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Ovarian cancer is the fifth leading cause of cancer-related
deaths among women in the United States. Recent extensive
genomic analyses of epithelial ovarian cancer (EOC),
particularly the most common and deadly form of high-grade
serous ovarian carcinoma, have provided important insights
into the repertoire of molecular aberrations that are
characteristic for this malignancy. However, interpretation of
the discovered aberrations is complicated because the origin
and mechanisms of progression of EOC remain uncertain.
Here, we summarize current views on the cell of origin of EOC
and discuss recent findings of a cancer-prone stem cell niche
for ovarian surface epithelium, one of the major likely sources
of EOC. We also outline future directions and challenges in
studying the role of stem cell niches in EOC pathogenesis.

Introduction

Ovarian cancer is the most common and lethal gynecological
malignancy worldwide and the fifth leading cause of cancer-
related death in females.1,2 Annually, ovarian cancer accounts for
140,200 deaths globally, with a 65% estimated mortality rate for
2014.2 The high mortality rate is attributed to the frequent diag-
nosis of ovarian cancer at advanced stages when the cancer is no
longer localized.1 The 5-year survival rate for ovarian cancer diag-
nosed at the early localized stages is approximately 91%, contrast-
ing with the 30% 5-year survival rate for ovarian cancer
diagnosed at advanced stages.2

Approximately 90% of primarymalignant ovarian neoplasms are
of epithelial origin. Epithelial ovarian cancer (EOC) is classified by
morphological criteria such as serous, mucinous, endometrioid, and

clear cell types.3 High-grade serous carcinomas (HGSOC) are the
most common and deadly form of ovarian carcinomas, constituting
approximately 70% of cases of EOC. Recently, an extensive inte-
grated genomic analysis of 489 HGSOCs cataloged the repertoire of
molecular aberrations characteristic for this malignancy.4 Consistent
with known significant genetic mutations that influence disease
behavior, HGSOC is characterized by TP53 mutations in 96% of
cases, whereas RB1 and PI3K/RAS pathways are deregulated in
67% and 45% of this type of EOC, respectively.4 Mutations in
BRCA1 or BRCA2 are also characteristics of ovarian cancer and rep-
resent genes that participate in the homologous recombination path-
way, which was found to be altered in 51% of HGSOC cases.4

Lastly, this study identified NOTCH and FOXM1 as signaling
pathways that are frequently altered in HGSOC, with a 22% and
84% alteration frequency, respectively.

A clear understanding and classification of the particular set of
genetic mutations that are prevalent in ovarian cancer holds prem-
ise for the preparation and testing of therapeutic drugs that target
the genes and pathways important for cancer acquisition and
maintenance. Unfortunately, interpretation of global genomic data
is severely limited by tumor heterogeneity, high frequency of pas-
senger mutations, and non-specific changes in gene expression in
advanced cancers.5 It is becoming broadly accepted that cancers
recapitulate the hierarchy of normal cell lineages and may exploit
normal mechanisms involved in establishing and maintaining such
hierarchic relationships to their advantage.6,7 Thus, understanding
the cell of cancer origin may significantly facilitate our understand-
ing of cancer pathogenesis. Alas, little is known about the ontogen-
esis of cell lineages of the female reproductive tract, including the
existence and features of stem cell niches responsible for epithelial
regeneration. This review aims to describe our current knowledge
about putative cell types that may give rise to EOC and to outline
the significance of stem cells and their niches in this process.

Views on the Cell of Origin of Epithelial
Ovarian Cancer

Traditionally, EOC was thought to originate mostly, if not
exclusively, from the ovarian surface epithelium (OSE), a
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monolayer of flat to cuboidal cells surrounding the ovary and lin-
ing ovarian epithelial inclusions cysts that is formed as a result of
cell entrapment after ovulation.8 The notion of EOC origination
from the OSE or cysts is based on histopathological evidence9,10

and various experimental tests, such as transformation of OSE
cells from rat,11,12 mouse,13 and human,14 the induction of
EOC by OSE-targeted conditional genetic alterations in geneti-
cally modified mice,15-18 and by genetic analysis of human ovar-
ian cystic inclusions.19 Notably, and consistent with similar
patterns of genetic mutations observed in human and mouse
EOC types, mouse neoplasms induced by Trp53 and Rb1 muta-
tions histologically resemble HGSOC,15,18 whereas neoplasms
associated with inactivation of Pten are classified as endometrioid
carcinomas of the ovary.16,17

The hypothesis that the OSE serves as the source of ovarian
cancer is consistent with observations of frequent rupture and
repair of the OSE during ovulation, which provides plausible
opportunities for genetic alterations that lead to carcinogenesis.
Support for this hypothesis, often termed incessant ovulation,
emerged from the observation that the risk of EOC decreases
with fewer numbers of cycles as a result of pregnancy, lactation,
and oral contraceptive pill use.1 Since OSE damage during ovula-
tion leads to increased inflammation, the incessant ovulation the-
ory also fits well with the concept of a causative role of
inflammation in the origin of EOC.1 Hormonal stimulation,
particularly by gonadotropin, may also contribute to EOC path-
ogenesis by promoting cell growth, increasing the mutation rate,
and facilitating carcinogenesis.1,20 Albeit conceptually sound,
these models and hypotheses do not define specific cancer-prone
differentiation stages of the OSE cell lineage.

The broad variety of EOC phenotypes is usually attributed to
the origin of the OSE from the coelomic epithelium, which also
gives rise to the M€ullerian (paramesonephric) ducts which, in
turn, differentiate into the epithelia of the uterine tube (also
called the oviduct, fallopian tube), endometrium, and endocer-
vix.8 It has also been proposed that EOC may arise from compo-
nents of the secondary M€ullerian system.21 Moreover, based on
morphological similarities of some HGSOCs to the epithelium
of the uterine tubes, as well as findings of TP53 mutant atypical
lesions (serous tubal intraepithelial carcinomas [STICs]) in the
epithelium of the uterine tube fimbria, it has been suggested that
EOC can be derived from the tubal epithelium (TE).22 The abil-
ity of TE transformed in cell culture to form tumors reminiscent
of EOC has been reported.23 In a further extension of this view,
it has been speculated that some ovarian inclusion cysts may be
the result of implantation by the uterine tube epithelium.24

Recently, it has been shown that transformation of the PAX8-
expressing secretory TE cells by inactivation of Trp53, Brca1,
and Pten leads to HGSOC in genetically modified mice.25 How-
ever, this study did not compare the relative transformation effi-
ciency of either ciliated TE cells or OSE and did not test the role
of RB pathway alterations in TE transformation. It was also
reported that HGSOC might arise from the stroma of the uterine
tube after anti-M€ullerian hormone receptor type 2-Cre (Amhr2-
Cre)–directed inactivation of Dicer and Pten in genetically modi-
fied mice.26 However, the relevance of these studies to human

disease remains to be clarified because PTEN alterations are rare
in human HGSOC.

In Search of Stem Cells of Ovarian Surface
Epithelium and Tubal Epithelium

Adult stem cells are undifferentiated and long-lived cells com-
pared to other cell types, and play functional roles in growth,
repair, and homeostasis in the tissue that they reside in.27 Two
defining characteristics of these adult stem cells are self-renewal
and uni- or multipotency potential.28 In the self-renewal process,
stem cells may undergo symmetric or asymmetric division to
both maintain a defined stem cell population and create differen-
tiated progeny. The multipotency characteristic of stem cells rep-
resents their ability to create heterogeneous differentiated
progeny and thereby supply all the different cell types of the par-
ticular tissue that they are resident in. The cell turnover rate
varies between different tissues and therefore the stem cells can
either be proliferatively active or quiescent.28

The ovary is a reproductive organ and undergoes extensive tis-
sue regeneration during the ovulatory process. The OSE is con-
stantly involved in cell replacement of damaged and dead tissue
at sites of ovulation. Interestingly, unlike many other epithelial
tissues, the existence of stem cells for the OSE and TE has only
recently begun to be addressed. A few years ago, using pulse-
chase experiments with BrdU/IdU (5-bromo-2´-deoxyuridine/5-
iodo-2´deoxyuridine) and tetracycline-regulated (doxycycline
responsive) tetO-H2B-GFP transgenic mice, Szotek and col-
leagues29 showed the existence of ovarian epithelium label retain-
ing cells (LRCs). This LRC population exhibits some properties
of stem/progenitor cells, such as functional response to estrous
cycling by proliferation in the mouse, enhanced colony forming
ability in tissue culture, and the ability to exclude the DNA-
binding dye Hoechst 33342.29 Another population of OSE cells
was identified based on expression of the stem cell marker LY6A
(also known as SCA1).30 Unfortunately, it remains uncertain
whether these cells have potential for long-term self-renewal and
contribute to OSE regeneration in vivo, key features of stem cells.
Furthermore, it is unclear whether these cells occupy anatomi-
cally defined areas, similar to stem cells in other organs such as
the intestine, hair follicle, cornea, and prostate.27,31

Recent reports identified the aldehyde dehydrogenase
(ALDH) family of detoxifying enzymes as a useful marker of
stem/progenitor cells in a number of cell lineages, including
mammary, prostate, colon, hematopoietic, neural, and mesen-
chymal.32 Strikingly, the enzymatic activity of ALDH1 correlates
well with its expression, thereby allowing assessment of ALDH1
function by conversion of ALDH substrate into the fluorescent
product (ALDEFLUOR reaction), or by immunodetection tech-
niques such as immunohistochemistry and western blotting.32

Using the ALDEFLUOR assay we were able to identify a pool of
OSE cells with functional properties of stem/progenitor cells. In
addition to expressing ALDH1 and the other stem cell markers
CD133 and CK6B, this population expresses LGR5 and LEF1,
components of canonical WNT pathways.33 The canonical
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WNT pathway is involved
in a number of stem cell-
related functions, including
the maintenance, fate deter-
mination, and proliferation
of stem cells.34 Further-
more, OSE-stem/progeni-
tor cells show low
expression levels of micro-
RNAs of the miR-34 family
(miR-34a, b, and c), which
negatively regulate stem cell
properties of adult stem
cells.35 This subset of cells
also exhibit self-renewal
properties in clonogenic
OSE sphere forming assays,
contain slowly cycling cells
in label retention assays,
and contribute to OSE
regeneration according to
long-term lineage tracing
experiments in vivo (Fig. 1
and33). Similar results con-
firming the location of
Lgr5C cells in the OSE of
the hilum area were
recently reported by the
Barker group.36 However,
these investigators also observed the presence of some Lgr5C cells
in highly proliferative areas around the ovary. This discrepancy
might be explained by the high levels of Lgr5-eGFP-IRES-
CreERT2 expression in their model. Consistent with these find-
ings, we have observed that increased administration of tamoxi-
fen allows labeling of some proliferating OSE cells around the
ovary (Fu et al., in preparation).

Very little is known about stem cells for TE. It has been
recently reported that LRCs are preferentially located in the dis-
tal end of the uterine tube in the mouse.37,38 Consistent with
these findings, human TE contains a population of
CD49fCCD44C cells that preferentially localize in the distal end
of the uterine tube and form monoclonal spheres in Matrigel.39

Expansion of these cells was detected in tubal intraepithelial car-
cinomas and in the uterine tubes from patients with invasive
serous cancer. Unfortunately, little is known about the participa-
tion of these cells in regeneration of the TE in vivo. Their specific
location in relation to the junction area between the TE and
mesothelium and their gene expression profiles also remain
unknown. Furthermore, given that not all stem/progenitor cells
are quiescent,40 the label retention assay may not be sufficient
for accurate identification and characterization of all stem cell
niches. Most recently, it has been reported that embryonic and
neonate Lgr5C cells contribute to development of the epithelium
of uterine tube fimbria.36 However, these cells do not contribute
to regeneration of adult TE.33,36

Stem Cells and Cancer

Carcinogenesis involves clonal competition of evolving neo-
plastic clones that are selected according to their fitness to a par-
ticular stage of malignant progression. This process is notable for
the combination of partially preserved hierarchical structure typi-
cal of normal cell lineages with tumor heterogeneity reflecting
continuous genetic and epigenetic flux that affects critical signal
transduction networks. Mechanisms critical for tissue homeosta-
sis, including the regulation of stem/progenitor cells, are
frequently affected in cancer, resulting in the appearance of so-
called “stemness” features.6,7 Such features can include the
appearance of highly tumorigenic cancer cells that have stem-cell
like properties, such as the ability to self-renew and recreate the
complexity of the original tumors.41,42 Such cells can arise from
either adult stem/progenitor cells33,35 or from more differenti-
ated cells.43,44 Thus, although the term “cancer stem cells” has
acquired a broad usage, it is somewhat misleading. The same is
true for the term “cancer-initiating cells,” which may imply that
such cells have been transformed by cancer initiating mutations
whereas in reality transplantation of cancer-derived cells into the
host results in propagation of already initiated cancer cells.
Therefore, to avoid confusion we prefer to use the term “cancer
propagating cells” (CPCs, Fig. 2). CPCs frequently show
increased chemoresistance and therefore may play a significant
role in cancer recurrence.6,7

Figure 1. Stem cell niche of the ovarian surface epithelium. Progeny of the stem cells substitute for ovarian
surface epithelium (OSE) that is dislodged during ovulation. TA, transit-amplifying cells.
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During recent years it has become increasingly clear that, simi-
lar to cancers of other locations, neoplastic cells in EOC may
acquire molecular and cellular mechanisms typical of stem/
progenitor cells.32,42,45,46 Of interest, we have shown that ovarian
CPCs express ALDH1 and CD133,32,45,47 the markers expressed
in normal OSE stem/progenitor cells.33 Furthermore, alterations
in the WNT pathway and miR-34 inactivation are frequently
detected in EOC.48-50 Given the cell lineage specificity of WNT
and miR-34 signaling effects, further studies will be necessary to
determine their roles in the functions of OSE stem/progenitor
cells.

Cancer-Prone Stem Cell Niches

Stem cells require a protective microenvironment known as
the stem cell niche. Niche components nurture the stem cells and
shield them from unwanted stimuli, and/or initiate their differen-
tiation as required.27,51 Anatomical niche locations have been
defined for several organs. For example, a narrow transitional
zone between the cornea and the bulbar conjunctiva called the
limbus region shelters corneal epithelial stem cells,52,53 putative
intestinal stem cells are located in a narrow band near the base of
the intestinal crypt,54 and the hair-follicle bulge serves as a niche
for hair follicle epidermal stem cells.55 These examples demon-
strate preferred niche locations for different tissue structures.
However, notably, all are closely located to nerves and vessels,
elementary components that support stem cell nourishment.

Based on findings of shared immunohistochemical markers it
has recently been proposed that parts of human OSE, TE, and
adjacent mesothelium of extraovarian serosa may represent

a transitional zone.8,56

Consistent with this
hypothesis,
transitional/junction
regions have been identi-
fied between the meso-
thelium and tubal and
ovarian epithelium.57,58 It
has been further proposed
that cells in the transi-
tional/junction areas may
have a more plastic, and
presumably less differenti-
ated, state, thereby being a
possible place of origin of
EOC.8,56 It is well known
that many transitional/
junction areas, such as the
gastroesophageal, anal
canal, uterine cervical, and
corneal limbus junctions,
are highly susceptible to
cancer.59-63 The presence
of adult stem cells in such
junctions has been defini-

tively demonstrated for the corneal limbus region52,53 and the
gastroesophageal junction (64-66 and Table 1). Putative stem/pro-
genitor cells have been identified in the anal canal67 and the uter-
ine cervix.68 However, none of these studies provided definitive
proof that stem/progenitor cells are more susceptible to malig-
nant transformation than their more differentiated progeny.

In our recent study we demonstrated that OSE stem/progeni-
tor cells predominantly reside in the hilum region of the ovary.33

Similar to other stem cell compartments, this region lies adjacent
to nerves and vessels. Furthermore, the hilum encompasses the
transitional/junction zone between OSE, mesothelium, and TE.
In 1932, Butcher et al.69 reported that the greatest growth activ-
ity of OSE (or germinal epithelium) induced by ovulation
occurred near the hilum of the rat ovary. Increased OSE prolifer-
ation was also observed in the hilum region of mice and rats after
estrogen administration.70 It was also reported that the extent of
OSE proliferation around the ovary was insufficient for post-ovu-
latory regeneration of OSE in adult mice.71 Consistent with this
observation, it has been proposed that the OSE/mesothelium
cells of the hilum might be responsible for providing additional
cells for closure of ovulatory wounds.71,72 Interestingly, it has
been also reported that the OSE at the hilum appears earlier than
that in the rest of the bovine ovary.73 Although none of these
reports proposed the existence of stem cell compartment in the
hilum, their findings are consistent with our results showing that
cells with stem cell properties reside in this region. Given the
well-defined anatomical location of the hilum in the mouse
ovary, identification of this region as a novel stem cell niche may
represent an attractive model for studies of crosstalk between epi-
thelial and stromal components, particularly in the context of
junctions between OSE, mesothelium, and TE.

Figure 2. Schematic of the hierarchic relationship of normal and neoplastic cells. Cancer propagating cells (CPCs) rep-
resent a tumorigenic pool of cells with properties similar to those of normal stem cells, such as the ability to self-
renew and produce non-tumorigenic or less tumorigenic progeny. However, CPCs do not necessarily arise from stem
cells or represent cells that are targeted by initiating carcinogenic events, as the terms “cancer stem cells” and “can-
cer-initiating cells”may imply.
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Our discovery of the stem cell compartment for OSE has pro-
vided a unique opportunity to test whether EOC arises from this
compartment. To this end, we have inactivated Trp53 and Rb1
in isolated OSE stem/progenitor cells.33 Compared to their more
differentiated progeny, hilum cells mutant for Trp53 and Rb1
exhibited increased proliferation and did not undergo senescence
in cell culture. Furthermore, intraperitoneal transplantation of
such cells into mouse resulted in the formation of metastatic car-
cinomas morphologically similar to human HGSOC. These
findings provide direct experimental evidence that stem/progeni-
tor cells located at the transitional/junction area have increased
transformation potential and may result in HGSOC formation
after inactivation of Trp53 and Rb1.

Future Directions and Challenges

Stem cell niches for epithelia of the reproductive system and
their relevance to cancer pathogenesis remain poorly elucidated.
Our recent studies have shown the existence of a cancer-prone
stem cell niche for the OSE. Since previous studies of OSE
stem cells have been based on the mouse model, identification
of a similar niche in humans is one of the most urgent priori-
ties. It will be also of particular interest to establish mechanisms
controlling the OSE stem cell niche. Although the microenvi-
ronment plays a crucial role in the control of stem cell niches,
some adult stem cells such as intestinal stem cells are fully self-
organizing in tissue culture systems, indicating they are not
entirely niche dependent40 Further studies should lead to an
understanding of the molecular and cellular mechanisms that
regulate normal OSE regeneration and may also significantly
accelerate our understanding of how aberrations in those regula-
tory mechanisms contribute to EOC pathogenesis. Furthermore,

systematic analysis of the networks responsible for stem cell
niche maintenance may lead to identification of novel serum
EOC markers.

Notably, the cancer-prone OSE stem cell niche is located at
the OSE junction with other epithelia. This anatomically defined
location may allow a directed search for early neoplastic/
precursor lesions by high-resolution imaging approaches, such as
multiphoton laparoscopy/endoscopy74 Considering that ovarian
cancer can be successfully treated if diagnosed at an early stage,
clarification of the EOC place of origin is of particular
importance.

The existence of TE stem cells remains insufficiently estab-
lished. Further studies of putative TE stem/progenitor cells
should establish their role in the regeneration of TE and their sus-
ceptibility to malignant transformation. Furthermore, it will be
of interest to determine whether the cancer-prone TE stem cell
niche is also located at the transitional/junction areas between
TE and mesothelium.

Recently, it has become clear that a number of organs, such as
intestine, prostate, and mammary gland, contain several stem cell
pools that may compensate for each other under certain condi-
tions, such as depletion of stem cell niche, inflammation, or
wound healing.40,75,76 Thus, the search for additional OSE stem
cell pools is warranted. Furthermore, recent studies of cell fate
based on in vivo tracing have shown that the potential of stem
cells for differentiation toward specific cell types may be far more
limited than originally expected from cell transplantation studies.
For example, transplanted prostate stem cells are able to differen-
tiate into all 3 main cell types—basal, luminal and neuroendo-
crine—after their transplantation under the kidney capsule.77

However, basal and luminal lineages are maintained indepen-
dently in adult animals.75,78 The development of approaches to
trace cell fate under physiological conditions should be among

Table 1. Examples of putative cancer-prone stem cell niches in transitional zones

Organ; species Anatomical location Assays Niche markers Cell types Ref.

Anus; Mouse Anorectal junction Label retention, IHC CD34, integrin a6, Sox2,
p63, Tenascin C

Simple columnar/stratified
squamous epithelium
cells

67

Eye (Cornea); Human,
Mouse

Limbus Histology, IHC,
transplantation;
wounding

ABCG2, CK14, p63 p63 Limbal epithelium cells,
Limbal basal epithelium
cells

79,80

Ovary; Mouse Hilum FACS, label retention,
lineage-tracing, sphere/
clonal formation, gene-
expression arrays, IHC,
qRT-PCR, laser
microdissection,
transplantation

ALDH1, Lgr5, Lef1, CD133,
CK6B

Ovarian surface epithelium
cells

33

Stomach; Human,
Mouse

Gastroesophageal
junction

Histology, IHC, label
retention, chemical
random mutagenesis,
lineage-tracing

Lgr5 Epithelial base cells of
pyloric gastric units

64,65

Uterine cervix; Human Squamo-columnar
junction

Gene-expression arrays,
histology, IHC, western
blotting

AGR2, CD63, GDA, CK7,
MMP7

Squamous/columnar
epithelium cells

68

Abbreviations: IHC, immunohistochemistry; FACS, fluorescence-activated cell sorting; qRT-PCR, quantitative reverse transcription-polymerase chain reaction.
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the main priorities in the characterization of stem cell niches for
the female reproductive tract.

On a more general note, further studies of cancer-prone stem
niches may reinforce the need for a more focused search for stem
cell niches at junction/transitional areas in other organs. Recent
findings suggest that junction areas in other organs, such as the
uterine cervix, anus, and esophagus, may also contain cancer-
prone stem cell niches, thereby explaining the susceptibility of
these organs to malignant transformation. Thus, future work
may open a new field of research aimed at understanding why
some stem cell populations reside in transitional/junction areas
and how such a location contributes to cancer pathogenesis.
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