a motion-averaged image set.
Contours of target and organs at risk were first rigidly
propagated from planning CT to the fractional MRI scans
and then edited manually by the MRI-Linac team mem-
bers (ie, physicians, physicists, and therapists) using a
parallel recontouring workflow.10 For this retrospective
study, these clinical contours were manually checked and
modified by 2 experienced researchers and then used as
the ground truth. Ten abdominal organs at risk were
included: liver, left kidney, right kidney, spleen, aorta,
pancreas, stomach, duodenum, small bowel, and colon.
Proposed solution

The proposed PASSMID, as illustrated in Figure 1,
includes 2 steps. First, a patient-specific MRI processing
pipeline is applied to the longitudinal MRI scans of the
patient to improve the image quality and similarity. Sec-
ond, all images along with the contours from previous
sessions/fractions are populated onto the MRI of a
subsequent fraction by multiple DIRs, and the resulting
deformed contours are then combined using a statistical
label fusing algorithm (ie, simultaneous truth and
performance level estimation [STAPLE]15) to obtain the
final consensus segmentation for the fractional MRI.
The STAPLE method was originally proposed for the
estimation of the unknown ground truth from multiple
manual segmentations of the same image.15 In this study,
the STAPLE method was applied to the fusion of con-
tours from multiple intrapatient DIR-based segmentations.
Preprocessing pipeline

The proposed image processing pipeline in PASSMID
consists of 4 steps. The first step is bias correction,
whereby all MRI scans are corrected for the radio-
frequency coil inhomogeneity via an intensity-based
nonparametric bias correction method (ie, N4 algo-
rithm).16 For the second step, denoising, the anisotropic
diffusion filter17 was used for each image set to smooth
noisy pixels while preserving the intensity of most edges.
The third step involves intensity clipping. To clip off the
air/noisy voxels outside the body and high-intensity outlier
voxels, each image is thresholded using an intensity
threshold, determined as the first peak and the 99.5
percentile from the histogram (bin width 100). The fourth
and final step is intensity normalization. All images are first
linearly normalized to a maximum intensity of 10240.
Compared with the pretreatment MRI from the same pa-
tient, if the Pearson correlation coefficient is <0.99, a
landmark-based histogram matching was performed to
improve the image similarity.18

Bias correction and denoising were performed using
commercial software (MIM Software, Cleveland, OH),
and the succeeding steps were done automatically using
an in-house Matlab program.



Figure 1 Proposed patient-specific autosegmentation strategy using multiple-input deformable image registration.
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Automatic contour propagation strategies

Five autogenerated contour sets on each fractional MRI
scan were generated using the following strategies: S1,
CT-MRI-rigid (rigidly transferring the ground truth con-
tours from the planning CT to the fractional MRI using
rigid registration); S2, MRI-MRI-rigid (rigidly transferring
the ground truth contours from the pretreatment MRI to
each fractional MRI); S3, original-single (propagating the
ground truth contours from the pretreatment MRI to a
fractional MRI using DIR without first processing the
MRI image); S4, original STAPLE (populating the con-
tours from all previous MRI scans to a new fractional
MRI using DIR without image processing, then fusing all
contours using the STAPLE algorithm); and S5, PASS-
MID (repeating the multiple-input DIR method described
in S4, but using the processed MRI scans).

The rigid registration was performedmanually using the
MIM software to ensure that gross tumor volume contours
were aligned as accurately as possible. For DIR and
STAPLE fusion, a research software (ADMIRE, research
3.7-beta1, Elekta AB, Stockholm, Sweden) was used.
The general image registration framework in ADMIRE
consists of 3 major steps: global mutual information-based
linear registration, block-matching-based 3-dimensional
nonlinear image registration, and nonparametric full free-
form deformable registration with a hybrid image matching
metric.19-21

Contour quality evaluation

For every autogenerated contour from different strate-
gies, 2 similarity indices (ie, Dice similarity coefficient
[DSC] and mean distance to agreement [MDA]) with the
corresponding ground truth contours were calculated to
quantify the contouring accuracy. For a large or serial
organ, such as the liver and bowels, different ranges were
delineated for different fractions. As a result, the autogen-
erated contours (both rigid and DIR contours) may have
different numbers of slices compared with the ground truth,
which deteriorates the 3-dimensional volume-overlapping
index (ie, 3-dimensional DSC). To avoid this, both theDSC
andMDAwere calculated on a slice-by-slice basis, and the
mean value across all slices were reported. A pair-wise t test
was used to evaluate the statistical difference between any
pairs of contours from different strategies, and P< .05 was
considered statistically significant.

In addition, the impact of using different numbers of
prior images/contours in the proposed PASSMID method
was also evaluated. For simplification purposes, only re-
sults from the single-input DIR-based method (S3) and
PASSMID method (S5) were used for this comparison.
For S3, only the pretreatment MRI scan was used for all
fractional MRI scans, but for PASSMID, the number of
prior images/contours was equal to the corresponding
fraction number. The difference between 2D DSC for
each fraction and the trends of mean value with the
increased number of inputs was analyzed and compared
between the 2 methods.

To evaluate the improvement on the contouring effi-
ciency, a quantitative index, defined as the ratio of
acceptable slices (ROA) was introduced for each strategy
using a criterion of DSC > 0.8 and MDA < 2 mm based
on the recommendation by the AAPM Task Group report
132.22 A hgher ROA indicates less time needed for further
manual contour editing.



Figure 2 Box-and-whisker plots of 2-dimensional Dice similarity coefficient and mean distance to agreement for autogenerated
contours (liver, right kidney, stomach, duodenum, small bowel, and colon) using different strategies. The sample distribution is also
shown with black dots. )P < .05 based on the paired t test of the linked 2 boxes; yP < .01 based on the paired t test of the linked 2
boxes; zP < .001 based on the paired t test of the linked 2 boxes.
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Results

In general, the contour quality improves gradually
from strategy 1 to 5. The accuracy of DIR-based contours
(S3, S4, and S5) is higher than those using rigid regis-
tration (S1 and S2). The proposed PASSMID method had
the best performance, with an average 2D DSC/MDA of
0.94/1.78 mm, 0.93/1.04 mm, 0.93/1.06 mm, 0.93/1.14
mm, 0.92/0.83 mm, 0.84/1.53 mm, 0.86/2.39 mm, 0.81/
2.49 mm, 0.72/5.48 mm, and 0.70/5.03 mm for the liver,
left kidney, right kidney, spleen, aorta, pancreas, stomach,
duodenum, small bowel, and colon, respectively. Figure 2
shows the contour accuracy comparisons of 2D DSC and
MDA for 6 representative organs (liver, right kidney,
stomach, duodenum, small bowel, and colon) generated
from different strategies. For the multi-input DIR strate-
gies (S4 and S5), 2D DSCs are all significantly higher
(P < .001) and 2D MDAs are significantly smaller
(P < .01) compared with those from the commonly used
rigid propagation (S1 and S2) or single-reference DIR-
based contours (S3). Moreover, the contour accuracy is
further improved with the proposed PASSMID method
with significant difference (P < .05) compared with the
results using original images (S4). The contour accuracy
comparison for the remaining organs (aorta, left kidney,
pancreas, and spleen) is provided in the Figure E2.

Figure 3 shows the 2D DSC comparison for different
fractional contours (liver, right kidney, stomach, duo-
denum, small bowel, and colon) from the single-input
DIR strategy (S3) and proposed PASSMID method
(S5). The number of inputs for PASSMID was equal to
the corresponding fraction number; thus, the latter was
used in Figure 3 to better present the results. For S3, the
mean 2-dimensional DSC of each fraction (blue x samples



Figure 3 Comparison of 2-dimensional Dice similarity coefficient for fractional contours of the (a) liver, (b) right kidney, (c) stomach,
(d) duodenum, (e) small bowel, and (f) colon, using strategy S3 (green) and S5 (red). The mean values of each fraction are highlighted
with red and blue x symbols, and the corresponding linear trendlines are presented in dash and dotted lines for S5 and S3. Statistically
significant difference between S5 and S3 for certain fractions are illustrated in pink. )P < .05; yP < .01; zP < .001.
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and dotted trendlines) shows no or minor variations across
different fractions. In contrast, for PASSMID, the mean
2D DSC of each fraction (red x samples and dash
trendlines) increases with the increased number of addi-
tional prior images/contours. As indicated by the purple
star samples on top of each column, starting from the third
fractions (ie, with >3 prior images/contours), significant
improvement (P < .05) was observed for PASSMID
compared with S3.

Representative examples of the autogenerated contours
using the proposed PASSMID method are depicted in
Figure 4. The STAPLE algorithm was applied for 5 or 6
DIR-based contours from preprocessed MRI scans of
previous fractions to get consensus structures for the fifth
and sixth fractional MRI scans. The corresponding
2-dimensional DSC and MDA for abdominal organs are
reported in the tables below Figure 4. Autogenerated
contours for most organs, including the liver, spleen,
spinal cord, and kidneys, have 2D DSC > 0.8 and 2D
MDA < 2 mm for both fractions, which are acceptable
based on the recommendations by the AAPM Task Group
report 132.22 Even for challenging gastrointestinal organs



Figure 4 Autogenerated contours using the proposed patient-specific autosegmentation strategy using multiple-input deformable
image registration method (S5) for the fifth and sixth fractional images from 1 patient. The 2-dimensional Dice similarity index and
mean distance to agreement are listed in the table below each image.
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(eg, stomach, duodenum, colon, and small bowel), the
mean 2D DSCs are in the range of 0.72 to 0.93 for
fraction 5 and 0.81 to 0.94 for fraction 6.

Table 2 shows the ROA values for different organ
contours from different strategies. The mean ROAs for the
selected organs contours are 13.9%, 17.5%, 60.8%, 70.6%,
and 71.8% for the 5 strategies. Only a very small per-
centage of slices are acceptable for the rigid registration-
based strategies (S1 and S2), which is expected consid-
ering the large daily anatomy change. The ROA of the
multi-input DIR strategy (S4 and S5) are largely increased,
indicating a reduced time for manual contour editing. The
ROAs of the small bowel and colon (not shown in Table 2)
are quite low (<20%) for all strategies.
Discussion

The results demonstrate that the proposed image pre-
processing pipeline can effectively improve the image
quality and similarity for intrapatient MRI scans and
therefore help achieve better DIR-based autosegmenta-
tion. The pipeline is designed for patient-specific intensity
normalization of fractional MRI scans acquired during
MRgOART, which are usually acquired with the same
scanning protocol and supposed to share a similar image
histogram for a given patient. The pipeline is not expected
to solve the MRI intensity standardization issue, which is
a more complex problem and has been investigated in
other studies.23,24

We compared the results from 5 registration-based
contour propagation strategies. Two rigid registration
strategies (rigid propagation from planning CT to frac-
tional MRI and from pretreatment MRI to fractional MRI)
were included to compare the performance of the newly
proposed method with current clinical MRgOART prac-
tice. Our results indicate that contour accuracy increased
significantly using the multi-input DIR strategy, con-
firming the benefit of including the patient’s prior longi-
tudinal images and contours into the autosegmentation



Table 2 Comparison of ROA for different strategies using a quantitative criterion of Dice similarity coefficient > 0.8 and mean
distance to agreement < 2 mm based on the recommendation by the AAPM Task Group report 132

ROA/%* Mean SD

Liver Left Kidney Right Kidney Spleen Pancreas Stomach Duodenum Aorta

S1: CT-MRI-rigid 4.2 25.9 19.3 10.0 4.9 1.2 5.9 39.4 13.9 13.3
S2: MRI-MRI-rigid 9.7 24.2 22.0 16.5 12.6 4.3 6.2 44.3 17.5 12.9
S3: Original-single 50.2 78.8 75.5 70.8 50.4 33.2 36.8 90.3 60.8 20.9
S4: Original-STAPLE 66.2 85.1 81.7 80.0 64.1 48.3 47.6 92.2 70.6 16.8
S5: PASSMID 67.6 86.2 82.4 81.5 65.2 50.1 49.2 92.3 71.8 16.4

Abbreviations:MRIZ magnetic resonance imaging; PASSMIDZ patient-specific autosegmentation strategy using multiple-input deformable image
registration; ROA Z ratio of acceptable slices; STAPLE Z simultaneous truth and performance level estimation; SD Z standard deviation.

* The small bowel and colon are excluded because the ROAs are quite low (<20%) for all strategies.

Advances in Radiation Oncology: NovembereDecember 2020 Improving MRI autosegmentation 1357
process. As expected, the accuracy increased with the
increasing number of prior image/contour sets used.
Significant improvement was observed for most critical
organ contours using >3 prior image sets (ie, starting
from the third fraction). Currently, at our clinic, only 1
pretreatment image is acquired. However, acquiring >1
set of pretreatment images and use them for the multi-
input contour propagation strategy to increase the contour
accuracy is possible, especially for the first and second
fractions, which are less accurate in this study.

For the sake of efficiency, only target and adjacent
organs at risk would be carefully edited in our current
adaptive replanning practice. However, accurate contours
are always desired for dose accumulation and plan eval-
uation. As indicated by the increased ratio of acceptable
contour slices for different organs, the proposed method
can reduce the time required for further manual editing
during MRgOART. With a fast autosegmentation, the
online daily replanning process can be practiced routinely.

In this study, we have demonstrated the feasibility of
the proposed PASSMID method for abdominal organs
using MRI scans from a specific MRI-Linac system. This
approach can be easily extended for other organs or tumor
sites for other MRI-guided systems, where multiple
fractional images are available.

In recent years, various machine learning-based auto-
segmentation methods have been developed to help the
image segmentation task. Good organ segmentation re-
sults have been reported,23,25 and some commercial
products have been implemented at the clinic for CT-
based autosegmentations. However, as mentioned
earlier, image intensity in MRI scans can vary remarkably
for different acquisition protocols or different scanners,
indicating that a specific autosegmentation model may
need to be trained for each scenario. To train a robust,
widely applicable model, a large data set, including im-
ages and high-quality contours, would be needed. At this
early stage of MRgOART, such a large data set is not yet
available. The proposed patient-specific autosegmentation
approach, which does not require a large training data set,
demonstrates comparable results in terms of contour
accuracy with state-of-the-art machine learning-based
autosegmentation methods for abdominal MRI scans. A
detailed comparison is provided in the Table E1. Only
images and contours acquired from previous sessions/
fractions for the same patient are required; thus, the pro-
posed PASSMID method can be a practical alternative for
the emerging MRgOART.

Even with significantly increased contour accuracy,
manual review and editing are still needed. As a part of an
underdevelopment autosegmentation tool for OART in
our group, a contour quality assurance method will be
used to identify the inaccurate slices from the autogen-
erated contours using quantitative MRI texture and shape
features. The identified inaccurate slices will then be
automatically corrected using a texture map-based active
contour method. Preliminary results show that the 2D
contour quality assurance method yielded an average
sensitivity of 91% and specificity of 89% for a set of
autogenerated contours from T1-weighted noncontrast
MRI scans of patients with pancreatic cancer,26 and the
contour-correction method can quickly and significantly
improve the quality of the inaccurate contours.27 Our
focus of future research is to integrate all pieces into a
fully automatic and robust autosegmentation tool, saving
substantial time for the segmentation and evaluation
process and thereby facilitating the routine practice of
MRgOART.
Conclusions

The proposed PASSMID method that integrates MRI
preprocessing and multi-DIR with the STAPLE algorithm
can significantly improve the accuracy of contour gener-
ation on longitudinal MRI scans of a patient. The
PASSMID performance is improved with an increasing
number of previous longitudinal, fractional image sets.
With further development, this approach can improve the
efficiency and accuracy of segmentation on fractional
MRI scans, thereby facilitating the routine practice of
MRgOART.
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