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Abstract

ommon chronic respiratory disease of human beings characterized
Objective: Chronic obstructive pulmonary disease (COPD) is a c
by not fully reversible airflow limitation. Emphysema is the main pathological feature of COPD which causes high mortality
worldwide every year and consumes a large amount of medical expenses. This paper was to review the establishment and evaluation
methods of animal models of emphysema or COPD, and put forward some new ideas on animal selection, method of modeling, and
model evaluation.
Data sources: The author retrieved information from the PubMed database up to July 2019, using various combinations of search
terms, including emphysema, model, and animal.
Study selection: Original articles, reviews, and other articles were searched and reviewed for animal models of emphysema.
Results: This review summarized animal models of emphysema from the perspectives of animal selection, emphysema mechanism,
modeling method and model evaluation, and found that passive smoking is the classic method for developing animal model of
emphysema, mice are more suitable for experimental study on emphysema. Compared with pulmonary function indicators, airway
inflammation indicators and oxidative stress indicators, pathomorphological indicators of lung tissue are the most important
parameters for evaluating the establishment of the animal model of emphysema.
Conclusions:Mice model induced by passive smoking is the classic animal model of emphysema. Pathomorphological indicators are
the most important parameters for evaluating the establishment of the animal model of emphysema.
Keywords: Animal; Chronic obstructive pulmonary disease; Emphysema; Model

Introduction important public health problem and the leading cause

of chronic disability and death worldwide,[7] it can be
Chronic obstructive pulmonary disease (COPD) is a
common chronic respiratory disease of human beings
characterized by not fully reversible airflow limitation.[1] It
is mainly caused by cigarette smoke and has a strong
impact on human health, seriously affects the quality of
patient’s daily life, causes high mortality, which brings a
heavy economic burden to patients themselves, their
families and society. COPD is the fourth leading cause
of death worldwide and is expected to rise to third place by
2020.[2] More than 3 million patients died of COPD in
2012, accounting for 6 percent of all deaths worldwide.[3]

Buist et al[4] found that the prevalence of stage II or higher
COPD was 10.1% overall, 8.5% for women, and 11.8%
for men. In China, a survey of 20,245 adults in seven
regions showed that the prevalence of COPD in people
over 40 years old was as high as 8.2%.[5] Globally, the
burden of COPD will increase gradually in the coming
decades due to the continuing exposure to risk factors and
the aging of the population.[6] Although COPD is an
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prevented and treated.

Significance of Establishing Animal Model of Emphysema
COPD can be induced by many factors, and its mecha-
nisms are very complex including oxidative stress,
inflammation, protease-antiprotease imbalance, apoptosis,
and even immunosenescence.[8,9] The mechanisms of
COPD are not completely illuminated as the exact
mechanism by which COPD occurs and progresses
remains much of unknown. Regarding ethical issues about
the research on COPD patient, COPD animal models is
very important for researcher to investigate the mechanism
of COPD and the use of COPD animal models is
inevitable.[10] Emphysema, as the main pathological
feature of COPD, has always been the focus of research
which focuses on the mechanism of COPD.[11] Animal
models of emphysema improve our understanding of the
basic mechanisms of COPD physiology, pathophysiology
and treatment.[12] Therefore, to further elucidate the
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etiology and pathogenesis of COPD, many scholars made
relevant studies on animal model of emphysema. Although

Compared with rats and guinea pigs, small pigs have
larger tracheal diameter, which is convenient for intuba-
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these models only mimic some of the characteristics of the
COPD, they are valuable for further study of themechanisms
of human COPD. The establishment and standardization
of animal COPD models according to clinicopathology
are explored.[13] The establishment of animal models of
emphysema is the key to elucidate the etiology and
pathogenesis of COPD.[14] In fact, animal models have
provided valuable insights into the cellular and molecular
mechanisms involved in the pathogenesis of COPD.

Animal Selection for Modeling
Today, a variety of animal models of emphysema have
been developed, including sheep,[15] dogs,[16] pigs,[16]

rabbits,[17] monkeys,[18] guinea pigs,[19,20] mice[21] rats,[22]

and squirrels.[23] Animal models can on some extent reflect
the pathology and physiology of human diseases. Most
features of COPD, such as inflammatory cell aggrega-
tion,[24] oxidative stress,[25] cytokine and protease pro-
duction,[26] small airway and vascular remodeling,[27]

emphysema,[28] pulmonary hypertension,[29] and de-
creased lung function,[30] can be induced in different
models. The development of models of acute exacerbation
and complication of COPD can reflect the progress of
COPD and provides a powerful tool for the study of the
pathogenesis of COPD.However, animals are animals, not
human beings. Anatomy, physiology, reactivity to damage,
sensibility to cigarette smoke (CS), cytokines, or protease
varies from species to species. Lopes et al[31] considered
that, unlike human progressive COPD, animal exposure to
CS only exhibited mild emphysema which did not progress
after cessation of exposure.

Anatomy and physiology
466
Rat model of emphysema was considered to have many
advantages, including small body size, low cost of
breeding, short reproduction cycle, and similar genome
to humans. But rat also has its own limitations. Rats rely
on nasal breathing and the nasal cilia have low function
on filtering smoke. Furthermore, rats have few branches of
the bronchi thus with poor respiratory function. The
distribution of intratracheal cilia is less, the glandular
submucosal glands are immature, and there are no
goblet cells under the tracheal mucosa. The mediators of
bronchial inflammation in rats are also different from
those in humans.[19]

Pigs have more mature lung tissue than rats, rabbits and
other animals, and the volume of lung is relatively large,
the lung structure is similar to that of humans with three
lobes on the right and two on the left. Even more, pigs, like
humans, have respiratory bronchioles, and increased
airway resistance of small airways is the main cause of
increased airway resistance in patients with COPD. The
submucosal glands in the airway of pigs are relatively
developed. Compared to other animals, pigs are more
prone to respiratory diseases; hence, it is relatively easy to
induce COPD. Endotracheal intubation is required for
endotracheal infusion drugs, respiratory function evalua-
tion, and simulated assisted ventilation in animals.
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tion. However, disadvantages of pigs are also obvious,
including large body size, high cost of breeding and drug,
long reproduction cycle, and less reproduction number.
D’Ambrosio et al[32] believed that mice were considered to
be the best choice for animal model.

Although thedistributionof bronchial glands innon-human
primates and dogs are roughly similar to that in humans,
bronchial glands are limited to the closest part of the trachea.
Similarly, primates and dogs have respiratory bronchioles,
and their alveolar ducts develop from the membranous
bronchioles located at the distal end. The mice have no
bronchial circulation.[32] Rodents have much more Clara
cells in the small airways than humans.[33] Lung develop-
ment andmaturation are different between different animal
species. For example, rats and mice develop their alveoli
after birth, while the guinea pig and the monkey are almost
fully alveolated at birth. There are differences in the
absorption, distribution, metabolism, and elimination of
drugs between different species, and these differences may
become obstacles in animal modeling.

Reactivity to damage
Most animal models of emphysema induced by passive
smoking displayed enlarged alveolar space, although there
are various degrees of enlargement from species to species.
However, unlike humans, some animals do not develop
into serious illnesses, thus narrowing the window by which
researcher determines the effects of potential therapeutic
interventions.[31] In addition, although goblet cell meta-
plasia is a characteristic finding of small airways in patients
with COPD, the metaplastic response of mice and rats are
weaker than those of guinea pigs, dogs and non-human
primates.

Sensibility to tobacco
Unlike humans, animal models are an inbred population.
Within a species, different strains may respond differently
to the same stimulus. In one study,[34] NZWLac/J mice
were not sensitive to CS, C57BL/6J and SJ/L mice were
somewhat sensitive, and AKR/J mice were more sensitive
to CS and exhibited CS-induced COPD. Likewise, DBA/2
mice developed faster emphysema during exposure to
smoking, but airway goblet cell metaplasia andmucin 5AC
(MUC5AC) expression decreased when compared with
C57BL/6J mice.[35]

Cytokines
Common animal models, except monkeys, do not fully
replicate human cytokines, which are magnified when
compared to rodents. For example, in rodents, the closest
cytokines match to human interleukin (IL)-8 are chemo-
kines KC (CKC) and cytokine-induced neutrophil chemo-
tactic factors (CINCs), and CINC has better homology to
human melanoma growth stimulatory activity (MGSA)/
gro. Different strains within the same species may have
different inflammatory cell and cytokine response profiles
for the same stimulus.[36]
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Proteases studies to reduce emphysema.[44] At present, the issue how
to develop more effective antioxidant becomes one of the
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Matrix metalloproteinases (MMP)-12 is a major compo-
nent of mice macrophage metalloproteinases, but for
humans, MMP-7 appears to be more important in
destroying elastic tissues.[37]

Among the animals described above, although mice
emphysema model could not be the exact replica of
human emphysema because of differences between human
and mice in both physiological, immune and anatomical
systems.[38] Mice genome is more similar to that of human
than many other animals,[39] and offers the advantages of
extensive gene/protein sequence/antibody availability, low
cost, and most importantly, the availability of many
naturally occurring mouse strains for different responses to
smoking. Hence, mice are considered to be more suitable
for experimental study on emphysema.

Mechanisms of Emphysema
Elastase-antielastase imbalance

The destruction of large amounts of proteins in the
pathogenesis of COPD attracted researchers’ attention
since 1970s. There is an imbalance between elastases
(MMP family) and anti-elastases, which break down
proteins in lung tissue of COPD patients. Too much of
elastases released by patient’s inflammatory cells can cause
damage to lung parenchyma, resulting in emphysema.
Direct evidence is that the lack of genetic alpha 1-
antitrypsin (AT) causes the elastase-antielastase imbalance
that produces emphysema-like changes.[40] Under the
repeated attack of chronic inflammation, lung tissue is
constantly damaged and repaired. Due to the persistence of
inflammatory and other damage factors, abnormal growth
occurs in the process of tissue repair, such as remodeling of
connective tissue fibers in alveoli. The hardness and
biomechanical characteristics of remodeled tissue fibers
are significantly lower than those of normal tissues, and
the lung elasticity is decreased, which may be one of the
reasons for the further development of emphysema.

Oxidation-antioxidant imbalance
467
Oxidation-antioxidant imbalance is an important mecha-
nism for the occurrence of COPD, and oxidative stress
further increases with acute exacerbation of COPD. CS
and other harmful particles can produce excessive oxides
when being inhaled into body, which can directly damage
lung tissue.[41] Oxides mainly consist of superoxide anion
(O2-), hydroxyradical (OH), hypochlorous acid (HClO),
H2O2 and nitric oxide (NO). Oxide can not only directly
destroy a lot of biochemical macromolecules such as
protein, lipids, and nucleic acid to make cell dysfunctional
and even dead, but also destroy extracellular matrix to
cause protease-antiprotease imbalance.[42] Some antiox-
idative expectorants, such as endostatin, carboxymethyl
steam, n-acetylcysteine, and ambroxol can alleviate the
acute exacerbation of COPD, slow down the decline of
pulmonary function,[43] which indicate that antioxidant
may play a role in the onset and progression of COPD. In
addition, these antioxidants have been applied to animal
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research priorities for COPD prevention.

Inflammatory mechanism
Inflammation has been recognized as the most important
mechanism both at the beginning of COPD and the
progress of COPD. Under normal circumstances, the
human respiratory tract, including the nose, pharynx,
larynx, trachea, and bronchi, has appropriate defensive
function. The structures that perform the defensive
function include the nasal hair in nasal cavity, normal
cough reflex in the throat, the cilia on the surface of the
tracheo-bronchi and the mucus removal system composed
of mucus. These structures are looked as the natural
barriers which defend human body against foreign
invader. The normal reflex of guttur ministry can prevent
foreign material entering airway instinctively and keep the
lower airway bioclean. If these defense mechanisms fail to
work, foreign particles (including dust particles, bacteria
and other microorganisms) will enter the lower respiratory
tract, activate macrophages, neutrophils and lymphocytes
in lung tissue, release a variety of media, including
leukotriene B4 (LTB4), IL-8, tumor necrosis factor
(TNF)-a, intercellular adhesion molecule (ICAM) 1 and
transforming growth factor (TGF)-b, etc.[45] These
mediators can damage lung tissue, promote neutrophil
inflammation, which activates neutrophil cells to migrate
to inflammatory sites, causing ciliated bronchial epithelial
cells to become mucous goblet cells, damaging lung
septum, and enlarging the alveolar cavity.

Hormone related mechanism
Inflammatory mechanism exists in COPD patients. Except
for the acute exacerbation stage, corticosteroid therapy in
COPD patients is rarely effective, that is called “hormone
resistance,” and the mechanism is unclear. Birrell et al
found that the hormonal resistance in COPD may be
related to the inactivation of kB pathway.[46] Other
study[47] found that the activity of histone deacetylase in
the lung of COPD patients was decreased and negatively
correlated with the severity of the disease, suggesting that
the respiratory hormone resistance of patients may be
related to the decreased activity of histone deacetylase.

Immunologic mechanism
Macrophages are the major phagocytes and they can
engulf foreign particles and pathogens, release cytokines
which can not only enhance the phagocytosis of macro-
phages, but also do some harm to human body.[47]

Lymphocytes are also involved in the pathogenesis of
COPD. CD8+ lymphocyte family members play a very
important role in the pathogenesis of COPD.[48] Even after
smoking cessation, the inflammatory response in the lungs
does not stop, but continues to progress.

Vagus nerve stimulation
Vagus nerve excitation is present in the pathogenesis of
COPD. COPD patients have the characteristics of high
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airway reactivity, abnormal increase of cholinergic nerve
tension and enhanced cholinergic nerve reflex. The reasons

the double effect described above on the progress of
emphysema, the alveoli in the experimental animal model
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may lie in that the nerve transmission in the cholinergic
ganglion is enhanced, which makes the release of
acetylcholine increased. At the same time, the airway is
more responsive to endogenous acetylcholine, and the
dysfunction of inhibitory feedback regulation caused by
the low function of muscarinic (M) receptor is another
reason for hypercholinergic function.[49] The increased
vagus nerve tension leads to the contraction of bronchial
smooth muscle, which is mainly due to the increased
expression of various signal molecules in the M-receptor-
mediated airway smooth muscle and the excessive release
of neuroacetylcholine caused by inflammation related
neurogenic mechanism. Meanwhile, the increased vagus
nerve tension causes hypersecretion of glands under airway
mucosa. Acetylcholine could come from parasympathetic
nervous system, bronchial epithelial cells, inflammatory
cells and other cells,[50] and a variety of inflammatory cells
express functional M receptors, participating in the
regulation of airway inflammation. In addition, acetylcho-
line can induce the proliferation of fibroblasts and
myofibroblasts, playing a prominent role on airway
remodeling. Therefore, the cholinergic mechanism is of
great significance in the pathophysiology of COPD.

Modeling Methods of Animal Model of Emphysema
468
Elastase induced animal model of emphysema

Emphysema could be induced by one or more drops of
elastase into the trachea.[51,52] This method is relatively
simple to operate and can shorten the experiment period
and save the cost. The instillation of elastase disrupts
protease-antiprotease balance in lung tissue, which not
only destroys the main factors that protect lung tissue from
damage, but also produces a large number of inflammatory
factors and accelerates the rupture and fusion of alveolar
walls to induce emphysema.[53] Commonly used elasteases
are: papain,[54] pig pancreatic elastinase (PPE),[55] and
human neutrophil elastease (HNE).[56]

Papain is a proteolytic enzyme from plants and the earliest
elastase used to induce emphysema model.[57] In 1960s,
papain was used to successfully set up an rat model of
emphysema for the first time.[58] In 1980s, Boyd et al[59]

discussed the dosage of papain used in rat model and set
the dosage at 2 or 4 mg/kg, but the results showed that
there was no significant difference in emphysema-like
lesions between the two different dose groups. So it was
considered that one-time infusion of papain with 2 mg/kg
into the trachea was a relatively reasonable dose.[59]

Sulkowski et al[60] also induced stable emphysema model
by one-time infusion of 2 mg/kg papain into the trachea of
rats. Thereafter, papain was used to induce rat model of
emphysema at a dose of 2mg/kg. Interestingly, emphysema
could also be induced by exposure to aerosol of 10%
papain for 8 h twice in a 2-week interval.[61]

The commonly used PPE for animal model of emphysema
was derived from swine pancreas.[55] PPE can not only act
as a protease to destroy protease-antiprotease imbalance,
but also act as an oxidant to induce oxidative stress. With
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were significantly enlarged. Therefore, PPE was often used
to induce emphysema. PPE concentrations range from 6 to
24 U. The usage of PPE induction mainly includes
intratracheal drip, tracheotomy injection, atomization
inhalation. Generally, it usually takes about 4 to 6 weeks
to induce emphysema-like changes.[60]

HNE is serine protease, which plays a major role in the
COPD inflammatory process. The protease/anti-protease
imbalance leads to an excess of extracellular HNE
hydrolyzing elastin and structural protein that confers
elasticity to the lung tissue.[62] Due to the weak ability of
HNE[20] to enter the alveolar septum and degrade elastic
fibers,HNE is seldomused at present to induce emphysema.

Raub et al[63] showed that the hamster with intratracheal
injection of 6, 12, or 24 units of PPE exhibited a dose-
related change in lung function after 4 weeks, suggesting
that in hamsters, six units of elastase could produce mild
emphysema. The method of using protease to replicate
animal model of emphysema has the advantages of less
infection, easy to grasp the dosage and short period.
Therefore, direct intratracheal administration of protease
is an effective way to induce animal model of emphysema.

Passive smoking induced animal model of emphysema
According to clinical statistics, about 90% of COPD
patients were smokers.[64] One of the most important risk
factors for emphysema is smoking.[65] In 1990, Wright
et al[66] successfully set up guinea pig model of emphysema
by means of CS exposure for the first time. He found that
the long-term smokingwill lead to the changes in the center
of the human lobules, causing emphysema. Animal with
long-term CS exposure could result in inflammatory
response in lungs, which was mainly composed of
macrophages.[67] As a result, the bronchial lumen
narrowed and the bronchial cartilage tissue was impaired,
leading to the rupture and fusion of alveoli and the
formation of emphysema, which was similar to human
beings’ response to smoking. Passive smoking induced
emphysema can simulate the pathogenesis of human
emphysema as much as possible, and provide a foundation
for the basic and clinical research of human emphysema.
The structure of the airway and lung of experimental
animals are different from species to species, and from that
of human beings. The guinea pig is the most sensitive
animal to the smoke stimulation, and the rats show a
certain resistance to the smoke stimulation, but the
susceptibility to smoke is also different in different species
of rats. The experimental period of passive smoking
induced COPD animal model is relatively long and the
stability is relatively poor.[68]

According to the literature review, the exposure to CS can
be roughly divided into two types: one is the part exposure
(nose or head only) method.[69] Van der Strate et al[70]

studied on C57BL/6J mice which inhaled CS through their
noses for 2 times/day, 2 cigarettes/time, 10 spray/cigarette,
5 days/week. The results showed that after 4 months of
exposure, the pulmonary alveoli enlarged with the increase
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of smoking time. At the same time, B lymphocyte in lung
tissue of the smoked mice increased similar to what was

reported that intraperitoneal injection of CSE in rats could
induced emphysema-like injury within 3 weeks. Although
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seen in human emphysema. The other exposure method is
the whole body exposure method,[71] in which the
experimental animal is placed in a smoking box (a box
full of smoke) as a whole. Valenca et al[72] exposed C57BL/
6 mice to cigarette smoke for 3 cigarettes/time and 3 times/
day. After 60 days, emphysema-like changes in lung were
observed, which were accompanied by increased alveolar
macrophages, extracellular matrix changes and increased
expression of MMP-12. Our previous study established
mice model of emphysema by exposing C57BL/6J mice to
CS in a smoking box with some hole on it. In the box, a
partition with the same size holes was placed in the middle
of the box to divided it into two parts: the lower part was
used for cigarette burning, and the upper part was used for
animal exposure to CS. Mice were exposed for 2 cycles/
day, 6 days/week for 12 weeks.[73] The passive smoking
method is quite popular due to its low cost, simple
operation, high success and can eliminate the experimental
differences in a more objective environment[74]

The length of CS exposure for animal model of emphysema
might be due to the different kind of cigarette, different
exposure mode, duration and frequency, different smoke
density, different species and age of animals and so on.

Chemicals induced animal model of emphysema
469
Many chemicals, including NO2, lipopolysaccharides
(LPS),[75] O3, and cadmium chloride (CdCl2), intravenous
injection of hyaluronidase,[76] inhalation of ovalbumin dry
powder,[77] could cause inflammation and emphysema.
NO2, which is common in air pollution, can induce the
animal model of emphysema by controlling the concen-
tration and inhalation time of NO2. Wegman et al found
that animal emphysema models could also be set up by
oxidative stress after long-term exposure of mice to NO2
with a volume fraction of 20 � 106, which lasts 14 h a day
for 25 days.[78] LPS caused airway and lung tissue
inflammation mainly through stimulating neutrophils,
monocytes and endothelial cells which released a series
of inflammatory mediums including TNF-a, IL-1, etc,
triggering protease-antiprotease imbalance, eventually
emphysema occurred.[79] Snider et al found that animal
model of emphysema could be induced by one-time
dropping 0.5 mL 0.025% CdCl2 solution into the trachea
of golden ground squirrels.[23]

Cigarette smoke extract induced animal model of
emphysema

In 2006, Taraseviciene-Stewart and coworkers[80] reported
that intraperitoneal injection of cigarette smoke extract
(CSE) produced significant emphysema in mice. They
hypothesized that CSE could act as an antigen to trigger an
immune response, leading to emphysema. It took only
6 weeks to establish a model of emphysema. The problem
whether CSE impairs lung tissue targeted making
inflammatory cells homing in focus or the systemic
inflammatory cells induced by CSE infiltrate in the lung
tissue through the impaired endothelium is unclear and
needs further study. Even more, in 2009, Chen et al[81]
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it has been confirmed in these reports that intraperitoneal
exposure to CSE was able to cause emphysema in animals,
extrapulmonary effects were underestimated. Our research
team established mice model of emphysema by intraperito-
neal injection of CSE and fully evaluated themodel.[73,82-85]

The total experimental period was four weeks. On day 29,
the mice were disposed for lung function measurement,
blood collection, bronchoalvolar lavage (BAL) and histo-
morphological detection of lung tissue. The results
demonstrated that intraperitoneal injection of CSE could
lead to pulmonary function decline, alveolar space increase,
alveolarwall destruction, apoptosis of alveolar septumcells,
chronic lung inflammation, decreased serum superoxide
dismutase (SOD) concentration, and elevated IL-6 concen-
tration in animalmodel.More importantly, the effectiveness
of this modeling methods was equal to that of CS
exposure.[73] Our previous study described the preparation
of CSE in details including the content of nicotine and
carbon monoxide in the cigarette.[86]

Other exogenous factors induced animal model of emphysema
It has also been reported that emphysema-like changes
could be detected in the case of accelerated metabolism of
elastic fibers and collagen fibers in lung tissues due to
severe hunger. Sahebjami et al[61] found that taking less
food (for a third of control group) could induced
emphysema, the number of alveoli, lung volume, alveolar
lining area changed significantly, and the animal’s body
weight decreased to 40% to 45% of normal, but there was
no increased number of neutrophils in lung tissue. The
authors believed that it may be because of long-term
starvation that the growth and development of lung tissues
in experimental animals were disturbed, which could not
reflect the real destruction process of lung tissues in human
emphysema. So this method is rarely used.

Genetic manipulation in animal model of emphysema
In recent years, with the development of human genome
project and molecular biology technology, the relationship
between diseases and genes has been deeply studied. Many
scholars believed that the corresponding animal models of
emphysema could be induced by regulating the emphyse-
ma-related genes which activates some new explorations in
the research field.

Natural variation in animal model of emphysema
Spontaneous emphysema was first discovered in spotted
mice in 1970s, and it was believed that spontaneous
emphysema was mainly related to the abnormal mecha-
nism of connective tissue, collagen and elastin cross-
linking. In long-term animal experiments, it was found that
the spontaneous emphysema of mice may be Tit-skin mice,
Beige mice, Blotchy mice, Palliad mice, etc.[87]

Gene-knockout in animal model of emphysema
With the development of molecular biology, the animal
model of emphysema induced by gene knockout has been
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widely used in the research of emphysema. In recent years,
an increasing number of studies used gene knockout to

also plays a role in the synthesis of IL-6, IL-8, prostaglan-
din, leukotriene and other secondary inflammatory
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copy animal model.[88-90] Baron et al outlined the major
technological approaches to the utilization of gene-
targeted and/or genetically modified mice to delineate
the cellular and molecular basis of experimental lung
disease.[91] Liang et al[92] found Abhd2 knockout mice
exhibited emphysema-like changes in lung due to the
excessive inflammatory cytokines and protease gene
expression, increased macrophages, abnormal apoptosis,
and resistance to the lack or loss of protease inhibitors.
And the copies showed a gradual progress of emphysema
in a similar way in occurrence, development process and
clinical pathology. Therefore, it is of great significance to
study the genetic susceptibility and environmental factors
of emphysema.[93]

Other gene-associated animal model of emphysema
Platelet derived growth factor-b (PDGF-b), TNF-a, IL-6
and IL-11 could interfere the normal development of
alveoli.[94] Previous study found that if the expression of
some corresponding genes were extremely increased in the
process of growth and development of mice, alveolar
developmental disorders will happen, leading to the
formation of emphysema because excessive expression
of certain genes may disrupt the balance between alveolar
damage and repair, leading to emphysema.[95] TNF-a is an
immunomodulatory factor secreted by monocytes and
macrophages, which could induce inflammatory cells.[96] It
Table 1: Advantages and disadvantages of each animal model.

Models Advantages

Elastase induced animal model
of emphysema

Simple operation, short per
modeling and low costs.

Passive smoking induced
animal model of emphysema

Similar to smoking. Animal
obstruction and decreased
compliance of respiratory
occur and progress slowly
costs.

Chemicals induced animal
model of emphysema

Simple operation, short per
modeling and low costs.

Cigarette smoke extract
induced animal model of
emphysema

Simple operation, short per
modeling and low costs.

Other exogenous factors
induced animal model of
emphysema

Simple operation, short per
modeling and low costs.

Genetic manipulation in
animal model of emphysema

Able to clarify the influence
genes on emphysema.

2470
mediators. Appropriate expression of gene is necessary
to maintain the homeostasis in human body, excessive
expression will aggravate the inflammatory response.[94] In
1999, Hoyle et al[97] developed transgenic mice with the
PDGF-b gene. The transgenic mice displayed many
pathological changes in lung including dilation of alveolar
cavity, rupture of alveolar wall, fusion of alveoli,
inflammatory reaction. It was suggested that the replica-
tion of emphysema models in experimental animals could
be achieved by overexpression of PDGF-b. Study on the
lung tissue derived from homozygous mutant Klotho
mice[95] showed that mice with Klotho gene disruption had
enlarged distal alveolar cavity at 4 weeks of age
accompanied by damaged alveolar wall and progressive
aggravation with age, which was very similar to senile
emphysema. Based on the study of emphysema-related
gene, MMP-1 was found to be activated in the lungs of
emphysema patients, and it was considered that transgenic
mice with MMP-1 could also display emphysema-like
lesions.[98] Many scholars believed that MMP-1, secreted
by alveolar type II epithelial cells, may be the leading cause
of continuous destruction of lung tissue.[98,99]

The advantages and disadvantages of animal models
induced by the modeling methods described above were
summarized in Table 1. Since the emphysema itself is a
chronic progressive disease, short period of modeling is an
advantage as well as a disadvantage.
Disadvantages

iod of 1. Not consistent with the process of
human emphysema.

2. The acute effects of elastase instillation
are different from the chronic progress of
human emphysema.

’s airflow

system
. Low

The period of modeling is relatively long.

iod of 1. Not consistent with the process of
human emphysema.

2. The short period of modeling is different
from the chronic progress of human
emphysema.

iod of 1. Not consistent with the process of
human emphysema.

2. The short period of modeling is different
from the chronic progress of human
emphysema.

iod of 1. Not consistent with the process of
human emphysema.

2. The long-term starvation induced
emphysema cannot reflect the exact
mechanisms of human emphysema.

of various 1. High requirement on technology.
2. High cost.
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Animal Model of Acute Exacerbation of COPD confirm the success of the model. There was global strategy
for the diagnosis and classification of COPD in human,[3]
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An acute exacerbation of COPD (AECOPD) is defined as
acute worsening of respiratory symptoms and requiring
additional treatment.[100] AECOPD can directly lower the
quality of patient’s daily life, lead to high mortality. So,
animal model of COPD Exacerbation is of great value in
investigating the pathogenesis of AECOPD.

AECOPD animal models can be roughly divided into three
types, including LPS,[101] bacterial,[102] and virus.[103] A
single large dose of LPS can cause an inflammatory response
accompanied by fever, excessive mucus secretion, and
bronchoconstriction, resulting in an AECOPD animal
model. Animal model of LPS-induced exacerbation has
been established in hamsters. Basic emphysema was
established through elastase administration and subse-
quently LPS was applied twice a week for 5 weeks to evoke
exacerbation. After 6 months, the AECOPD animal model
exhibited severemucus cell hyperplasia and serious alveolar
enlargement which measured by mean linear intercept
(MLI) and bronchial mucus cell hyperplasia (BMCH),
scored in tissue slice stained with periodic acid-Schiff.[104]

More than half of the acute exacerbations of COPD are
caused by bacterial infections. Themore severe the patient is
the more species of bacteria could be derived from the
patient. Few study used bacteria induced animal model of
AECOPD to study human’s AECOPD, although the animal
model may display obviously increased inflammatory
responses. Compared with mice exposed to normal air,
mice infected with Haemophilus influenzae after 8 weeks of
exposure toCShadan increased inflammatory response and
worsened lung injury.[102] Huvanne et al[105] studied on the
animal model which were exposured to CS for 4 weeks and
with nasal administration of staphylococcus aureus entero-
toxinB (SEB) for the next 2weeks. The results demonstrated
that the animal exposure to both CS and SEB exhibited
increased inflammatory cells in the lung when compared
with the animal exposure to either CS or SEB alone.

Patients with COPD have an increased susceptibility to
influenza A virus (IAV) infection and an enhanced
inflammatory immune response to infection. In the acute
or chronic CS exposure induced animal models, an
increased local and systemic inflammation were observed,
which were followed by IAV infection. In some patients,
viral proliferation increases or clearance decreases, and
bronchodilator response decreases. Donovan et al[103]

placed mice in an 18 L perspex chamber and exposed them
to CS which was generated from nine Winfield Red
cigarettes (<16 mg tar, <1.2 mg nicotine and <15 mg of
carbon monoxide) per day for 4 days. On day 5, mice were
anaesthetized by inhalation of methoxyflurane and
infected intranasally with 10 plaque forming units (PFU)
of the mildly virulent influenza A virus Mem 71 (H3N1).
On day 12, it was demonstrated that virus inducd animal
model of AECOPD was established.

Evaluation on Animal Model of Emphysema
471
After the establishment of the animal model of emphyse-
ma, corresponding evaluation methods are required to

2

but no for animal emphysema or COPD. The commonly
used parameters include pulmonary function indicators,
airway inflammation indicators, oxidative stress indicators
and pathomorphological indicators. Lung function indi-
cators include recording airway resistance (Raw), lung
dynamic compliance (Cdyn), peak expiratory flow (PEF),
inspiratory time/expiratory time (Ti/Te),[106-110] and blood
gas analysis.[111] Airway inflammation indicators include
cell count and classification in alveolar lavage fluid,
neutrophils, macrophages, eosinophils,[112-114] TGF-
b,[115,116] IL-6,[117] IL-8,[118] TNF-a,[117] leukotriene B4
(LTB4),[119] elastolytic enzymes such as MMP-1, MMP-2,
MMP-9, MMP-12,[120] and cathepsins K, L, S,[121] and
monocyte chemotactic protein 1 (MCP-1).[122] Oxidative
stress indicators include SOD,[118] reactive oxygen species
(ROS),[123] and nuclear factor correlation factor 2.[124]

Pathomorphological indicators include mean linear inter-
cept (MLI), destructive index (DI), apoptotic index
(AI),[73,84,117,125,126] and pathologic score of airway.[127]

According to the American Thoracic Society, emphysema
was defined as “abnormal, permanent enlargement of the
airspaces distal to the terminal bronchiole, accompanied
by destruction of their walls”.[128] Donaldson et al[129]

considered the most important pathological and physio-
logical changes of COPD are the obstruction of airway and
the decline of lung function.[129] An ideal animal model of
COPD should be in line with clinical practice, such as the
injury factors consisted with the common causes of clinical
COPD, airflow obstruction, decreased lung dynamic
compliance, airway remodeling, and airway hyperreactiv-
ity. However, pulmonary function tests were considered to
be less sensitive than morphometry and might detect only
more severe degrees of airways remodeling or parenchymal
destruction. Mild emphysema animal model might have
normal lung function.[130] Ochs suggested that the
quantitative assessment of micro-structure was the only
way to reliably demonstrate the presence of emphysema-
tous alterations.[131] So far, there is no uniform standard in
the evaluation system. In consideration of the accessibility,
objectivity, and stability of various parameter, we believe
that the changes in pathomorphological indicators,
including MLI, DI, AI, are the most important parameter
for evaluating the establishment of the animal model of
emphysema.

Summary and Prospect
Various animal models of emphysema have been devel-
oped, but there is no animal model which can simulate all
the characteristics of human COPD. According to the
mechanism of COPD, the evaluation method for emphy-
sema animal model is based on pulmonary function,
pathomorphism of lung tissue, airway inflammation.

Although several emphysema animal models have been
established, exact comparisons of findings from various
groups are difficult because different methods, different
chemicals, different types of chemicals or cigarettes,
different doses of cigarette smoke, different instruments,
different exposure protocols, and a wide variety of animals
are used. Cigarette smoking is by far the most important
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risk factor for emphysema and COPD. CS exposure was
regarded as the traditional method of long-term modeling

8. Cho WK, Lee CG, Kim LK. COPD as a disease of immunose-
nescence. Yonsei Med J 2019;60:407–413. doi: 10.3349/ymj.
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of emphysema. CS exposure induced emphysema can
simulate relatively complex pathological changes and is
considered as the most reasonable animal model of COPD
at present. Because of the long modeling time, inconsis-
tence and unstability, researchers have constantly explored
new modeling methods.

Up to now, there is no perfect experimental animal model
of emphysema which is completely consistent with the
pathogenesis and characteristics of human emphysema.
Although mice and humans share many basic physiologi-
cal processes, specific differences in lung structure,
function and immunology between humans and mice
have to be taken into consideration. Even within mice,
different strains exhibit different sensitivities to the
development of emphysema. With the continuous in-
depth study of emphysema, there are more and more
alternative induction methods. Therefore, we should
not only induce corresponding experimental animal
models of emphysema according to the requirements of
experimental purposes, but also explore the pathogenesis
of emphysema through multiple methods of modeling. We
believe that with the development of science and
technology, more reasonable and standardized animal
models of emphysema will be applied to experimental
research in the near future.
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