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Citation: Nešić, K.; Habschied, K.;
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Abstract: Seeking useful biological agents for mycotoxin detoxification has achieved success in the
last twenty years thanks to the participation of many multidisciplinary teams. We have recently
witnessed discoveries in the fields of bacterial genetics (inclusive of next-generation sequencing),
protein encoding, and bioinformatics that have helped to shape the latest perception of how microor-
ganisms/mycotoxins/environmental factors intertwine and interact, so the road is opened for new
breakthroughs. Analysis of literature data related to the biological control of mycotoxins indicates
the ability of yeast, bacteria, fungi and enzymes to degrade or adsorb mycotoxins, which increases
the safety and quality of susceptible crops, animal feed and, ultimately, food of animal origin (milk,
meat and eggs) by preventing the presence of residues. Microbial detoxification (transformation
and adsorption) is becoming a trustworthy strategy that leaves no or less toxic compounds and
contributes to food security. This review summarizes the data and highlights the importance and
prospects of these methods.

Keywords: biodetoxification of mycotoxins; detoxifying microorganisms; detoxifying enzymes

Key Contribution: An approach based on biological agents to control mycotoxicological problems is
very promising, but not all strategies are suitable for different purposes. This paper gives a summary
of various possibilities in order to contribute to decision-making on solutions in practice and to point
out possibilities for further research and improvement.

1. Introduction

Mycotoxins are secondary metabolites synthesized by an array of fungal genera, usu-
ally Fusarium, Penicillium and Aspergillus. They are natural contaminants which commonly
occur in food and feed and pose a threat to animal and human health. These hazards
contaminate agricultural commodities either directly or they reach animal tissues, milk
and eggs through a “carry-over” mechanism after feeding animals with contaminated
feedstuffs [1,2]. From regulatory and food safety viewpoints, the most significant and
prevailing types of mycotoxins are aflatoxins (AFs), zearalenone (ZEA), fumonisins (FUMs),
trichothecenes (TCT) (deoxynivalenol (DON), T-2 toxin (T-2) and HT-2 toxin (HT-2)), ochra-
toxins (OTA), ergot alkaloids (EAs), patulin and citrinin. If these substances are present in
a particularly high amount in feed and food, or in lower dosages but over a long period of
time, they can cause a variety of adverse effects, from acute to chronic, both in humans and
animals (Table 1).
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Table 1. Common mycotoxins, their main producers and toxic effects.

Mycotoxin Main Producing Fungi Toxic Effects Source

Aflatoxins Aspergillus flavus, A. parasiticus,
A. aflatoxiformans

Hepatotoxicity, carcinogenicity,
immunosuppression [3]

Ochratoxins Aspegillus ochraceus, Penicillium verrucosum,
A. carbonarius, A. niger

Nephrotoxicity, hepatotoxicity,
carcinogenicity, teratogenicity, and

immunosuppression
[4]

Deoxynivalenol
Fusarium. graminearum (Giberella zeae),

F. culmorum, F. sporotrichioides, F. tricinctum,
F. Roseum, F. acuminatum

Gastrointestinal toxicity,
immunodepression [5]

Zearalenone

Fusarium. graminearum (Giberella zeae),
F. culmorum, F. sporotrichioides,

F. verticillioides (F. moniliforme), F. semitectum,
F. equiseti and F. oxysporum

Reproduction toxicity [6]

Fumonisins Fusarium verticillioides, F. proliferatum Carcinogenicity, hepatotoxicity [7]

The economic ravages induced by mycotoxins are based on increased veterinary
and human health care costs, decreased livestock production, expenses of contaminated
food and feed disposal, research investments and implementation of different mitiga-
tion measures to reduce the severity of mycotoxin problems, and even the possibility
of fatal outcomes [8]. The World Health Organization (WHO)—International Agency
for Research on Cancer (IARC) evaluated the carcinogenic potential of AFs, OTA, TCT,
ZEA, and FUMs [9,10]. Escola et al. [11] emphasized that mycotoxin occurrence above
the detectable levels worldwide was up to 60–80% and that even low presence should
not be neglected as common mycotoxin mixtures, due to their synergism, could induce
combined adverse health effects. Based on their detrimental effects on humans and animals,
mycotoxin limits in several food and feed commodities have been prescribed by different
national and international regulations. Nevertheless, as noted by Mastanjevic et al. [12],
certain updates on legislation have to be made to provide for the health of animals and,
subsequently, humans.

Mycotoxin presence in feed and food is an issue of growing concern worldwide,
especially as the planet is facing the emerging effects of climate change [1]. Based on the
results of the investigation of milk samples routinely used for human consumption, Mehta
et al. [13] suggested a need for steps to be taken to control potential contamination of animal
feed and thus to mitigate mycotoxins concentration in milk. A similar conclusion was
raised by Souza et al. [14] who established good analytical methods in order to contribute
to suppression of the transfer of unwanted compounds from feed to milk. The importance
of laboratory control and the improvement of monitoring tests are emphasized within the
work of Moradi et al. [15] considering T-2 toxin detection, or Su et al. [16] in relation to the
level of DON contamination of barley and the possibility to sort the grain into different
classes accordingly.

During the decades-long struggle with mycotoxin problems, many treatments have
been tried: from physical, through chemical to biological. For instance, Horkey et al. [17]
concluded after their investigation of effects of fungicides on mycotoxin occurrence in
barley that they are partially successful and able to suppress some toxins, while not
others. However, it is not just grains that are affected. The green plant mass is also at
risk, as well as silage. That is why reliable solutions are being sought for these matrices
as well [18,19]. Various methods have been implemented to ensure decontamination of
affected commodities or to diminish the exposition to mycotoxins, but not all strategies
are suitable for different purposes [20,21]. The approach based on biological agents is very
promising in terms of efficiency and specificity, with the positive impact on the environment,
food safety and food security. Therefore, the aim of this paper is to summarize the main
achievements in this viewpoint as schematically presented in the Figure 1.
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2. Pre-Harvest Biological Control

Pre-harvest biological control is based on in-field strategies aimed to limit contam-
ination levels in crops intended for human and animal consumption. In general, these
systems are based on prevention and meant to evade the occurrence of contamination,
and to influence the predisposing factors that favor the synthesis of mycotoxins. The
use of biological control agents is an up-to-date pre-harvest concept to control mycotoxin
production [22].

2.1. Use of Microorganisms

Use of biofungicides is an approach which involves application of different microor-
ganisms, microbial antagonists or competitors that can provide suppression of toxic fungi.
This method is practiced by application of selected microbes on plants in the flowering
phase to limit or completely eradicate the growth of toxigenic fungi [23]. Some microbials,
as some strains of Bacillus subtilis can inhibit endophytic growth phase of toxin producers.
Bacteria such as Bacillus and Pseudomonas and fungi belonging to the genus Trichoderma are
the most promising biocontrol agents which act against a vast array of plant pathogens in
an environmentally friendly manner [24,25].

In the literature, there are examples of fungal strains for biocontrol. Dorner and
Cole [26] demonstrated that the usage of atoxigenic strains of Aspergillus flavus and As-
pergillus parasiticus in soil management procedures considerably decreased aflatoxin con-
tamination. An international collaboration between researchers gathered around the goal of
solving the aflatoxin problem in Africa “gave birth” to a product called Aflasafe, which was
a mixture of four atoxigenic isolates of A. flavus. Aflasafe strains are able to compete with
toxin producers for the colonization of plant residues in soil and organic matter and now
exist in multiple variants and combinations. Implementation of such products contribute
to the transition from toxigenic to atoxigenic populations of Aspergillus, although the total
amount of these fungi in the environment is not affected [27,28].

According to Cleveland et al. [29] treatment of soil with nontoxic Fusarium verticillioides
was useful in eliminating strains that produce fumonisin and inhibited them to synthesize
this toxin. Luongo et al. [30] also showed lower presence and activity of toxigenic F. prolif-
eratum and F. verticillioides in corn residues by implementation of non-pathogenic Fusarium
fungi. Sarrocco and Vannacci [27] described useful preharvest application of beneficial
fungi in field, which afterwards resulted in a good management and prevention of accu-
mulation of mycotoxins during storage. Later, Sarrocco et al. [31] examined the history
of implementation of non-aflatoxigenic isolates of Aspergillus flavus aimed for prevention
of aflatoxin contamination of corn and also provided an overview of the prospective us-
age of competitive filamentous fungi beneficial in counteracting Fusarium head blight in



Toxins 2021, 13, 198 4 of 15

wheat and alleviating Fusaria toxin synthesis. Their analysis focused on the exploitation of
fungi that could compete for nutrients and space (competitive exploitation) and/or fight
pathogens (intervening competition). The application of such useful isolates in the field,
according to their conclusion, could be a valid approach in preventing the risks associated
with mycotoxin pollution of these two basic cereal plants.

The potential of fungal competitors to beat mycotoxigenic strains is, nevertheless,
related to environmental conditions during their interactions. A potential limitation of
the use of atoxigenic strains for the biocontrol of unwanted fungi is the risk of sexual
recombination between toxigenic lines and biocontrol strains, which can lead to the emer-
gence of hyper virulent toxigenic strains [32]. The effectiveness of mycotoxin biocontrol
agents is dependent on crucial capability to infest the target substrate and to be beneficial
in various surroundings, in the field or during storage, without affecting the quality of the
commodity [33]. At the preharvest stage, a metagenomic approach focused on studying
crop-related communities (such as those on fruits which occur naturally in field) could be
helpful in detecting those beneficial isolates that could be combined and used as the agents
aimed at counteracting the mycotoxin accumulation during storage [27].

2.2. Use of Genetically Resistant Plants

Crop damage by insects is often one of the major etiological factors in enabling
toxigenic fungal infestation of plants, as these herbivores create injuries on the corn kernels
and act as a vector for some varieties of fungal spores [34]. For that reason, besides
agrotechnical measures, a biological strategy to plant the sorts of cereals which would
be less susceptible to injuries by fungi and insects has been developed. Fungal genetics
has revealed the responsible genes, pathways of mycotoxin synthesis, in particular of
aflatoxins and the trichothecenes, as well as the mode of regulation of this secondary
metabolism [35,36]. The development of plants resistant to the accumulation of toxins is
intensively promoted in regions with wide commercialization of genetically modified crops.
The success was achieved by incorporating the Bt gene into maize hybrids for the purpose
of protection against insect attacks [37]. In several research trials, transgenic Bt corn has
been demonstrated to decrease the accumulation of usual mycotoxins compared to non-Bt
isolines. This corn contains a gene from the soil bacterium Bacillus thuringiensis responsible
for the synthesis of a protein delta-endotoxin which is toxic to frequent Lepidoptera insect
pests. The obtained results demonstrate the success of indirect control of vermin attacks,
which are common causes of mycotoxin contamination [38].

Nevertheless, as emphasized by Munkvold [39], development of genetic resistance
to Aspergillus flavus, Gibberella zeae and Fusarium spp. (particularly F. verticillioides) in corn
is a high priority. He also stated that Bt maize is efficient in the reduction of fumonisin
occurrence, but is less successful in minimizing deoxynivalenol presence. This discrepancy
mirrors various pathogen and disease models as deoxynivalenol is associated with Gib-
berella ear rot, whereas fumonisin synthesis is related to Fusarium ear rot, and the incidence
of Gibberella ear rot is not as strongly affected by insect damage as is fumonisin formation.
The total benefit of reducing fumonisins and aflatoxins by Bt corn in the United States is
estimated at USD 23 million annually [37], while the new evaluation of the decrease in
aflatoxin accumulation due to planting Bt corn reaches USD 120 to USD 167 million per
year in over 16 states on average [38].

Continuous attention is being devoted to the uprising of transgenic plants which show
resistance against various diseases. Fungal and mycotoxin counteraction strategies, as part
of the plant-disease management via genetic engineering, are being pursued intensively
in three basic ways: (a) detracting infestation by the pathogen, (b) inserting detoxifying
genes, or (c) minimizing mycotoxin accumulation by influencing the biosynthetic path-
way [39]. This is considered to be the latest approach to reduce the dependency on harmful
synthetic fungicides. The current need is to identify genes across species to encourage
the search for variation against biotic stress. During the last twenty years, remarkable
efforts have been made towards implementation of genetic engineering in plant-disease
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management. Additionally, various molecular methods have appeared to unravel multiple
plant-pathogen combinations and connected prospect genes responsible for disease resis-
tance. Such genes have been recognized and estimated in crop improvement programs by
transformation [40]. Observing recent events, which have resulted in new active resistance
genes, it is motivating for emerging approaches to develop new specific resistance genes
by gene modification [41].

3. Post-Harvest Biological Control

Although infestation by toxigenic fungi and mycotoxin synthesis are inevitable under
certain environmental circumstances, their prevention is the preferred goal. Therefore,
appropriate pre-harvest practices and initially good quality of cereals represents the first
combat line, but post-harvest control systems are essential to diminish the final contam-
ination of various agricultural products. A number of strategies are available for the
mycotoxin degradation and/or fungal inactivation. The main advantages of biological
control are that it proved to be more effective, specific, irreversible and environmentally
friendly [22]. The main biological methods based on the use of microbiological agents and
enzymes in food and feed will be further discussed.

3.1. Use of Microorganisms

Biodetoxification is a relatively new strategy for mycotoxins reduction via non-
pathogenic microbes or their enzymes via catabolic processes. These germs not only
lead to reduction or suppression of toxins to no or less toxic compounds, but are also
considered as basically safe as they provide useful end products through the mechanisms
of biodegradation or bioadsorption. The antagonistic outcome of probiotics on toxigenic
fungi arises from competition for the living space and nutrients that are necessary for
growth, metabolism, the parasitism and parasitic function on pathogen fungi by forming a
biofilm and also making a defensive response during the release of free oxygen radicals [42].
The use of different microorganisms (bacteria, yeast and fungi) for the control of common
mycotoxins have been summarized by Taheur et al. [43] and presented here within the
Table 2.

Table 2. The use of microorganisms (bacteria, yeast and fungi) for the control of common mycotoxins (Adapted from
Taheur et al. [43]).

Mycotoxins Microorganisms

Aflatoxins

Lactobacillus plantarum LOCK 0945, L. brevis LOCK 0944, L. paracasei LOCK 0920, L. kefiri,
Bacillus pumilus, Bacillus subtilis ANSB060, Kazachstania servazzii, Acetobacter syzygii,

Rhodococcus erythropolis, Pseudomonas putida, Mycobacterium fluoranthenivorans sp. nov. DSM
44556T, Streptomyces lividans TK 24, Saccharomyces cerevisiae, Pichia anomala, Fusarium

aurantiacum strain NRRL-B-184, Pseudomonas putida, Mycobacterium fluoranthenivorans sp. nov.
DSM 44556T, Streptomyces lividans TK 24, Flavobacterium aurantiacum

Ochratoxin A
L. acidophilus VM 20, L. bulgaricus, L. helveticus, L. rhamnosus GG, B. lichniformis, B. subtilis,

Bifidobacterium animalis VM 12, Brevibacterium, Cupriavidus basilensis ŐR16, Pediococcus
parvulus, B. amyloliquefaciens ASAG1, S. cerevisiae O11, S. bayanus, Yarrowia lipolytica

Zearalenone B. licheniformis CK1, B. pumilus ES-21, B. subtilis, L. mucosae lm4208, L. rhamnosus, P. otitidis
TH-N1, Rhodococcus, Lysinibacillus sp., Geobacillus and Tepidimicrobium

Trichothecenes
(DON, T-2/HT-2)

Nocardioides and Devosia, Lactobacillus sakei KTU05-6, Pediococcus acidilactici KTU05-7,
Pediococcus pentosaceus KTU05-8, KTU05-09 and KTU05-10, Eggerthella sp. DII-9

3.1.1. Bacteria

Development of bacteria capable for biotransformation of mycotoxins into nontoxic
metabolites, which exert its function within the intestinal tract prior to the resorption of
the mycotoxins, began in the 1980s. The first were Flavobacterium aurantiacum with the
capacity to detoxify aflatoxins; Phenylobacterium immobile proved to degrade ochratoxin A
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and Gliocladium roseum which detoxified zearalenone via ring opening with subsequent
decarboxylation [44]. Detoxification of aflatoxin B1 by Enterococcus faecium is a consequence
of the mycotoxin adherence to the bacterial cell wall components, a modus that has been
further set up through various studies. Bacterial cell wall peptidoglycans and polysaccha-
rides were demonstrated to be constituents responsible for mycotoxin adsorption by the
aid of microorganisms [45].

Considering effects of trichothecenes, it is well known that the 12,13-epoxide ring is in
charge of their toxic activity, so the removal of this epoxide group causes a significant loss of
toxicity [46]. Eubacterium BBSH 797 was the first isolated individual bacterial strain which
was capable of biotransforming the epoxide group of trichothecenes. This strain, which
originates from bovine rumen fluid, by its epoxidase enzymatically reduced deoxynivalenol
(DON) to the non-toxic metabolite de-epoxy-deoxynivalenol (DOM-1). It was the first
microorganism applied as a mycotoxin deactivating additive in feed. Regarding the
microorganism DSM 11798 Genus nov. species nov. (BBSH 797) product, EFSA (European
Food Safety Authority) delivered a positive opinion on its safety for the target animals (pigs
and avian species), consumer, user and the environment, when used under the proposed
conditions [47,48]. The appropriate implementing regulations were established in 2016 and
2017 [49,50]. Aerobic oxidation and epimerization of DON at the C3 group performed by
multiple soil microorganisms, mainly belonging to the Gram-negative Devosia genus, was
reviewed by Hassan and Zhou [51]. A novel bacterium Eggerthella sp. DII-9 was isolated
by Gao et al. [52] from chicken intestines, who also determined its ability to biotransform
DON, HT-2, T-2 triol and T-2 tetraol.

Several researchers have demonstrated the biodetoxification of mycotoxins using pro-
biotic lactic acid bacteria [53–56]. Probiotics can remove these contaminants by biodegra-
dation or bioadsorption pathways. Biodegradation is irreversible and of longer duration
compared to bioadsorption, but it can modify toxin structure and also result in unwanted
metabolites (e.g., aflatoxicol from aflatoxin B1), which could be detrimental for the host.
Bioadsorption assumes quick direct binding of toxin which might be simply released and
depends on the bacterial affinity toward toxin [57]. Bacillus and Brevibacterium species have
been studied for degradation of different mycotoxins: aflatoxin, zearalenone, deoxyni-
valenol, ochratoxin and patulin. These mycotoxins could be also adsorbed by lactic acid
bacteria of Lactobacillus, Bifidobacterium and Lactococcus strains, but in a different adsorption
range [53,58].

3.1.2. Yeast

As a way of biological control, probiotic yeasts or products that contain yeast cell wall
have also been implemented to defeat mycotoxins. A variety of yeast strains proved to be
effective in transformation of toxins to non-toxic or at least less-toxic products, while some
of them suppress the development of filamentous fungi. The utilization of yeasts in different
technological procedures may have a direct inhibitory effect on the synthesis of toxins by
certain fungi, whereas several species possess the ability to accumulate mycotoxins from
agricultural products, thereby successfully detoxifying them [59].

The advantage of these microorganisms is that they have mere nutritional needs and
are able to settle on dry surfaces over longer periods of time, as well as that they tolerate
various pesticides used in the post-harvest conditions [60]. Contrary to many mycelial
fungi, yeasts mostly do not produce allergenic spores or mycotoxins and they are also
not capable of synthesizing antibiotic metabolites, which can be produced by bacterial
antagonists [61,62]. Additionally, they can rise fast on affordable substrates in fermenters
and are therefore convenient for production in large amounts [63]. Utilization of yeasts is
harmless to humans, animals, host plants or the environment, and it is unlikely that the
target organisms will generate resistance [64].

Four strains of yeasts: Saccharomyces cerevisiae AUMC 3875, Pichia anomala AUMC 2674,
Pichia guilliermondii AUMC 2663 and Candida krusei AUMC 8161 were chosen by Zohri
and Abdel-Kareem [65] as agents for biocontrol of growth and production of mycotoxins
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by 11 different toxigenic fungal isolates. In their experiment, Candida krusei AUMC 8161
absolutely prevented the development and production of toxins of all 11 investigated toxi-
genic isolates. Pichia anomala AUMC 2674 fully suppressed the development and synthesis
of toxins originating from six mold isolates and extremely decreased the growth as well
as the production of toxins from other experimental toxigenic fungi. Pichia guilliermondii
AUMC 2663 greatly diminished the production and growth of toxins synthesized by 11
toxigenic fungi. Saccharomyces cerevisiae AUMC 3875 absolutely prevented development of
five fungal isolates and greatly decreased the growth of other molds.

Saccharomyces cerevisiae is considered to be a probiotic yeast which can, according to
Liu et al. [66], remarkably decompose deoxynivalenol (DON) and decrease the extent of
lactate dehydrogenase (LDH) release in cells stimulated by DON. Success in alleviating the
effects of ochratoxin A and aflatoxin B1 by utilization of yeast Saccharomyces cerevisiae cell
wall in chicken diets has been recently reported by Mendieta et al. [67]. Efficacy of this yeast
to remove patulin in fermented foods by physical adsorption has also been proven [68].
Kluyveromyces marxianus were used to bind aflatoxin B1, ochratoxin A and zearalenone,
while authors demonstrated that mycotoxins can be bound especially by the Candida utilis
cell [69]. In a different trial, the yeast Yarrowia lipolytica reduced the quantity of ochratoxin
A to approximately half of the starting concentration applied in the culture [70]. More than
50% degradation of patulin by Rhodotorula mucilaginosa (R. mucilaginosa JM19) indicates the
usefulness of this yeast in foods and raw materials [71].

3.1.3. Fungi

Concerning the fungi and their detoxifying abilities, it was demonstrated that those
species capable of synthesizing mycotoxins could often also degrade them. Therefore, the
application of nontoxigenic strains of A. parasiticus and A. flavus on plants (maize, peanuts,
pistachio and cotton) has achieved exceptional results in the elimination of aflatoxins.
This is due to the fact that these fungi commonly have the ability of degradation and
probably conversion and utilization of degradation products [72]. Usage of high dosages
of non-toxigenic inoculants in the soil around developing crops provides competition with
toxigenic strains for infestation sites on the growing plant. This methodology also brings
positive effects during storage as competitive elimination in the field transforms into a
reduced risk of toxin presence in the storehouses and transportation. In this way, less
toxin-producers move into the storage and the applied biocontrol agents persist on the
crop until its final use [73].

There are also other fungi, like Rhizopus, Trichoderma, Clonostachys and Penicillium spp.,
that might fit for mycotoxin biocontrol [73]. It was demonstrated by Hackbart et al. [74]
that Rhizopus oryzae and Trichoderma reesei reduce aflatoxins AFB1, AFB2, AFG1, AFG2 and
AFM1. Trichoderma strains have also exerted considerable antibiosis and parasitism ability,
making them suitable to be used as mycoparasites against toxigenic Fusarium isolates for
preventing their growth by forming coils around the Fusarium hyphae and penetrating
it [75]. As with other biocontrol methods, the concept is to have such formulation able to
oppose the mycotoxin-producing strains and make a toxin-free product. Non-toxigenic
Fusarium verticillioides appeared to be a promising species against fumonisin-forming
Fusarium strains, but at the same time regrettably it is a plant pathogen [76].

In vitro experiments with inoculation of Microsphaerosis species on maize and wheat
grains reduced production of Gibberella zeae ascospore by 73%, while also in another trial,
under glass house conditions, with Phoma betae inoculation on wheat ears the prevalence
of Fusarium head blight decreased up to 60% [77]. As summarized by Vankatesh and
Keller [78], there are other fungi with mycotoxin transforming properties based on dif-
ferent mechanisms. Fungi Clonostachys rosea has been shown to synthesize lactonase, a
zearalenone-specific enzyme which catalyzes the hydrolysis of the lactone ring followed by
spontaneous decarboxylation [79]. Conversion of zearalenone into ZOM-1, characterized
by the opening of the ring structure at the ketone group positioned at C6′, reported to be
provided by Trichosporon mycotoxinivorans [80].
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There are some doubts and even counter arguments considering the usage of some
fungi for the wide control of mycotoxins. For instance, non-aflatoxigenic Aspergillus AF36
was officially applied for biological control treatments to alleviate aflatoxin problems in
the USA, but it also produced cyclopiazonic acid (α-CPA), which is a proven inhibitor
of ATP-ase enzyme and possessed the ability to impair physiological muscle function
(contractions and relaxations). Consequently, instead of AF36 other non-aflatoxigenic
strains, unable to synthesize α-CPA, are currently in use as agents for biocontrol [81].
Available data show that A. flavus strains can produce a multitude of different metabolites
with unrevealed toxicological outcome, such as aflavinine, aspertoxin, aflatrem, kojic
acid, leporin C, paspalinine and sterigmaticystin [82]. There is also an evidence that
a nontoxigenic strain can transform into a toxigenic one through sexual reproduction.
Therefore, it is necessary to have complete insight into the action of the agents and all
safety issues must be considered before their usage.

3.2. Use of Enzymes

Significant efforts have been recently invested to find enzymes able to degrade and
metabolize mycotoxins and thus provide adequate biotransformation solution to the myco-
toxicology problems. Such biotechnological methods, which are highly specific, generate
harmless products, and preferably lead to total detoxification while acting environmentally
friendly, are a primary goal. The main conversion paths are hydroxylation, hydrogenation,
hydrolysis, oxidation, esterification, glucuronidation and glycosylation, de-epoxidation,
methylation, sulfation, demethylation and deamination [83], which depends on the type
and nature of the mycotoxin. Many promising solutions have been reported targeting afla-
toxins, fumonisins and ochratoxins [84–91]. Deoxynivalenol (DON) due to its widespread
(globally the most commonly detected agricultural mycotoxin) and its chemical nature
(small polar moiety), appeared to be the most difficult target to develop agents able to
irreversibly bind it. This made it a challenging task for numerous innovative investigations
designed to discover feasible and sustainable biological degrading solutions [92]. The
mechanism of the enzyme action towards zearalenone (ZEN) has been studied in detail
by several scientific teams [93,94] and developed detoxification strategies are intended to
disrupt its estrogenic activity. The prevalent ZEN detoxifying mode described so far is
cleavage of lactone ring, which is catalyzed by esterases. The reaction is irreversible since
the resulting hydroxyketones spontaneously decarboxylate [95]. Ferrara et al. [96] have
shown that a function-driven methodology which involves metagenomic analysis repre-
sents a potent researching tool aimed to reveal novel enzymes powerful in degradation
of mycotoxins. They discovered the role of two new carboxylesterase genes belonging
to Dysgonamonadaceae bacterium and Peptococcaceae bacterium assumed to be involved in
fumonisin degradation. Enzymes for the control of common mycotoxins, accompanied
with their producers, as summarized by Loi et al. [95] are given within the Table 3.
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Table 3. Enzymes for the control of common mycotoxins (Adapted from Loi et al. [95]).

Mycotoxin Enzyme Producer

Aflatoxin

Aflatoxin oxidase enzyme (AFO) (EC 1.1) Armillariella tabescens

Peroxidase (EC 1.11.1.7) Horseradish (Armoracia rusticana)

Laccase (EC 1.10.3.2) Trametes versicolor
(Sigma-Aldrich, St. Louis, MO, USA)

Laccase (EC 1.10.3.2) Streptomyces coelicor

F420H2-dependent reductases (E.C. 1.5.8) Mycobacterium smegmatis

Mn peroxidase (EC 1.11.1.7) Pleurotus ostreatus

Aflatoxin degradation enzyme Pleurotus ostreatus

Myxobacteria aflatoxin degrading enzyme (MADE) Myxococcus fulvus ANSM068

Laccase (lac2) (EC 1.10.3.2) Pleurotus pulmonarius (ITEM 17144)

Ery4 Pleurotus eryngii (PS419)

Fumonisin

Carboxylesterase and aminotransferase
(E.C. 3.1.1, E.C. 2.6.1) Sphingomonas sp. ATCC55552

Carboxylesterase B and aminotransferase
(E.C. 3.1.1, E.C. 2.6.1/FJ426269.1) Sphingopyxis sp. MTA144

Fumonisin esterase (E.C. 3.1.1.87) Sphingopyxis sp. MTA144

Trichothecenes

Cytochrome P450 system (Ddna + Kdx + KdR)
(E.C. 1.14 AB744215.1 AB744217.1) (DON; NIV) Sphingomonas sp. strain KSM1

UDP-glycosyltransferase (AC006282) Arabidopsis thaliana

Zearalenone

Laccase (EC 1.10.3.2) Trametes versicolor (Sigma-Aldrich, USA)

laccase (EC 1.10.3.2) Streptomyces coelicolor

Lactono hydrolase (E.C. 3.1.1) Clonostachys rosea

2cys-peroxiredoxin (EC 1.11.1.15) Acinetobacter sp. SM04

Ochratoxin

Carboxypeptidase A: CPA (EC 3.4.24) Bovine pancreas

Carboxypeptidase Y: CPY (EC 3.4.16) Saccharomyces cerevisiae

Lipase (EC 3.1)
Protease A (EC 3.4)
Amidase 2 (EC 3.5)

Aspergillus niger

As usually several mycotoxins simultaneously contaminate commodities, Lyagin and
Efremenko [97] suggested development of biocontrol agents which contain several efficient
enzymes. To select proper enzymes for such combinations precisely, both a thorough
understanding of catalytic processes and proper analysis of enzyme properties are required.
Useful solutions for this purpose would be enzymes that can degrade several mycotoxins at
the same time, but only a limited number can answer this task. There are cytochromes (able
to modify aflatoxins, trichothecenes and sterigmatocystin), aflatoxin oxidase AFO (work-
ing on aflatoxins and sterigmatocystin) and aldo-keto reductase AKR18A1 (performing
reduction of trichothecenes and zearalenone) among them. In addition, there are numerous
mycotoxins (like sterigmatocystin and ergot alkaloids) which can be detoxified by a very
limited number of enzymes, if there is such possibility at all, while also more than a half of
enzymes (lyases, isomerases, ligases and translocases) are unable or unknown to be able to
modify mycotoxins [97].

Both from technological and economic points of view, a use of enzymes is beneficial.
Reduced effectiveness due to matrix influence could be present. The physicochemical prop-
erties of food (fat content, moisture, acidity, texture) significantly affect the outcome of the
detoxifying process. Furthermore, inhibitory components could be present in raw materials
and the possibility to have masked forms of mycotoxins may restrict their bioavailability
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for the enzymatic catalysis. Such circumstances might require pretreatments, additional
finance and time, which must be carefully considered when establishing industrial utiliza-
tion [95]. The use of biological agents as feed additives could also be quite limited. To make
it widely applicable more understanding is needed about the conversion procedures, the
toxicological characteristics of the products obtained by transformation, the influence of
the conversion on nutritional value of feed and on animal safety. Such feed additive must
be harmless and stable in the digestive tract of animals [98]. An appropriate technological
prescription of enzyme application is necessary in order to preserve its efficiency.

It is also important to have proper legislation, both for food and feed, which foresees
the possibility of detoxifying treatments. The European Community set the regulation on
food enzymes in 2008 [99]. This regulation covers “enzymes added to food to perform
a technological function in the manufacture, processing, preparation, treatment, packag-
ing, transport or storage of such food, including enzymes used as processing aids”. All
enzymes included in this regulation are considered as processing aids, excepting invertase
and lysozyme, which belong to the group of additives. Eligibility criteria for detoxifying
treatments, including biotransformation, have been established for materials intended for
animal nutrition in 2015 [100]. EU Regulations have been established regarding enzyme
fumonisin esterase as feed additive for pigs and poultry [101–103] and EFSA gave its scien-
tific opinion in 2020 [104] on safety and efficacy of fumonisin esterase from Komagataella
phaffii DSM 32159 as a feed additive for all animal species, in accordance with Regulation
(EC) No 1831/20031 which establishes the rules governing the community authorization of
additives for use in animal nutrition [105].

4. Conclusions

Biological control agents should be affordable to food and feed producers and com-
posed in a way that makes products easy and safe to handle. The efficacy might be
enhanced by the selection of more efficient strains of microorganisms, gene manipulations,
combination of more ingredients and inclusion of other synergistically acting bio-products.
The biocontrol of mycotoxins is an approach with a bright future, although it will not be
self-sufficient. It should be implemented in connection with good agricultural practices and
coupled with good postharvest management, especially sorting and suitable storage. Most
questions concerning safety, sustainability and the impact on the ecosystem of biological
strategies are asked from stakeholders in industry, academia and local governments, and
uppermost from the consumers. Therefore, many tests should be conducted and the results
evaluated with the aim to eliminate any suspicions on possible adverse effects on plant,
animal and human health and the environment. Without a doubt, before making the final
choice of method, all issues must be resolved and a complete risk assessment carried out.
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69. Jakopović, Ž.; Čiča, K.H.; Mrvčić, J.; Pucić, I.; Čanak, I.; Frece, J.; Pleadin, J.; Stanzer, D.; Zjalic, S.; Markov, K. Properties and
Fermentation Activity of Industrial Yeasts Saccharomyces cerevisiae, S. uvarum, Candida utilis and Kluyveromyces marxianus
Exposed to AFB1, OTA and ZEA. Food Technol. Biotechnol. 2018, 56, 208–217. [CrossRef] [PubMed]

70. Yang, Q.; Wang, J.; Zhang, H.; Li, C.; Zhang, X. Ochratoxin A is degraded by Yarrowia lipolytica and generates non-toxic
degradation products. World Mycotoxin J. 2016, 9, 269–278. [CrossRef]

71. Li, X.; Tang, H.; Yang, C.; Meng, X.; Liu, B. Detoxification of mycotoxin patulin by the yeast Rhodotorula mucilaginosa. Food
Control 2019, 96, 47–52. [CrossRef]

72. Horn, B.W.; Dorner, J.W. Effect of nontoxigenic Aspergillus flavus and A. parasiticus on aflatoxin contamination of wounded
peanut seeds inoculated with agricultural soil containing natural fungal populations. Biocontrol. Sci. Technol. 2009, 19, 249–262.
[CrossRef]

73. Alberts, J.F.; Lilly, M.; Rheeder, J.P.; Burger, H.-M.; Shephard, G.S.; Gelderblom, W.C.A. Technological and community-based
methods to reduce mycotoxin exposure. Food Control 2017, 73, 101–109. [CrossRef]

74. Hackbart, H.C.S.; Machado, A.R.; Christ-Ribeiro, A.; Prietto, L.; Badiale-Furlong, E. Reduction of aflatoxins by Rhizopus oryzae
and Trichoderma reesei. Mycotoxin Res. 2014, 30, 141–149. [CrossRef]
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