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Skin Carotenoid Index in a large 
Japanese population sample
Akira Obana1,2, Yuko Gohto1, Werner Gellermann3, Igor V. Ermakov3, Hiroyuki Sasano1, 
Takahiko Seto1 & Paul S. Bernstein   4

Carotenoids are anti-oxidative agents. Human skin and eyes contain specific carotenoid species known 
to prevent various pathologies caused by oxidative stress. We quantified skin and eye carotenoid 
levels and investigated their potential correlation in a population including 985 Japanese patients 
and staff members of an ophthalmology clinic (577 men, 408 women, mean age of 69.7 ± 13.6 [SD]). 
Skin carotenoid (SC) and macular pigment (MP) levels were measured with reflection spectroscopy 
and autofluorescence imaging methods, respectively. The mean SC index was 343.1 ± 142.1 (SD). SC 
indices for women were higher than for men (382 vs 315, p < 0.001). Smokers and overweight subjects 
(BMI ≥ 25) had lower SC indices. Subjects taking lutein supplements had higher SC indices than non-
supplementing subjects (415 vs 325, p < 0.001). SC and MP indices were significantly correlated. The 
obtained data set can be used for reference purposes by Japanese subjects and researchers interested in 
tissue responses to diets high in carotenoids and lutein supplementation.

Carotenoids are organic pigments produced by plants and algae. Their molecular structures were first described 
for beta-carotene and lycopene by Nobel laureate P Karrer in 19301. The structures are composed of eight iso-
prene molecules and a total of 40 carbon atoms. The carbon atoms are arranged in a chain like fashion with 
alternating carbon single and double bonds. The number of double bonds varies between 9 and 11 depending on 
the particular carotenoid species. Karrer et al. found that beta-carotene serves as provitamin in the production 
of vitamin A. Besides their current most common use for color, odor, and taste manipulations, carotenoids also 
have important functions as anti-inflammatory and anticancer agents2. Their anti-oxidative function has been 
explained as resulting from quenching of singlet oxygen and the scavenging of free radicals by the conjugated car-
bon chain3. Among the more than 750 carotenoids existing in nature, humans take up about 30 carotenoids with 
their diet. Once deposited into various target tissues, the carotenoids are thought to provide protection against 
oxidative stress, which can lead to age-related pathologies as well as various types of cancers4–6.

Carotenoids found in human skin include lycopene, alpha-. beta-, gamma-, and delta-carotene, 
beta-cryptoxanthin, lutein, and zeaxanthin. They are present throughout the epidermis, dermis, and also the 
subcutaneous fat4,7,8. These carotenoids protect the skin against sunlight induced oxidation effects. Ultraviolet 
(UV) light has been investigated as the main generator for oxidants, while blue wavelengths of visible light were 
found to also produce free radicals in this tissue9. Lutein and zeaxanthin, which both absorb blue light, have been 
reported to reduce lipid peroxidation and to increase moisture levels in the skin10. So far, skin carotenoid levels 
have been investigated mainly in Caucasians, while studies in Asian populations are rather limited11.

The healthy human eye accumulates the three carotenoids in the retina: lutein, zeaxanthin, and 
meso-zeaxanthin12,13. Highest levels are typically located in the central region of the retina as macular pigment 
(MP) and are located anteriorly to the photoreceptors responsible for color vision. Lutein and zeaxanthin accu-
mulate in the retina in a highly selective uptake process controlled by proteins that specifically bind only these 
two species14,15. meso-Zeaxanthin is produced from lutein by retinal pigment epithelium-specific protein 65 kDa 
(RPE65) in the retinal pigment epithelial cells16. The MP absorbs blue light, improves contrast sensitivity, reduces 
glare17,18, and prevents oxidative damage to photoreceptor cells and retinal pigment epithelial cells via photo-
chemical reactions19. Previous reports showed low to moderate correlation coefficients between skin carotenoid 
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(SC) levels and MP optical density (MPOD) levels (r = 0.34 in newborn infants, 0.42 in children, 0.663 in oph-
thalmology patients)20–22.

Low intake of lutein and zeaxanthin-rich foods, low concentrations of serum lutein and zeaxanthin, and low 
levels of MP are all risk factors for developing age-related macular degeneration (AMD)6,23–25. Prospective stud-
ies clarified the efficiency of eye supplements, containing lutein and zeaxanthin along with other antioxidant 
vitamins, in reducing the disease progression to advanced AMD26. The beneficial effects of these supplements 
are difficult to perceive on an individual basis, and patients often stop supplementation due to missing feedback 
on their MP status. If a quantitative and easily applicable diagnostic method that could visualize dietary and/or 
supplementation effects were to exist, it could potentially result in fewer AMD cases. A direct measurement of 
MP levels would be most desirable for this purpose, but the two currently existing diagnostic methods, which are 
based on heterochromatic flicker photometry and autofluorescence imaging methods, respectively, have inherent 
limitations. Flicker photometry has a relatively long examination time and is difficult to use with the elderly; 
autofluorescence imaging requires mydriasis in combination with high light intensities for accurate MP meas-
urements, and it is strongly susceptible to lens opacification occurring with increasing subject age. In contrast, 
indirect assessment via SC level measurements could provide a non-invasive rapid screening alternative, which 
can be carried out with resonance Raman spectroscopy (RRS) or reflection spectroscopy (RS) methods7,27–30.

RRS has already been used for almost two decades in the nutritional supplement industry. Since RRS measures 
Raman signals of carotenoid vibrations, it has high specificity and precision. However, it requires a narrow-band 
excitation source, a high-resolution spectrometer, and, due to the relatively weak Raman signals, it also requires 
highly sensitive detection schemes. In comparison, RS can take advantage of the relatively strong light signals 
reflected from the skin, and the instrumentation can be configured with relatively simple light sources, filters 
and/or low-resolution spectrographs. RS has a slightly reduced specificity and precision compared to RRS, but 
RS is less complex than RRS, less expensive, and has the potential for widespread use also outside the nutritional 
supplement industry.

In the present study, we evaluated SC levels in more detail and in a larger sample size compared to our previ-
ous study11. Also, we investigated the correlation with MP levels. The obtained SC indices can serve as an initial 
national database in Japan.

Results
Subject characteristics.  Table 1 shows the demographic data for all subjects. Since the majority of the 
subjects were patients of an ophthalmology clinic, the subject age is skewed to higher ages (Fig. 1). Significant 
differences among patients existed for age, tobacco smoking history, body mass index (BMI), lutein supplementa-
tion history, history of diabetes, and the various types of macular disorders. Men were older, had a more frequent 
tobacco smoking habit, higher BMI, and a higher rate of diabetes than women. Lutein supplementation was more 
frequent in women; AMD occurrence was more frequent in men.

Skin carotenoid (SC) indices.  The SC indices of all subjects ranged from 32 to 914, and the mean was 
343.1 ± 142.1 (SD). The corresponding histogram is shown in Fig. 2. Relationships between SC indices and age 
or BMI are respectively shown in Figs 3 and 4. The correlation coefficient for SC indices and age was 0.065 
(P = 0.040, Pearson’s correlation coefficient test), and for SC indices and BMI it was −0.092 (P = 0.004, Pearson’s 
correlation coefficient test). When BMI was classified into two groups, with one containing normal and low body 

Total (985) Male (577) Female (408) P

Age range (years) 16–97 18–93 16–97

Mean age (SD) 69.7 (13.6) 70.7 (12.4) 68.3 (15.1) 0.008 (Welch’s t-test)

Tobacco* N499, P316, C122, 
Unknown 3

N160, P302, C115, 
Unknown 0

N362, P28, C15, 
Unknown 3 <0.001 (chi-square)

BMI range 12.5–39.6 15.2–39.6 12.5–34.5

Mean BMI (SD) 22.7 (3.5) 23.2 (3.4) 22.1 (3.6) <0.001 (t-test)

Lutein supplement N737, Y190, 
Unknown 4

N477, Y100, 
Unknown 0

N308, Y95, 
Unknown 5 0.002 (chi-square)

Diabetes N756, Y175 N457, Y120 N344, Y64 0.025 (chi-square)

   NDR 759 69 38

0.989 (chi-square)
   SDR 101 8 4

   PPDR 12 19 9

   PDR 18 24 13

Macular disorder

No disorder 190 114 141

<0.001 (chi-square)   AMD 435 320 122

   Others 262 143 145

Table 1.  Demographic data of all subjects. SD, standard deviation; *N, non-smoker, P, past smoker, C, current 
smoker; BMI, body mass index; NDR, no diabetic retinopathy; SDR, simple diabetic retinopathy, PPDR, 
pre-proliferative diabetic retinopathy, PDR, proliferative diabetic retinopathy; AMD, age-related macular 
degeneration.
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weight (BMI < 25, N = 766) subjects and the other one containing overweight subjects (BMI ≥ 25, N = 219), SC 
indices for overweight subjects (317.7 ± 126.5 (SD)) turned out significantly lower than normal and low body 
weight subjects (350.3 ± 145.5 (SD), P < 0.001, t-test) (Fig. 5).

The ranges and means of SC indices for the main patient groups are shown in Table 2. Women had signif-
icantly higher SC indices than men (P < 0.001, Welch’s t-test). Subjects supplementing with lutein had signifi-
cantly higher SC indices than non-supplementing subjects (P < 0.001, Welch’s t-test). Significant differences in 
SC indices existed between the three smoking habit categories (P < t0.001, ANOVA), and multiple comparisons 
confirmed a significant difference between each pair of habits (P ≤ 0.001, Bonferroni). No statistically significant 
differences in SC indices existed between healthy subjects and subjects suffering from diabetes, or respectively, 
from any one of a large range of eye diseases, including AMD, high myopia, central serous chorioretinopathy, 
epiretinal membrane, macular hole, macular telangiectasia, and diabetic maculopathy.

Figure 1.  Histogram of subject age. The mean was 69.7 ± 13.8 (SD) years old.

Figure 2.  Histogram of skin carotenoid indices. The indices show a normal distribution with a slight skew to 
higher levels. The mean was 343.1 ± 142.1, (SD) and the median was 320 (95% CI, 334.2–352.0).

Figure 3.  Skin carotenoid index and age in all subjects. The Pearson’s correlation coefficient was small but 
significant (r = 0.069, P = 0.035).
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The analysis for potential correlations between SC indices and all recorded blood test variables is summarized 
in Table 3. Alb and TC were significantly positively correlated, and Hb was negatively correlated, although the 
correlation coefficients were small. HbA1c had a marginal negative correlation.

Figure 4.  Skin carotenoid index and body mass index in all subjects. Pearson’s correlation coefficient was small 
but significant (r = −0.087, P = 0.008).

Figure 5.  The mean skin carotenoid index of two groups classified by body mass index (BMI). Skin carotenoid 
indices of high BMI group was significantly lower than those of low BMI group (P < 0.001, t-test).

minimum maximum Mean (SD) P

Sex
Men 32 869 315.4 (129.6)

<0.001, (Welch’s t-test)
Women 117 914 382.1 (149.8)

Lutein supplement
No 32 892 324.9 (130.2)

<0.001, (Welch’s t-test)
Yes 136 914 414.9 (164.2)

Smoking habit

No 57 914 372.5 (149.1) <0.001, (ANOVA)
No/Past, <0.001
No/Current, <0.001
Past/Current, 0.001
(Bonferroni)

Past 56 869 323.4 (124.5)

Current 32 863 272.9 (121.6)

Diabetes
No 56 914 346.0 (142.5)

0.176 (t-test)
Yes 32 723 330.3 (139.8)

Macular disease

No 32 740 340.5 (141.9)

0.270 (ANOVA)AMD 56 914 346.2 (146.4)

Others 57 892 346.1 (135.9)

Table 2.  Skin carotenoid index of subjects with different characteristics.
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Dependent and independent variables in multiple regression analysis.  SC indices were chosen as 
dependent variables in the multiple regression analysis. All factors having significant influence on SC indices were 
chosen as independent variables. These included sex, age, lutein supplementation habit, smoking habit, BMI, Alb, 
Hb, and TC. Since subjects with AMD supplemented more frequently with lutein than others, macular disease 
was also included as an independent variable.

The results of all analyses are shown in Table 4. The coefficient of determination was 0.123. Tobacco smoking, 
lutein supplementation, and sex turned out as significant dependent variables.

Skin carotenoid (SC) index and macular pigment (MP) optical density.  A total of 150 eyes from 150 
subjects with a healthy retina in at least one eye were included for further correlation analyses. When both subject 
eyes were healthy, the eye scheduled for cataract surgery at a later stage was chosen for analysis. The age of the 
subjects ranged from 18 to 93 years, with a mean of 72.5 ± 10.5 years; 60 were men, and 90 were women. All eyes 
but one had a visual acuity higher than 20/25. The exception was an eye with a visual acuity of 20/30.

Table 5 lists the mean values of the measured local MPOD levels at each retinal eccentricity, the MPOD vol-
umes for the corresponding areas delineated by each eccentricity, and the correlation parameters between these 
MPOD volumes and SC indices. SC indices correlated significantly with local MPOD levels in the 0.43° to 4.02° 
eccentricity range, except for 1.99°, and they also correlated with the corresponding MPOD volumes. Correlation 
coefficients for 0° and 0.23° eccentricity were marginal.

It is well-known that lutein supplementation effectively induces an increase in MP levels/volumes, but whether 
lutein supplementation leads to increased SC levels is still unknown. Therefore, we analyzed the correlation 
between MPOD levels and SC indices in 139 subjects not supplementing with lutein, and the results were similar.

Discussion
The mean SC index for the 985 subjects was 343.1 ± 142.1 (SD), with lower indices in smokers and men relative to 
non-smokers and women. Subjects supplementing their diet with lutein scored higher than non-supplementing 
subjects. SC indices correlated significantly with MPOD levels, albeit with a rather modest coefficient.

The histogram of SC indices, ranging from a lowest index of 32 to a highest index of 913, shows that large 
differences (up to ~30-fold) can exist between subjects for their diet-derived skin carotenoid concentrations. The 
envelope of the histogram is near normal, with only a slight skew towards higher indices. These features are very 
similar to a previously published distribution pattern for a large population group of 32,942 subjects screened for 
SC levels in the U.S. via RRS31. Those RRS based SC levels ranged from 2,000 to 78,000, had a mean of 24,000. The 
minor difference in widths can be attributed to a combination of slightly different sensitivities between the two 
methods (a bit higher for RRS), numbers of the respective subject populations (1000 for RS vs 33,000 for RRS), 
and differences in the numbers of devices used for the data collection (one of RS, multiple devices for RRS).

It is interesting to compare our screening results with emerging data for other population groups. In a study 
involving SC screening of 54 healthy participants in a U.S. eye clinic via RS, the mean SC index was 29711. In 
a screening study involving customers of a convenience store in Eastern North Carolina, the mean SC indices 
obtained via RS were 239 ± 85.8 (SD) for African Americans and 225.4 ± 87.8 (SD) for Non-African Americans32. 
In comparison with these groups, the mean SC index for our Japanese population is significantly higher. As we 
did not examine the dietary habits of the screened participants, we cannot conclude whether this difference is due 
to dietary habits or effects on the underlying absorption of carotenoids into the tissue.

SC indices were 21% higher in women than men, 27% higher in non-smokers than current smokers, and 
32% higher in subjects taking lutein supplements. Also, there is no age effect. These results were similar to those 
in previous studies11,33–35, independent of the fact that most of the previous studies had used RRS for the skin 
measurements.

TP (410)
Alb 
(386) Hb (416) Cr (414)

eGFR 
(412) TC (389) TG (389) LDL (68)

HDL 
(75)

LDL/HDL 
(58)

HbA1c 
(166)

r 0.034 0.141 −0.105 −0.093 0.022 0.136 0.007 0.028 0.132 −0.095 −0.148

P 0.490 0.005 0.032 0.060 0.655 0.007 0.889 0.819 0.257 0.480 0.056

Table 3.  The correlation of skin carotenoid index and blood test variables. (), number of examinations; r, 
Pearson’s correlation coefficient; TP, total protein; ALB, albumin; Hb, hemoglobin; Cr, creatinine; eGFR, 
estimated glomerular filtration rate; TC, total cholesterol; TG, triglycerides; LDL, low-density lipoprotein, HDL, 
high-density lipoprotein, HbA1c, hemoglobin A1c.

Partial 
regression 
coefficient

Standardized 
partial regression 
coefficient P

95% confidential 
interval

Lower 
limit

Upper 
limit

Constant 377.4 357.5 397.4

Tobacco history −46.6 −0.24 <0.001 −68.0 −25.2

Lutein supplement 54.0 0.13 0.011 12.5 95.4

Sex −40.0 −0.14 0.012 −70.7 −8.6

Table 4.  Multiple regression analyses of skin carotenoid indices. R2 = 0.123, P < 0.001 (ANOVA).
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In human skin, lycopene and beta-carotene are predominant, while lutein accounts only for a much smaller 
percentage. Scarmo et al.36 reported lycopene and beta-carotene account for 76% of total carotenoids and lutein 
accounts for only 1.5% in punch-biopsied abdominal skin samples that contained also a relatively large fraction 
of subcutaneous tissue. But in much thinner, heel skin samples, Ermakov et al.8 recently reported that lutein 
accounts for ~15% of total carotenoids. Increases.of SC levels upon beta-carotene, lycopene, and vegetable juice 
consumption have been reported previously11,34,35,37 however, no interventional study has been performed yet 
with lutein as the sole carotenoid species. Since most Japanese lutein supplements contain only lutein or lutein 
and zeaxanthin but no other accompanying carotenoids, our finding can be viewed as indirect evidence that 
lutein also leads to increased SC levels, which would be consistent with their optical absorption in the same 
spectral region.

AMD is a multifactorial disease. Oxidative stress caused by blue light and tobacco smoking has been estab-
lished as one of the major causes. Subjects with high SC indices likely have high antioxidant activity in their light 
exposed tissues, which would include the retina. Therefore, we had speculated that subjects with high SC levels 
may have a lower frequency of AMD than subjects with low SC levels. Looking at the respective SC levels of the 
subjects without lutein supplementation, the mean SC index for AMD cases was 316.2 ± 127.6, while the index for 
healthy subjects was 331.1 ± 131.7, which is only an insignificant difference (P = 0.116, t-test). The low correlation 
coefficient between SC indices and MPOD levels can be considered as a major reason for this result.

In the multiple regression analysis, the absolute value of the standardized partial regression coefficient for 
tobacco smoking was higher than the values for gender and lutein supplementation. Smoking therefore is a 
stronger factor than gender for reduced SC indices, and lutein supplementation should be recommended par-
ticularly for male smokers. Obviously, the low decision factor of 0.123 of the multiple regression analyses clearly 
points to powerful additional factors affecting SC indices. Among these, dietary habits and genetic background 
can be assumed to be most important. Future studies designed to include these factors are needed to quantify 
their respective contributions.

Since 42% of all subjects underwent blood tests, we looked at correlations between SC indices and various 
blood analytes. Alb and TC levels revealed a positive correlation, albeit with small correlation coefficients. Since 
Alb levels in the blood are related to general nutrition, subjects with malnutrition or poor nutrient absorption 
can be expected to also have lower SC indices. Hb was negatively correlated with SC indices, but again with a very 
low correlation coefficient. Since blood is temporarily pushed out from the measured tissue volume by the Veggie 
Meter’s finger cover pressure, effects of residual tissue blood levels on the SC measurements can be excluded. 
The obtained result may warrant future studies into potential relationships between SC levels and biomarkers in 
blood.

The present results show a marginal, yet statistically significant correlation between SC indices and local 
MPOD levels and associated MPOD volumes for all retinal eccentricities investigated (with only one exception 
for 1.99°, see Table 5). The results were independent of lutein supplementation. These relatively low correlations 
are at variance with previous published higher correlations20–22. Conrady et al.22 reported a coefficient of 0.663 
between SC indices and total MPOD volume within 8.98°, while our results revealed only low coefficients of 0.231 
for volume and local MPOD correlations. The main differences between their study and ours is the device used 
for the measurement of SC levels, the subject race, age, and the lens transparency. The methodology for the skin 
measurement can be ruled out as a major factor in view of the high correlation between RRS and RS (the squared 

Eccentricity

All subjects (150) Subjects without lutein supplement (139)

Local MPOD (SD) r P Local MPOD (SD) r P

0° 0.78 (0.20) 0.150 0.067 0.78 (0.18) 0.189 0.026

0.23° 0.76 (0.18) 0.156 0.060 0.76 (0.18) 0.184 0.032

0.43° 0.71 (0.18) 0.220 0.008 0.71 (0.18) 0.232 0.007

0.47° 0.71 (0.18) 0.231 0.006 0.71 (0.18) 0.239 0.006

0.51° 0.71 (0.18) 0.226 0.006 0.71 (0.18) 0.22 0.008

0.9° 0.70 (0.17) 0.203 0.015 0.70 (0.17) 0.172 0.048

0.98° 0.69 (0.17) 0.185 0.025 0.68 (0.17) 0.153 0.075

1.99° 0.35 (0.13) 0.135 0.105 0.35 (0.13) 0.103 0.233

3.01° 0.25 (0.09) 0.224 0.007 0.25 (0.09 0.190 0.029

4.02° 0.20 (0.07) 0.231 0.005 0.20 (0.07) 0.208 0.016

Boundary MPOD volume r P MPOD volume r P

0.47° 361.6 (84.8) 0.206 0.013 362.2(85.4) 0.224 0.010

0.9° 1248.4 (288.6) 0.231 0.005 1247.1 (293.0) 0.219 0.011

0.98° 1474.3 (349.8) 0.221 0.007 1472.4 (355.3) 0.209 0.014

1.99° 4487.1 (1232.9) 0.154 0.061 4469.0 (1257.1) 0.124 0.146

3.01° 7423.6 (2278.5) 0.186 0.026 7388.4 (2324.6) 0.154 0.077

4.02° 10655.7 (3412.0) 0.188 0.024 10597.9 (347509) 0.154 0.078

8.98° 20187.2 (6672.1) 0.223 0.006 20079.6 (6748.7) 0.12 0.024

Table 5.  Local macular pigment optical density (MPOD) at nine eccentricities, MPOD volume within five 
eccentricities, and correlation with skin carotenoid indices.
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correlation coefficient (R2) is 0.8529 or 0.8811), leaving differences in subject age (59 ± 17 years in the previously 
published study22 versus 72.5 ± 10.5 years in the present one), race, and the lens status as likely reasons for the 
lower correlation outcome, but further studies with larger sets of MPOD data will be needed for clarification.

The shortcomings of the present study were as follows. Most subjects were ophthalmology clinic patients, 
and the number of healthy volunteers was relatively small. Therefore, further screening results are needed for 
healthy subjects outside the hospital environment. The age range of subjects was large (16 to 97 years), but elderly 
subjects were in the majority. Further studies need to include also younger subjects. Serum carotenoid levels 
were not measured, and dietary habits and genetic background were not evaluated. Lutein supplementation was 
self-reported, and important factors such as supplement ingredients and supplementation duration, were not 
available.

A strength of this study is the large population of almost 1000 subjects participating in the SC measurements, 
allowing us to look into the presence or absence of correlations between SC levels and numerous health biomark-
ers with high statistical significance. Also, MPOD was measured only in pseudophakic eyes, limiting the potential 
influence of cataract38. MPOD levels were analyzed not only at discrete eccentricities but also for the related, more 
integrative MPOD volumes.

SC indices were measured easily and safely using RS, and the present data can be used as an initial reference 
set for Japanese subjects.

Methods
Subjects.  A total of 985 subjects were included in this study: 957 were patients at the Department of 
Ophthalmology of Seirei Hamamatsu General Hospital, and 28 subjects were healthy volunteers (Department 
of Ophthalmology staff). Subjects were 16 to 97 years old, with a mean age of 69.7 ± 13.6 (standard deviation, 
SD) years. Men accounted for 577 subjects, and women for 408. SC levels were measured in all subjects, and 
the MPOD levels were measured in 191 subjects. The institutional review board of Seirei Hamamatsu General 
Hospital approved this prospective case series (IRB No. 2189, 2251, 2253). The protocol followed the tenets of the 
Declaration of Helsinki. All patients and a parent and/or legal guardian of the subjects under the age of 18 years 
provided written informed consent.

Measurement of skin carotenoid levels.  We used pressure-mediated RS (Veggie Meter, Longevity Link 
Corporation, Salt Lake City, Utah) to measure SC levels. The basics of this device have been described elsewhere29. 
Measurements were performed following the instructions of the device manufacturer. Calibration was performed 
with the provided dark and white reference materials prior to daily skin measurements. Subjects inserted the left 
middle finger into the device’s finger cradle and had the tip pushed against the convex contact lens surface with 
the help of a spring-loaded lid. The modest pressure applied to the fingertip reduced the blood perfusion of the 
measured tissue volume, in this way preventing the strongly absorbing blood from interfering with the measure-
ment of skin carotenoid levels. The SC index was determined as the average of three consecutive measurements.

Measurements were performed after ophthalmological examinations on the same day. All subjects under-
went visual acuity testing, measurement of intraocular pressure, fundus examination by ophthalmoscope, fundus 
photography with mydriasis induced using 2.5% phenylephrine hydrochloride and 1% tropicamide. Additional 
examinations such as optical coherence tomography and fluorescein angiography were performed as needed. 
Height and body weight were measured as well. The subjects were asked whether or not they were taking sup-
plements containing lutein. Details about exact ingredients or supplementation duration and dosage were not 
recorded, but all subjects reported taking supplements for at least one month.

Measurement of macular pigment optical density.  We used a prototype MPOD module installed on 
a Heidelberg Spectralis® MultiColor platform (“Spectralis-MP”, Heidelberg Engineering, Heidelberg, Germany). 
This device used 486 nm and 517 nm excitation wavelengths. The basic functionality and handling of this instru-
ment is described elsewhere39,40. The beam diameter at the subject’s pupil was 3 mm; autofluorescence images of 
the 30° central area of the retina were recorded for both wavelengths with pupil dilation. The optical densities at 
ten eccentricities, i.e., 0°, 0.23°, 0.43°, 0.47°, 0.51°, 0.9°, 0.98°, 1.99°, 3.01°, and 4.02° eccentricities (local MPODs), 
and the optical density volume within seven eccentricities, i.e., 0.47°, 0.9°, 0.98°, 1.99°, 3.01°, 4.02°, and 8.98° 
(MPOD volume), were used for analyses. The MP was assumed to be negligible at 8.98° eccentricity, and this 
eccentricity was chosen as zero background level. The local MPOD levels are averages along concentric circles at 
selected eccentricities except for 0°. Since the method is affected by cataracts38, we limited measurements to the 
191 subjects who had already undergone cataract surgery. Measurement was performed on day 3 or 4 after cata-
ract surgery, following the above-mentioned ophthalmological exams and measurements of SC indices.

Blood tests.  The study protocol did not include lutein or zeaxanthin analysis in plasma nor other blood 
tests. However, many subjects had already undergone blood tests for various medical conditions. We reviewed 
all those blood tests from medical records that were carried out within one month of measuring the SC levels. 
Blood tests were performed in 417 subjects; 165 subjects underwent testing for general condition checkup before 
cataract surgery, and 252 subjects underwent testing for systemic diseases while being treated by other hospital 
departments. Since the purpose of the blood test was different for each subject, the test items varied. We chose 
common items for all tested subjects, i.e., total protein (TP), albumin (Alb), hemoglobin (Hb), total cholesterol 
(TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) to evaluate general 
condition. Creatinine (Cr) and estimated glomerular filtration rate (eGFR) were chosen to evaluate renal func-
tion, and hemoglobin A1c (HbA1c) was chosen to evaluate blood sugar control.
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Statistical analyses.  The comparison of two average values of numerical variables was performed using 
t-tests. Categorical data were analyzed using a chi-square test. The correlations between two numerical variables 
were investigated using Pearson’s correlation coefficient test. The comparison of SC indices between the three 
smoking habit categories was performed using one-way analysis of variance (ANOVA) with Bonferroni multiple 
comparisons. Multiple regression analysis was performed with SC indices as dependent variables, and factors that 
influenced SC indices were chosen as independent variables using a stepwise method. Statistical analyses were 
performed using IBM SPSS Statistics 25 software, and a value of P < 0.05 was considered statistically significant.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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