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ABSTRACT The draft genome sequence of Pseudomonas gingeri LMG 5327 (NCPPB
3146), the causative agent of ginger blotch in Agaricus bisporus, is reported. To-
gether with another mushroom pathogen, Pseudomonas agarici, it belongs to a
distinct phylogenomic group.

Pseudomonas gingeri is responsible for ginger blotch disease on Agaricus bisporus
fruit bodies (1–3). This species is related to another mushroom pathogen, P. agarici

(4, 5), that belongs to a distinct phylogenomic group (6, 7). Here, we report the draft
genome sequence of Pseudomonas gingeri type strain LMG 5327 (NCPPB 3146), deter-
mined by an Illumina HiSeq 2000 sequencing system. A total of 9,604,938 reads were
used for de novo assembly with the Velvet assembler (8). A total of 192 contigs, with an
N50 value of 69,954 bp (about 120-fold median coverage), were generated. The final
assembled length comprises 7,643,850 bp, with a G�C content of 62.6%, and the
longest contig size is 252,545 bp. Automated annotation using the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP) (9) predicted 6,860 coding DNA sequences (CDS)
and 57 tRNA genes.

The characteristic secretion systems of proteobacteria are all present in P. gingeri,
including gene clusters of type III and type VI secretion genes, with potential relevance
for its pathogenicity and interaction with competing bacteria, respectively. In the
mutS-cinA intergenic region, a tailocin gene cluster has been recruited for the produc-
tion of two phage tail-like bacteriocins of different phage ancestries (Siphoviridae and
Myoviridae) to support interference competition (10). The capacity to produce special-
ized metabolites that mediate microbial antagonism is inferred from the presence
of biosynthetic gene clusters for hydrogen cyanide and 2,4-diacetylphloroglucinol
(11). Besides the nonribosomal peptide synthetases for pyoverdine synthesis, a
number of gene clusters with such enzymes are present, which likely participate in
building the peptide-based metabolome of P. gingeri. The presence of a luxR-luxI
gene pair can be linked to the high-level production of 3-oxo-C4-homoserine
lactone (12). Adding to the anabolic capacity is a gene cluster for degradation of
alkyl-substituted phenols, shared with Pseudomonas alkylphenolica (13), and detox-
ification of organoarsenicals (14).
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The draft genome sequence of P. gingeri LMG 5327 reported here is a valuable
source of information for studying the bacterium’s interaction with its host and its
pathogenicity.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number POWE00000000. The version de-
scribed in this paper is version POWE01000000.
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