
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Bioorg. Med. Chem. Lett. 58 (2022) 128526

Available online 5 January 2022
0960-894X/© 2022 Elsevier Ltd. All rights reserved.

Discovery of highly potent SARS-CoV-2 Mpro inhibitors based on 
benzoisothiazolone scaffold 

Weixiong Chen a,b,1, Bo Feng c,1, Sheng Han b,1, Peipei Wang b, Wuhong Chen b, Yi Zang b,e,*, 
Jia Li b,c,d,e,*, Youhong Hu a,b,e,* 

a School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China 
b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China 
c School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China 
d Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, 
Aoshanwei Jimo, Qingdao 266237, China 
e School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
SARS-CoV-2 
Main protease inhibitors 
Benzoisothiazolone 

A B S T R A C T   

The COVID-19 pandemic has drastically impacted global economies and public health. Although vaccine 
development has been successful, it was not sufficient against more infectious mutant strains including the Delta 
variant indicating a need for alternative treatment strategies such as small molecular compound development. In 
this work, a series of SARS-CoV-2 main protease (Mpro) inhibitors were designed and tested based on the active 
compound from high-throughput diverse compound library screens. The most efficacious compound (16b-3) 
displayed potent SARS-CoV-2 Mpro inhibition with an IC50 value of 116 nM and selectivity against SARS-CoV-2 
Mpro when compared to PLpro and RdRp. This new class of compounds could be used as potential leads for further 
optimization in anti COVID-19 drug discovery.   

Introduction 

COVID-19 is a viral infection caused by SARS-CoV-2 that has spread 
to more than 100 countries with over 211 million confirmed cases and 
over 4.4 million confirmed deaths worldwide as of August 22, 2021 — 
this global pandemic remains a threat to both worldwide economies and 
public health.1 Although various vaccines have been developed 
including Pfizer’s BioNTech and Moderna’s NIAID vaccines,2–4 trans-
mission prevention of more infectious SARS-CoV-2 Delta variants is 
greatly reduced.5,6 To date, there still lacks gold-standard treatment 
methods in the fight against COVID-19, 7 indicating an urgent need to 
develop antiviral drugs which may serve as an alternative therapeutic 
agent for SARS-CoV-2 infection. 

SARS-CoV-2 is an enveloped positive-sense single-stranded RNA 
virus belonging to the genus β-coronavirus, which include SARS-CoV 
and MERS-CoV, etc. The life cycle of SARS-CoV-2 in host cells can be 
divided into the following processes: enter, translation, replication, 
transcription, assembly and release.8–11 The main protease (Mpro or 
3CLpro) plays an indispensable role in the replication and transcription 

process of the life cycle of coronaviruses. The main protease is initially 
responsible for coordinating its own autoproteolytic cleavage. Upon its 
own maturation cleavage, the main protease hydrolyzes the poly-
proteins pp1a/pp1ab on the sites of nsps4-11/nsps4-16 to release non- 
structural proteins (nsps).12–15 These non-structural proteins, 
including RNA-dependent RNA polymerase (nsp12) and helicase 
(nsp13), etc, participate in protein translation and viral genetic material 
synthesis, which collectively play important roles in the life cycle of 
coronaviruses.16–18 Inhibiting the main protease could therefore block 
the coronaviruses replication cycle and prevent further viral infection. 

Various groups have previously reported protease inhibitors as 
potentially attractive targeted antiviral drug (Fig.1a).19–26 The first 
crystal structure of SARS-CoV-2 main protease is covalently combined 
with ligand N3.19 These covalent inhibitors typically contain an active 
warhead group that covalently binds to Cys145 of the main protease. For 
example, Pfizer’s compound PF-007304814 is currently undergoing 
clinical research from a peptide mimic.22 The development of diverse 
inhibitor is needed to prevent the various coronavirus for the future. 
Recently, researchers identified Ebsulfur, Ebselen and their derivatives 
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as potent main protease inhibitors that combine through covalent in-
teractions with Mpro.19,27,28 However, they did not explore the detailed 
structure–activity relationship of these compounds systematically. 
Through high-throughput screening a diverse compound library, we also 
identified active compound that is similar to Ebsulfur and Ebselen de-
rivatives in their potency as inhibitors of the SARS-CoV-2 main protease. 
Herein, we report the structure–activity relationship of this series of 
compounds and provide a deeper understand of the key structural fea-
tures that are responsible for their activities. As shown in the Fig. 1b, the 
structural optimization and structure–activity analysis were focused on 
three functional groups: the tail benzene ring (ring B), linker and the 
core benzoisothiazolone (ring A). 

The synthetic route to the designed compounds is outlined in 
Schemes 1 and 2. Briefly, intermediates 3, 7 and 9 were synthesized 
under the procedure previously reported29–31 as shown in Scheme 1. In 
Scheme 2, these intermediates were connected with the linker by 

nucleophilic reaction to yield tert-butyl ester 10 ~ 12, which was then 
hydrolyzed to give acid 13 ~ 15. The desired compounds 16 ~ 18 were 
obtained by the condensation reaction from acids 13 ~ 15 with the 
corresponding amines. Further oxidation of the thioethers resulted in a 
series of sulfoxides 19 and sulfone 20. The other different linker com-
pounds 21 were synthesized from the key intermediates 3, which are 
described in the Supplementary Data. 

First, we explored the SAR of ring B as shown in Table 1. We intro-
duced various electronic and steric substitutions at the tail benzene ring 
(16b~16p) and the enzymatic activities of SARS-CoV-2 Mpro of these 
compounds were performed under the procedure previously re-
ported.19,21 These compounds maintained their inhibitory activities at 
similar levels. After replacing the tail phenyl with cyclohexyl (16c), the 
inhibitory activity was maintained (IC50 = 160 nM). However, when the 
tail phenyl was replaced with cyclopentyl (16d) or ethyl (16e), the 
inhibitory activities of the compounds decreased (IC50 = 400 and 380 

Fig. 1. (a) the presented structure of Mpro inhibitors; (b) the strategy of SAR study for Ebsulfur derivatives.  
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nM, respectively). There is a group with large steric hindrance in the 
para position of the benzene ring, the inhibitory activity of the com-
pound 16m decreased (IC50 = 310 nM), comparing to compound 16b 
(IC50 = 190 nM). These results showed that the electronic effect on the 
ring B is not obvious without π-π interaction for the inhibition of the 
SARS-CoV-2 main protease. The hydrophobic spatial structure of ring B 
might be sensitive against the activity of SARS-CoV-2 main protease. 
Considering inhibitory efficacy and ease of synthesis, the phenyl was 
chosen as the best group for ring B. 

Next, we optimized the linker. The inhibitory activities of these 
compounds are given in Table 2. We first tested the inhibitory activities 
of intermediates 3a, 10a and 13a. The results showed that the inhibitory 
activity of the intermediates 3a and 13a was reduced dramatically, 
which illustrated the importance of the hydrophobic spatial pocket. 
Extending (16q, 16r) or shortening (21a) the linker also decreased 
inhibitory activity of the compounds. After the amide group was 
opposed, the activity of the compound 21b (IC50 = 253 nM) remained at 

the same level as 16b. However, once the linker was replaced with an 
alkane chain, the inhibitory activity of compound 21c (IC50 = 540 nM) 
dropped, which indicated that the acetamide group in the linker plays an 
important role in the inhibitory activity. 

Finally, we optimized the core ring A. When ring A of compound 16b 
was replaced with a similar ring to benzoisothiazolone, the resulting 
compounds 17~20 were inactive (Table 3). These results indicate that 
the core structure of 16b binds with the main protease of SARS-CoV-2 
covalently, which is supported by other research.28 And then, we 
investigated the different substituents on the phenyl group (16b- 
2~16b-17) in Table 4. The presence of the relative bulky groups at 
position 7 of phenyl ring (compound 16b-9, 16b-13, 16b-17) decreased 
the activity drastically. The steric hindrance might block the covalent 
attack of Cys145 in the main protease. Introducing substituents at other 
position on the phenyl ring maintained the activity. Compound 16b-3 
contained an F substituent of the phenyl ring at position 4 yielded the 
good activity with an IC50 value of 116 nM. 

Scheme 1. Synthetic routes of compounds 3, 7 and 9. Reagents and conditions: (i) a: SOCl2, 60 ◦C, 6 h; b: NH4OH, 0 ◦C - rt, overnight; (ii) S powder, K2CO3, DMF, 
110 ◦C, N2, overnight; (iii) MeOH, H2SO4, reflux, 16 h; (iv) NH2OH, dioxane, rt, 48 h; (v) PPh3, DIAD, THF, rt, N2, 3 h; (vi) Boc2O, DMAP, CH3CN, rt, overnight. 

Scheme 2. Synthetic routes of compounds 16 ~ 21. Reagents and conditions: (i) tert-Butyl bromoacetate, K2CO3, THF, rt, 5 h; (ii) CF3COOH, DCM, rt, 6 h; (iii) 
amines, EDCI, HOBT, DMF, rt, 6 h; (iv) mCPBA, DCM, rt, overnight; (v) oxone, MeOH, rt, overnight; (vi) see the supplementary data. 
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Papain-like protease (PLpro) is a cysteine protease, which hydrolyzes 
the polyproteins pp1a/pp1ab on the sites of nsps1-3 to release non- 
structural proteins. To verify whether these compounds act as cova-
lent inhibitors of PLpro or RdRp, we evaluated the activities of the rep-
resented compounds against PLpro and RdRp. As shown in Table 5, the 
compounds with a benzoisothiazolone core showed high selectivity 

against SARS-CoV-2 Mpro comparing to PLpro and RdRp. 
Given the excellent potency and selectivity of this series compounds, 

the fast dilution experiment was performed to determine whether the 
inhibition of these compounds is reversible or not. The result of the fast 
dilution experiment (see Fig. S1 and Table S1) indicated that compound 
16b-3, just as GC-376,32 is an irreversible inhibitor of SARS-CoV-2 Mpro. 

In summary, we have identified a novel series of compounds that 
potently inhibited the SARS-CoV-2 main protease with high selectivity 
against SARS-CoV-2 Mpro when compared to PLpro and RdRp. The most 
efficacious compound 16b-3 displayed IC50 values of 116 nM against 
SARS-CoV-2 Mpro, which was more potent than Ebsulfur (IC50 = 490 
nM). These new compounds could be a potential lead for further opti-
mization in anti COVID-19 drug discovery. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
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Table 1 

Chemical structures and in vitro biological activities of compounds 16b ~ 16p.

Compound R Inhibition rate%(40 μM) IC50(nM) compound R Inhibition rate%(40 μM) IC50(nM) 

Hit 107.9 ± 0.9 190.0 ± 0.0 16i 99.2 ± 2.8 180.0 ± 10.0 

16b 101.6 ± 2.1 190.0 ± 40.0 16j 101.3 ± 0.4 150.0 ± 10.0 

16c 97.7 ± 1.3 160.0 ± 10.0 16k 99.3 ± 3.9 300.0 ± 10.0 

16d 95.5 ± 8.3 400.0 ± 30.0 16l 96.7 ± 1.5 120.0 ± 20.0 

16e 101.6 ± 0.2 380.0 ± 60.0 16m 99.9 ± 4.9 310.0 ± 12.0 

16f 94.0 ± 1.4 190.0 ± 10.0 16n 105.0 ± 0.9 334.8 ± 13.9 

16 g 95.5 ± 2.5 140.0 ± 40.0 16o 98.9 ± 6.5 250.0 ± 40.0 

16 h 95.7 ± 3.1 150.0 ± 10.0 16p 100.1 ± 3.1 210.0 ± 10.0  

Table 2 
Chemical structures and in vitro biological activities of compounds 3a, 10a, 13a, 

16b, 16q, 16r and 21a-c.

compound linker Inhibition rate%(40 μM) IC50(nM) 

16b 101.6 ± 2.1 190.0 ± 40.0 

3a 106.4 ± 2.3 2293.0 ± 30.8 

10a 104.0 ± 0.2 220.2 ± 7.4 

13a 98.4 ± 0.7 1571.3 ± 281.9 

16q 103.6 ± 1.5 230.0 ± 30.0 

16r 100.4 ± 0.7 388.3 ± 12.5 

21a 101.9 ± 0.9 680.0 ± 32.0 

21b 101.9 ± 1.4 253.0 ± 1.5 

21c 102.3 ± 1.5 539.9 ± 22.3  

Table 3 
Chemical structures and in vitro biological activities of compounds 16b and 

17~20.

compound X Inhibition rate%(40 μM) IC50(nM) 

16b S 101.6 ± 2.1 190.0 ± 40.0 
17 O 7.0 ± 2.9 NA 
18 NH 26.3 ± 4.7 NA 
19 SO 23.5 ± 7.2 NA 
20 SO2 18.3 ± 9.9 NA  
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