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This paper is concerned with the utilization of deterministically modelled
chemical reaction networks for the implementation of (feed-forward)
neural networks. We develop a general mathematical framework and
prove that the ordinary differential equations (ODEs) associated with certain
reaction network implementations of neural networks have desirable prop-
erties including (i) existence of unique positive fixed points that are
smooth in the parameters of the model (necessary for gradient descent)
and (ii) fast convergence to the fixed point regardless of initial condition
(necessary for efficient implementation). We do so by first making a connec-
tion between neural networks and fixed points for systems of ODEs, and
then by constructing reaction networks with the correct associated set of
ODEs. We demonstrate the theory by constructing a reaction network that
implements a neural network with a smoothed ReLU activation function,
though we also demonstrate how to generalize the construction to allow
for other activation functions (each with the desirable properties listed
previously). As there are multiple types of ‘networks’ used in this paper,
we also give a careful introduction to both reaction networks and neural
networks, in order to disambiguate the overlapping vocabulary in the two
settings and to clearly highlight the role of each network’s properties.
1. Introduction
There is a growing interest in synthetic chemical reaction networks that carry
out some pre-determined task [1–13]. The field that develops and analyses
these networks often goes by the name ‘computation with chemical reaction
networks’. The tasks being carried out can range from the pedestrian, such as
determining the minimum or sum of two numbers, to the complex. The goal
of this style of work is not to devise methods that can match or exceed silicon
based computers in terms of speed, but instead it is to develop methods of com-
putation for environments in which silicon based computers cannot currently
go—for instance in the cellular environment. A particular type of (complex)
computation now found ubiquitously in our daily technology is machine learn-
ing via neural networks, and so it is no surprise that there has been recent work
on the development of chemical reaction network implementations of neural
networks with a fixed set of parameters [8,14–20]. More generally, work focused
in this context on understanding the connection between biochemical models
and the physical mechanisms of information processing stretches back at least
through the 1960s [21–29].

The papers we are aware of in the literature pertaining to chemical reaction
network implementations of neural networks focus on particular constructions.
Hence, there is currently little mathematical theory developed that can be uti-
lized in a general manner. (An exception is [8], which develops the necessary
theory for chemical Boltzmann machines to be implemented via stochastic
models of chemical reaction networks.) Moreover, it is often simulation that
is put forth as evidence to demonstrate the validity of a construction as opposed
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to rigorous proof. Thus, these works are not mathematical in
nature. (This should not be taken as a criticism, as these
papers were not meant to focus on the mathematics.) The
major goal of this work, therefore, is to begin the development
of a mathematical framework for the construction of determi-
nistically modelled reaction networks that implement neural
networks and machine learning. In particular, the mathemat-
ical framework will allow us to prove that the dynamical
system associated with the constructed chemical reaction net-
work will (i) implement a given neural network and (ii) have
certain desirable properties, briefly outlined below.

Some further details are called for before proceeding. In
order to devise deterministically modelled chemical reaction
networks that implement neural networks, the following
broad strategy may be employed:

1. Fix a neural network with some choice of activation func-
tion, w, and parameters (biases and weights), P. Denote
the output values of the neural network via Ψ(d ), where
d is an input (data).

2. Determine a chemical reaction network {S, C, R} for
which the associated mass-action ODE system

_x(t) ¼ f(x(t)), x(0) ¼ d, (1:1)

satisfies F(x) =Ψ(d ), where F is some functional of the sol-
ution, x, to (1.1) (note that the solution x depends on d, the
initial value). In particular, it is natural to take the output
to be the limiting steady-state values of some ordered
subset of the species,

F(x) ¼ lim
t!1 xi(t)
� �

i[I
,

where I is some index set.

The above is the basic strategy of [14], in which they
design a reaction network to learn the XOR function, and
of [19]. We note that a different modelling framework is
used in [20], in which limiting values are found when certain
counts go to zero (and remain there).

The basic strategy outlined above, i.e. using the limiting
values of an initial value problem (1.1) to represent the
output of a neural network, is quite natural, but it leaves
open a number of questions that need to be addressed for a
given construction:

1. When will the constructed reaction network admit limit-
ing steady states?

2. Assuming limiting steady-state values exist, under what
conditions will they be unique for a given choice of
model parameters and for a given initial condition?

3. Assuming there are unique limiting steady states, when
will they be smooth in the parameters (which is important
for gradient descent and other optimization procedures)?

4. How long will it take the model to converge? In particular,
could the time required to determine the output of the
system depend strongly on the initial conditions?

We note that these are highly non-trivial questions in the
present context as mass-action models of chemical systems
are polynomial dynamical systems, and are known to exhibit
myriad behaviours including chaotic behaviour [30].

In this article, we develop a mathematical framework that
is capable of resolving the questions posed above. Moreover,
we use our framework to develop a chemical reaction net-
work implementation of an arbitrarily sized neural network
with a smoothed ReLU activation function (see equation
(3.2) and figure 4). Using our mathematical framework, we
prove that this construction leads to a system that is exponen-
tially reliable (i.e. the output of the system is unique and is
smooth with respect to the parameters of the model, and
the process converges exponentially fast) and converges
from infinity in finite time (so the convergence time is uni-
formly bounded over all initial conditions). See definitions
4.7 and 5.3 for the precise meaning of these terms.

The applications possible from neural network implemen-
tations of chemical reaction networks seem nearly limitless.
However, it is the view of these authors that this potential
can only be achieved once a solid mathematical foundation
is created uponwhich to build the necessary theory and, even-
tually, physical implementations—perhaps via DNA strand
displacement [9,31,32]. We therefore view this work as a start-
ing point, with follow-upwork focused on implementations of
neural networks that can perform gradient descent autono-
mously, allowing us to relax the assumption of a fixed set of
parameters, in both supervised and unsupervised settings.
Finally, while the focus of the current paper is on implemen-
tations of neural networks via deterministically modelled
reaction networks, stochastic variants are possible as well. In
particular, stochastically modelled reaction networks will be
the more natural choice whenever the goal is the approxi-
mation of distributions as opposed to functions [8]. Study of
such implementations is therefore another exciting avenue
of future research.

We end the this section with a brief collection of some
notation that will be used throughout this paper. We denote
the empty set by �. We denote an arbitrary index set by I .
We use the notation _S

i[IAi to mean the union
S

i[IAi where
Ai > Aj ¼ � for all i, j [ I such that i≠ j. By partition of a set
S, we mean a collection of non-empty subsets of S,
{Ai = �: i [ I }, such that S ¼ _S

i[IAi. For two vectors u, v,
we will denote the Hadamard product, which is simply
term-wise multiplication, via �. That is, we have

(u� v)i ¼ ui � vi:
For a function f :Rc ! R and a vector u ¼ (u1, . . . , uc) we
denote by ruf the vector whose ith component is ∂f/∂ui. For
a vector valued function f, we denote by f 0(x) the vector
whose ith component is fi0 (x).

The remainder of the paper is organized as follows.
Sections 2 and 3 give primers, including notation used in
this paper, on reaction networks and neural networks, respect-
ively. As there are two distinct notions of networks in this
paper, it is important to carefully separate the two. In §4, we
present our main theoretical results pertaining to ODE
implementations of neural networks. In §5, we demonstrate
how to utilize our theoretical results to construct a reaction net-
work that implements a given neural network with a fixed set
of parameters and a smoothed ReLU activation function. In §6,
we provide a detailed example, including a demonstration of
how to utilize our theory to implement neural networks
with different activation functions.

2. Reaction networks
Reaction networks are graphical representations of inter-
actions between different ‘species’. In this context, the word
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species may refer to different organisms (for example, if you
are modelling the interactions among foxes and hares) or to
different chemical compounds (for example, if you are mod-
elling the dynamics of a biochemical process within a cell). In
this paper, we are primarily interested in the latter context
and will also refer to reaction networks as ‘chemical reaction
networks’, as is common.
ing.org/journal/rsif
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Definition 2.1. A reaction network, or chemical reaction network,
consists of a nonempty and finite set of species S and directed
graph with vertices C and directed edges R satisfying the
following conditions:

— each vertex is a linear combination of the species over the
non-negative integers;

— every species appears with a positive coefficient in at least
one vertex;

— no two vertices are the same linear combination of the
species;

— each vertex is connected by a directed edge to at least one
other vertex;

— there are no directed edges from a vertex to itself.

Vertices of the reaction network are called complexes, and
directed edges are called reactions. If Y, bY [ C are two com-
plexes and there is a directed edge from Y to bY, we will
write Y! bY [ R: We will often denote a reaction network
via G ¼ (S, C, R): 4

When considering general/theoretical systems, we will
typically denote the species as S ¼ {X1, . . . , Xn}, in which
case our vertices/complexes are of the form

Y ¼ b1X1 þ � � � þ bnXn,

where bi [ Z�0 for each i [ {1, . . . , n}:

We will use the common slight abuse of notation by
also associating a complex Y [ C with the vector in Zn

�0
whose ith component is bi. Using this convention, we
define the reaction vector for a reaction Y! bY [ R as

z
Y!bY ¼ bY� Y [ Zn

�0:

When considering specific examples, wewill usemore sugges-
tive notation for our species. We present two examples to
solidify the notation. It is a common practice, which we use
here, to specify a reaction network by writing all the reactions,
since the sets S, C and R are contained in this description.
Example 2.2. Consider the following reaction network with
two species, S ¼ {X1, X2}:

X1 þ X2 ! 2X2

and

X2 ! X1:

Here the set of complexes/vertices is {X1 +X2, 2X2, X2, X1}.
For example, it could be that X1 is an active form of a protein
and X2 is the inactive form and two actions can take place:
(i) an inactive protein can catalyse the inactivation of an
active protein and (ii) an inactive protein can spontaneously
become active. For another example, we could use the
network to model disease spread, with X1 representing
healthy/susceptible individuals and X2 representing those
that are infected.

Whatever the modelling scenario is, the network is the
same and consists of two species, four complexes (vertices)
and two reactions. The associated reaction vectors are

zX1þX2!2X2
¼ �1

1

� �
and zX2!X1

¼ 1
�1
� �

:

Example 2.3. Consider the following reaction network with
three species, S ¼ {X1, X2, X3}:

0! X1 þ X2, X1 O X3  X1 þ X3:

In this example, molecules of X1 and X2 enter the system from
outside of it via 0→X1 +X2, X1 can spontaneously convert to
X3 and vice versa via the two reactions X1 O X3, and X3 cata-
lyses the removal ofX1 molecules via the reactionX1 +X3→X3.

The reaction network tells us the constituent species of a
model, the counts of each of the species required for each
of the reactions to take place and the counts of the products
of each reaction. Moreover, the reaction vectors give the net
changes in the counts of the species due to the occurrence
of the different reactions. However, the reaction network
does not determine the rates at which the different reactions
take place.

A common modelling choice is to assume that the vector
of concentrations of the species at time t≥ 0, denoted by
x(t) [ Rn

�0, satisfies a system of the form

_x(t) ¼
X

Y!bY[R

l
Y!bY(x(t))zY!bY, (2:1)

where the enumeration is over all of the reactions and
l
Y!bY :Rn

�0 ! R�0 is some function. The set of functions
L ¼ {l

Y!bY} is called the kinetics of the model, and the most
common form of kinetics, and the one we use throughout,
is termed mass-action kinetics in which

l
Y!bY(x) ¼ k

Y!bYYn
i¼1

xYi
i ,

for some choice of rate constant k
Y!bY . 0 and where Yi is the

ith component of Y viewed as a vector in Zn
�0. When Λ is

mass-action kinetics, we say that (G, L) is a mass-action
system. When mass-action kinetics is used, it is common to
place the reaction rate constant next to the associated arrow

in the graph, Y �!kY!Ŷ Y:
3. Neural networks
We give a basic introduction to the type of neural networks
we consider in this paper—feed forward. For more on
neural networks, see [33–37]. Loosely, a neural network is a
graph that gives a visual depiction of a certain type of math-
ematical function. The class of functions they can represent,
which will be detailed below, have many parameters, and
are ‘universal’ in that they can be used to approximate any
continuously differentiable function arbitrarily well [38,39].
The power of neural networks comes from the fact that
they can be ‘trained’ from data, which simply means that
the parameters of the function can be calibrated algorithmi-
cally so as to produce a final function capable of carrying
out some pre-determined task (such as image recognition).
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Below, we will first introduce the basic structure of a
neural network. Next, we will explain how each such
graph, when combined with a choice of parameters and an
‘activation function’, is simply a representation for a particu-
lar function. We will call such a network, in which all
parameters, together with the activation function, are fixed,
a ‘hardwired’ neural network. Finally, we will discuss how
neural networks can be trained by finding parameters for
the network that minimize (at least locally) a desired cost
function. This minimization is often performed by a version
of gradient descent and is termed backpropagation in the field.

3.1. Structure of a neural network
Formally, a feed-forward neural network G = (V, D) is a directed
graph on a set of nodes V and a set of directed edges D⊆ V ×
V, such that there is a partition of V into layers Lℓ, V ¼ _Sm

‘¼0L
‘,

with the property that (eX0, eX) [ D if and only if eX0 [ L‘ andeX [ L‘þ1 for some ℓ∈ {0,…, m− 1}. We will refer to the set Lℓ

as the ℓth layer of G, so G has m + 1 layers, and each Lℓ, with
0≤ ℓ≤m, contains cℓ > 0 nodes. The nodes in L0 are referred
to as input nodes, while those in Lm as the output nodes. All
nodes in

Sm�1
‘¼1 L

‘ are referred to as hidden nodes or intermediate
nodes. We use input layer, output layer, and hidden layer to refer
to each layer that contains the corresponding nodes. Note
that we can partition D as follows:

D ¼ _[
‘ : 1�‘�m

_[eX[L‘
_[eX0 :(eX0 ,eX)[D

(eX0, eX): (3:1)

For the sake of brevity, for the remainder of the paper we
will refer to feed-forward neural networks simply as neural
networks.

Indices can often become burdensome when working
with neural networks. Thus, we minimized their use in the
preceding explanation, and will continue to do so when poss-
ible. That said, it will be useful to have an enumeration and
so we will denote the jth node in layer ℓ by eX‘

j . See figure 1.

3.2. A neural network as a mathematical function
We label each non-input node and each directed edge with a
real number. A label for a non-input node is termed a bias,
whereas a label for an edge is termed a weight. Moreover,
we associate an activation function with each non-input
node, which will be described fully below. We will call a
neural network with such a labelling and a choice of
activation function a hardwired neural network. For each
ℓ∈ {1,…, m}, we will denote by b‘ [ Rc‘ the vector whose
ith component gives the bias for node eX‘

i , and will denote
by W‘ [ Rc‘�c‘�1 the matrix whose (i, j )th entry represents
the weight of the edge between nodes eX‘�1

j and eX‘
i Note

that the ordering of the indices of Wℓ seems backwards at
first glance. However, this ordering will make certain
expressions slightly cleaner later, and is standard in the field.

We will use the notation B for the assignment of node
labels (biases) and W for the assignment of edge labels
(weights). That is, for each of ℓ∈ {1,…,m}, we have
B(‘) ¼ b‘ and W(‘) ¼W‘. Collectively, P ¼ (B, W) is an
assignment of labels to G = (V, D). So long as we have also
chosen an activation function w, which will be described
directly below, we may denote the resulting hardwired
neural network via (G, P, w).

Let w :R! R�0 be a continuous, monotonic function,
which is then extended to w :Rc ! Rc

�0 for c [ {2, 3, . . . } by
letting (w(y))i = w(yi). We present a few examples of some
so-called activation functions w :R! R�0.

1. w1(y) = 1/(1 + e−y). This sigmoid function is a bijection
onto the interval (0, 1), and is used quite commonly. See
figure 2.

2. w2(y) =max(0, y). This function is termed the ReLU
function (rectified linear units). See figure 3.

3. Let h≥ 0 and define

w3(y) ¼
1
2

yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4h

q� �
: (3:2)

This function is a smoothed version of the ReLU function,
while remaining strictly monotonic, and will play a key
role in the present work. See figure 4.

A pair of consecutive layers Lℓ−1 and Lℓ alongwith all edges
between the two layers, encodea functionc‘ :Rc‘�1 ! Rc‘ which
is defined via

c ‘(y) ¼ w(W‘yþ b‘): (3:3)
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Takingcompositions, ahardwiredneuralnetwork is then simply
a visual representation for the function C(G,P,w) :R

c0 ! Rcm
�0

defined via

C(G,P,w) ¼ cm � cm�1 � � � � � c1:

Thus, the function associated with a neural network is simply a
sequence of compositions that alternates between linear func-
tions (via matrix multiplication and vector addition) and
nonlinear functions (via application of the activation function).

It is useful to provide a bit more notation before moving
on. Suppose that d [ Rc0 is the input to the function C(G,P,w)
(or, equivalently, the function ψ1). We then define a0 = d and
for 1≤ ℓ≤m we define

z‘(d) ¼ W‘a‘�1(d)þ b‘ (3:4)
and

a‘(d) ¼ w(z‘(d)), (3:5)

recursively, where we recall that the ith component of w(zℓ(d ))
is w(z‘i (d)): The vector a

ℓ(d ) is said to give the activations of the
nodes in the ℓth layer. With these definitions, we have that
for any ‘ [ {1, . . . , m}

C(G,P,w)(d) ¼ cm � � � � � c‘(a‘�1(d)):

Moreover, note that C(G,P,w) ¼ am, which is a useful compact
notation for C(G,P,w).
3.3. Learning from data
Suppose now that we are given N pieces of data of the form
(d, t(d)) [ Rc0�cm . For example, and to take a common
example, d [ R784 could be the values of the 28 × 28 = 784
pixels in a greyscale image of a hand-drawn number, and
t (d) [ R10

�0 could be the vector ei (the vector with a 1 in the
ith digit and zeros elsewhere) if the image is that of a hand-
drawn i− 1. Here d is considered the input data and τ(d ) is
considered the ‘truth’. We could then construct a neural net-
work with c0 = 784 and cm = 10 simply by choosing (i) the
number of hidden layers, and how many nodes per layer,
(ii) biases and weights, P ¼ (B, W), for the nodes and
directed edges, and (iii) an activation function w. In such a
manner, our hardwired function C(G,P,w) is determined.

At this point, we could ask how closely our function
matches the ‘truth’ by looking at some cost function.
Therefore, assume that we have a cost function of the form

Cost(P) ¼ 1
N

X
d

C(d, P) ¼ 1
N

X
d

C(d), (3:6)

where the sum is over all the data and C is a function giving a
measure of how closely C(G,P,w)(d) ¼ am(d) approximates τ(d ).
The second equality above points out that for notational con-
venience we will typically suppress the dependence of the
parameters P ¼ (B, W) in C. Some of the most commonly
used cost functions are given below:

1. The quadratic cost function, in which case

C(d) ¼ 1
2
(C(G,P,w)(d)� t(d))2 ¼ 1

2
(am(d)� t(d))2: (3:7)

2. The one-norm cost function, in which case

C(d) ¼ jam(d)� t(d)j:

3. The cross-entropy cost function, in which case

C(d) ¼ �[t(d) ln (am(d))þ (1� (t(d))) ln (1� am(d))]:

In this paper, we will take C to be given by the quadratic
cost function (3.7). This choice of cost function does not play a
significant role in the present work.

Of course, we did not specify howwe chose our parameters
P ¼ (B, W) for the model. Supposing we choose them ran-
domly somehow, there is no reason our function C(G,P,w)
should be a good approximation for τ for the given data. There-
fore, we would like to find those parameters P that minimize
the cost function and to do so it is natural to use gradient des-
cent. Thus, we need to be able to efficiently compute rb‘Cost
and @Cost

@W‘
ij
for each appropriate value of ℓ, i, and j. Because of
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the sum in (3.6), it is sufficient to compute the gradient of C(d),
and these can be computed as follows [36]:

dL(d) ¼ ramC(d)� w0(zm(d))

d‘(d) ¼ ((W‘þ1)Td‘þ1(d))� w0(z‘(d))

rb‘C(d) ¼ d‘(d)

and
@C(d)
@W‘

ij
¼ d‘i (d)a

‘�1
j (d),

9>>>>>>>>=>>>>>>>>;
(3:8)

where ramC(d) is the gradient of C(d) with respect to am. For
example, ifC is givenby thequadratic cost function (3.7),wehave

ramC(d) ¼ (am(d)� t(d)):

4. Neural networks and ODEs
Fix a hardwired neural network G = (V, D) with parameters
P ¼ (B, W), whose ℓth layer contains cℓ nodes, in which
each node has activation function w. Let Wℓ, aℓ and βℓ be
as in the previous section.

Now consider a system of ODEs defined recursively via

x0i (t) ; di, for some fixed d [ R
c0
�0 (4:1)

and

d
dt

x‘i (t) ¼ f ‘i (x
‘�1(t), x‘i (t)), for ‘ [ {1, . . . , m}, (4:2)

where x‘ [ Rc‘
�0: Here we use d [ Rc0

�0 to denote our initial
condition as it represents the input ‘data’ to the system.
Note that xℓ−1 is acting as an external ‘forcing function’ on
xℓ. In particular, the system above has a natural feed-forward
structure. For r [ {0, 1, . . . , m}, we denote by F r the subsys-
tem of (4.1) and (4.2) consisting of only those terms x‘i for
which ℓ≤ r. Note that for any 1≤ r≤m, F r contains F r�1

and that Fm is all of (4.1) and (4.2).
Definition 4.1. Suppose that for each fixed choice of d [ R
c0
�0

the system (4.1) and (4.2) has a unique solution
{x‘ : 1 � ‘ � m} that satisfies

lim
t!1 x‘(t) ¼ w(W‘a‘�1(d)þ b‘) ¼ a‘(d) [ R

c‘
�0

for any choices of x‘i (0) [ R�0 for ℓ≥ 1. Then we say that the
system (4.1) and (4.2) implements the neural network
(G, P, w). ▵

Note that in order for a system to implement a neural net-
work according to the above definition, it is not enough for
the system to simply convert inputs, d, to the correct outputs,
am(d) ¼ C(G,P,w)(d). Instead, we require that the system calcu-
lates the activations for each node in the network, i.e. aℓ(d ) for
all ℓ≤m, and do so for any choice of initial condition in
layers 1 through m.
Example 4.2. Consider a system (4.1) and (4.2) with

f ‘i (x
‘�1, x‘i ) ¼ hþ r‘i (x

‘�1)x‘i � (x‘i )
2, (4:3)

where

r‘i (x
‘�1) ¼ (W‘x‘�1 þ b‘)i ¼

Xc‘�1
j¼1

W‘
ijx

‘�1
j þ b‘

i : (4:4)

We claim that the system (4.1) and (4.2) with this choice of f ‘i
implements aneural networkwith the smoothedReLU function
(3.2). This statement will be proved rigorously below once we
have some additional mathematical machinery.

For a particular choice of ℓ and i, we can think of the one-
dimensional system (4.2) as simultaneously implementing
both the linear updating step (3.4) and evaluation with the
activation function (3.5) for node i in layer ℓ. This observation
motivates the following.
Definition 4.3. If the system (4.1) and (4.2) implements the
neural network (G, P, w), then (4.2) is termed the activation
system for node i in layer ℓ. ▵

The following definition is added for completeness.
Definition 4.4. We will say that y :R�0 ! Rn converges expo-
nentially to by [ Rn, and will write y(t)�!exp by if there are c,
h > 0 for which jy(t)� byj � c e�ht for all t≥ 0. ▵

The following definition characterizes some nice proper-
ties that activation systems (4.2) can have.
Definition 4.5. Consider the following one-dimensional
system in which y :R�0 ! Rp is some forcing function:

d
dt

x(t) ¼ f(y(t), x(t)): (4:5)

1. Let q > 0. The system (4.5) is said to have q-polynomial decay if
for any compact setK , Rp there is anM > 0 and a constant
c > 0 such that when y [ K and x >M we have

f(y, x) � �cxq:
2. System (4.5) is said to be exponentially feed-forward if for

each by [ Rp there is an bx [ R such that y(t)�!exp by implies

x(t)�!exp bx, assuming x(t) exists for all t≥ 0. 4
Thus, the system (4.5) has q-polynomial decay if it decays
faster than the solution to _u ¼ �cuq when (i) the forcing func-
tion takes values that are not too large (quantified by K) and
(ii) the current value of the process is large (quantified by M).
Note that for u(0) > 0, the solution to _u ¼ �cuq converges
from infinity in finite time if q > 1. For completeness, we
have proven this in proposition A.1 in appendix A.

The usefulness of a system of the form (4.5) being expo-
nentially feed-forward comes from the fact that we would
like to be able to understand the long-term behaviour of
_x ¼ f(y(t), x(t)) via an understanding of the long-term behav-
iour of _x ¼ f(by, x(t)). We note with the following simple
example that one is not always able to do so.
Example 4.6. Consider the system of the form (4.5) with

f(y, x) ¼ 1 if y . 1
�x if y � 1:

�
The system with y(t) = 1 + e−t satisfies y(t)�!exp 1. However, for
this particular choice of y(t), we have y(t) > 1 for all t≥ 0.
Thus, x(t) = x(0) + t, which does not converge to the fixed
point of _x ¼ f(1, x), which is zero regardless of x(0).

Given the discussion above, it will be useful to consider
dynamical systems of the form

_x(t) ¼ f(y, x(t)),



r
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where y should be thought of as a (time-independent) collection
of parameters, but now x is allowed to be higher-dimensional.
oyalsocietypublishing.org/journal/rsif
J.R.Soc.Interfa
Definition 4.7. Suppose that _x(t) ¼ f(y, x(t)) with x(t) [ Rn
�0

and y [ R
p
.0 is a parametrized dynamical system such that

for any choice of x(0) [ Rn
�0 and y [ R

p
.0 the system has a

unique solution. We will say that the system

1. is reliable if there is a continuously differentiable function
X :Rp

.0 ! Rn
.0 such that for any choice of x(0) [ Rn

�0, we
have limt!1 x(t) ¼ X(y);

2. converges from infinity in finite time if there is a compact set
K , Rn

�0 and a R
p
.0 ! R.0 such that x(t) [ K for any t≥

T(y) and x(0) [ Rn
�0;

3. is exponentially reliable if it is reliable and there is a
l :Rp

.0 ! R.0 such that

jx(t)� X(y)j � jx(0)� X(y)j e�l(y)t: 4
ce
18:20210031
Note that the definition of reliable does not rule out the
existence of fixed points outside of Rn

�0.
The main question we have is the following: when can we

conclude that the fully parametrized system (4.1) and (4.2)
has our desirable properties (reliability, convergence from
infinity in finite time, and exponential reliability). The follow-
ing theorem shows that these properties follow from easily
checked conditions on the functions f ‘i : In the theorem
below, the vector of parameters y should be thought of as a
steady state value for xℓ−1(t).
Theorem 4.8. Consider the system (4.1) and (4.2). Suppose that for
each ‘ [ {1, . . . , m} and i∈ {1,…, cℓ} the dynamical system

d
dt

x(t) ¼ f ‘i (y, x(t)), x(t) [ R, y [ Rc‘�1
�0 ,

is reliable. Moreover, assume that

d
dt

x(t) ¼ f ‘i (y, x(t))

has q-polynomial decay for some q > 1 and is exponentially feed-for-
ward. Then the system (4.1) and (4.2) converges from infinity in
finite time and is exponentially reliable.

Proof. The proof proceeds by induction on r for the systems
F r, where we remind the reader that the systems F r are
defined below (4.1) and (4.2). Consider the case ℓ = 1,
where we have

d
dt

x1i (t) ¼ f1i (x
0, x1i (t)), for i [ {1, . . . , c1}:

Here, reliability of x1i follows by our assumption. The conver-
gence of x1i from infinity in finite time follows by the
assumption of q-polynomial decay (compare with
_u ¼ �cuq). Finally, the exponential reliability of x1i follows
from the exponential feed-forward assumption (here
x0�!exp x0 trivially). Hence, the system F 1 satisfies all the
desired properties.

Now suppose the result holds for F r with r <m. Then
there is a compact set K , R

cr
�0 and a time T > 0 so that

xr(t) [ K for all t≥ T, and moreover xr�!exp bxr. Hence, by the
assumption of q-polynomial decay, xr+1(t) converges
from infinity in finite time, and we may conclude that
the system F rþ1 does as well. Finally, by the exponential
feed-forward assumption on layer r + 1, together with the
assumption that _xi ¼ f rþ1i (y, xi(t)) is reliable, we may
conclude that F rþ1 is exponentially reliable, and the proof
is complete. ▪

We return to the activation systempresented in example 4.2.
Proposition 4.9. Consider the hardwired neural network (G, P, w)
and the system (4.1) and (4.2) with

f ‘i (x
‘�1, x‘i ) ¼ hþ r‘i (x

‘�1)x‘i � (x‘i )
2,

where

r‘i (x
‘�1) ¼ (W‘x‘�1 þ b‘)i ¼

Xc‘�1
j¼1

W‘
ijx

‘�1
j þ b‘

i ,

and h > 0. This system implements, in the sense of definition 4.1,
the hardwired feed-forward neural network (G, P, w) where w is
given as the smoothed ReLU function (3.2). Moreover, the system
converges from infinity in finite time and is exponentially reliable.

Proof. The fixed points of _x ¼ f ‘i (z, x(t)) are

r‘i (z)+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r‘i (z)

2 þ 4h
q
2

,

which satisfy

r‘i (z)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r‘i (z)

2 þ 4h
q
2

, 0 ,
r‘i (z)þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r‘i (z)

2 þ 4h
q
2

:

Note that the strict inequalities follow from h > 0. The positive
equilibrium is continuously differentiable in the argument z.
Moreover, for any x(0) [ R�0, asymptotic stability follows
from standardmethods. Hence, each of _x ¼ f ‘i (z, x(t)) is reliable.

For each ℓ and i, the system _x(t) ¼ f ‘i (y(t), x(t)) has 2-poly-
nomial decay. Hence, to apply theorem 4.8 and complete the
proof we simply need to show that _x(t) ¼ f ‘i (y(t), x(t)) is
exponentially feed-forward.

Thus, consider _x(t) ¼ f ‘i (y(t), x(t)) and suppose that
y(t)�!exp by. Denote

xþ ¼
r‘i (by)þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r‘i (by)2 þ 4h
q
2

and x� ¼
r‘i (by)� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r‘i (by)2 þ 4h
q
2

and let

V(x) ¼ 1
2
(x� xþ)2:

Then, by adding and subtracting appropriately,

d
dt

V(x(t)) ¼ (x(t)� xþ)(hþ r‘i (y(t))x(t)� x(t)2)

¼ (x(t)� xþ)(hþ r‘i (by)x(t)� x(t)2)

þ (x(t)� xþ)(r‘i (y(t))� r‘i (by))x(t)
¼ �(x(t)� x�)(x(t)� xþ)2

þ (x(t)� xþ)(r‘i (y(t))� r‘i (by))x(t):
By assumption y(t)�!exp by, and so by linearity we have that
r‘i (y(t))�!

exp
r‘i (by). Moreover, standard methods can be used to

show that x(t) is uniformly bounded in time. Combining the
above allows us to conclude that

d
dt

V(x(t)) � a(t)�MV(x(t)),
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where 0≤ a(t)≤ c e−ht for some c, h > 0. Hence, by Gronwall’s
inequality, see appendix A,

1
2
(x(t)�xþ)2¼V(x(t)� 1

2
(x(t)�x(0))2 e�Mtþ c

ðt
0
e�M(t�s) e�hsds

¼ 1
2
(x(t)�x(0))2 e�Mtþ c

M�h
(e�ht�e�Mt),

wherewe can select h≠Mby taking h slightly smaller if needbe.
Taking square roots shows that x(t)�!exp xþ as desired. ▪
journal/rsif
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5. Reaction network implementation of a hard-
wired neural network with a smoothed ReLU
activation function

This section is split into two parts. In §5.1, we give some pre-
liminary definitions and concepts. In §5.2, we give the explicit
construction.

5.1. Preliminaries
Consider a reaction network G ¼ (S, C, R). It is convenient to
separate the species set S into a disjoint union of dynamic
and enzymatic species.
Definition 5.1. Xi [ S is said to be an enzymatic species if
z
Y!bY� 	

i
¼ 0 for all Y! bY [ R. A species is said to be a

dynamic species if it is not an enzymatic species. ▴

Thus, an enzymatic species is one whose concentration is
fixed for all time to its initial value, regardless of the initial
value of the system. Enzymatic species are referred to as
such because they facilitate reactions to occur, just like bio-
logical enzymes; higher availability of enzymes results in a
proportional speedup of reactions. We will use the notation
Sdyn and Senz for the set of dynamic species and enzymatic
species, respectively, and since any species can only be one
or the other, S ¼ Sdyn

_SSenz.
Example 5.2. Consider the reaction network

X þ Yþ E�!k1 2Yþ E

and

Yþ F�!k2 X þ F:

Here Sdyn ¼ {X, Y} and Senz ¼ {E, F}.

The concentrations of enzymatic species are time-invariant
by definition, and so they satisfy the trivial ODE de/dt = 0,
where e refers to the concentration of some enzyme E. This
ODE obviously has the solution e(t) = e(0) for all t≥ 0, indepen-
dent of the dynamics of the other variables, and so it is without
any loss of information that we can withhold the ODEs for the
enzymes from our description. We simply regard the initial
values of the enzymes as parameters in the dynamical system.
Thus, we would say that the parametrized mass-action
dynamical system associated to the network in example 5.2 is

_x ¼ �k1exyþ k2fy
and _y ¼ k1exy� k2fy,

)
(5:1)

where we regard e and f as positive parameters similar to k1
and k2.
An alternative approach is to remove all enzymatic
species and to ‘absorb’ their time-invariant concentration
into the rate constant of the reaction. For instance, the network
in example 5.2 is dynamically equivalent to the following
network:

X þ Y�!k1e 2Y
and

Y�!k2 f X,
in the sense that both give rise to an identical system of differen-
tial equations (5.1).

Even though the former construction, in which enzymatic
species are included in the model description, may seem
superfluous, it offers flexibility that will be found to be
useful later when we construct reaction networks modularly,
and then take unions of them. In these situations species that
were once enzymatic for one of the subnetworks can be
dynamic for the resulting larger network. This perspective
will also be useful in later work when we change our outlook
from a reaction network implementation of a hardwired
neural network to a neural network capable of learning.
For a preview, suppose that we add a reaction to the network
in example 5.2, so the resulting network is

X þ Yþ E�!k1 2Yþ E

Yþ F�!k2 X þ F

and Zþ F�!k3 Z:

9>>=>>; (5:2)

Then F has lost its status as an enzyme and has been moved
to the set of dynamic species. The species partition for the
new network is Sdyn ¼ {X, Y, F} and Senz ¼ {E, Z}. Addition
of the reaction Z + F→Z allows us to modulate the concen-
tration of F and therefore also the rate at which the reaction
Y + F→X + F occurs.

The example is illustrative of some general properties,
which we now state. A subnetwork of a reaction network
G ¼ (S, C, R) is a reaction network G0 ¼ (S0, C0, R0) such that
R0 # R. It necessarily follows that S0 # S, since every species
in S0 must participate in some reaction in R0 and therefore
also in R, and by similar reasoning C0 # C. While
S0dyn # Sdyn, the containment for enzymes runs backwards,
i.e. Senz > S0 # S0enz. For example, the reaction network in
example 5.2 is a subnetwork of the reaction network (5.2). The
above-mentioned containments are easily checked to hold for
this particular example.

With the assumption of mass-action kinetics, and for any
particular choice of reaction rate constants, a reaction network
can be translated into a system of ODEs via (2.1). Given thismap-
ping, it is natural to say that a dynamical property of the
parametrizedODEsystemisapropertyof theunderlying reaction
network itself. We proceed by fixing some notation, which
will allow us to translate definition 4.7 to the reaction network
setting. Let G ¼ (S, C, R) be a reaction network with
S ¼ Sdyn

_SSenz, and fix some (arbitrary) ordering of the dynamic
species set Sdyn. Let n :¼ jSdynj and x(t) [ Rn

�0 denote the vector
of concentrations of thedynamic specieswith respect to theorder-
ing. We also arbitrarily order the set of parameters, which
includes the reaction rate constants and the initial concentrations
of enzymes. With the ordering, the parameters can be identified
with a vector in y [ R

p
.0 where p :¼ jRj þ jSenzj.
Definition 5.3. Suppose that _x(t) ¼ f(y, x(t)) with x(t) [ Rn
�0

and y [ R
p
.0 is a parametrized dynamical system obtained
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Figure 5. A single edge in a neural network, with one input and one output
node.
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by applying mass-action kinetics to G ¼ (S, C, R) with
S ¼ Sdyn

_SSenz, n :¼ jSdynj and p :¼ jRj þ jSenzj. Suppose
that for any choice of x(0) [ Rn

�0 and y [ R
p
.0 the system

_x(t) ¼ f(y, x(t)) has a unique solution. We say that G is reliable,
converges from infinity in finite time, or exponentially reliable
if the parametrized system has those respective properties
according to definition 4.7. 4

5.2. Construction
We will give the construction of a reaction network that
implements a neural network with the smoothed ReLU acti-
vation function. We will specifically design the network so
that the ODE system has f ‘i as given in example 4.2.

The constructionwill proceed in the followingmanner. First,
we build an explicit reaction network implementation of only a
single edge, as depicted in figure 5, of the neural network, and
describe the resulting parametrized ODE system. Second, we
build on the previous step by giving a reaction network
implementation of a single fixed node eX in the neural network
along with all of its inputs, and again describe the resulting
parametrizedODE system. Finally, we describe the reaction net-
work implementation of the entire neural network, which
results in the parametrized ODE system in (4.1) and (4.2). For
the sake of readability, wewill limit the amount of enumeration
used in our construction.

Step 1. The first step of the process, producing the reactions
necessary for the implementation of a single edge, is carried out
in table 1. The species sets for this particular reaction network
are Sdyn ¼ {X}, and Senz ¼ {H, Wþ, W�, Bþ, B�, X0}. The
associated mass-action ODE system is one-dimensional, in
the variable x, and if we assume all reactions occur with a rate
constant of 1, is

d
dt

x(t) ¼ hþ ((bþ � b�)þ (wþ � w�)x0)x(t)� (q� 1)x(t)q:

(5:3)

Wewill assume from here on that q= 2 and note that it is easy to
make thenecessary changes in thedescription fora general value
different from 2. Note that when q≠ 2 the resulting activation
function will be different from the smoothed ReLU.

Step 2. For the second step, we implement via reaction net-
work the neural network depicted in figure 6, which now
simply consists of eX along with all its inputs. For this particular
node, we assume there are c > 0 inputs. The construction pro-
ceeds by simply taking the union over the c edges (eX0i , eX) of
the reaction networks described in Step 1. After this union, we
once again have that X is the only dynamic species and the
mass-action ODE for its concentration is given by

d
dt

x(t) ¼ hþ (bþ � b�)þ
Xc
i¼1

(wþx0i ,x � w�x0i ,x)x
0
i

 !
x(t)� x(t)2

¼ hþ rxx(t)� x(t)2, (5:4)

whereρx isdefinedby the equationabove (and is analogous tor‘i
from (4.4)). Note that the above corresponds with the equations
in example 4.2.
Step 3. The third step is to construct the final network
by taking the union of the construction described in the
second step over all non-input nodes eX. In terms of dynami-
cal systems, this constitutes taking a union of the systems of
ODEs given by (5.4), with the appropriate indices applied to
the variables and parameters. The final system of equations
appears in (4.1) and (4.2) and in example 4.2. The entire
system is repeated here for convenience of the reader:

x0i ¼ di, for some fixed d [ R
c0
�0,

and

d
dt

x‘i (t) ¼ hþ
Xc‘�1
j¼1

W‘
ijx

‘�1
j (t)þ b‘

i

0@ 1Ax‘i (t)� (x‘i (t))
2,

for ‘ [ {1, . . . , m}:

Note that many species that were enzymatic in a particular
network, for example the species associated with the terms
x0i in the second step, are dynamic species in the final model.
6. An example
In this section, we provide an example to visually demonstrate
several aspects of our theory and our constructions. The focus
of this paper was not on training a network—that will be the
focus of our next work. Instead, in this paper we focused on
the different qualitative properties of possible constructions,
as detailed in definitions 4.7 and 5.3, and so this example
will primarily share that focus. Wewill showcase how the lim-
iting values of the ODE associated with a reaction network
that implements the modified ReLU activation function, as
detailed in §5, match precisely with the more standard
implementation of the neural network via direct use of the
activation function (3.2). Moreover, we will demonstrate the
fast convergence of the ODE, a property we have proven to
hold in proposition 4.9. Next, we will demonstrate the flexi-
bility of the developed theory by chemically implementing a
different activation function: one that grows like

ffiffiffi
y
p

, as
y→∞ (as opposed to linear growth in the case of ReLU),
and converges to 0, as y→−∞. This new implementation
will still satisfy the conditions of theorem 4.8, and hence still
enjoy the properties of definitions 4.7 and 5.3. Finally, we
will explain how any activation function with growth of the
form y1/k, as y→∞, for any integer k≥ 1, can likewise be
implemented chemically.

As it is a standard example in the field, we use the MNIST
dataset of handwritten digits [40]. See figure 7 for four
representative images from this dataset. These images have
784 = 28 × 28 pixels, and the task of the neural network is
to take a greyscale image of such a hand drawn digit, and
correctly identify the digit. For example, we want the
output to correctly identify the images in figure 7 as 8, 2, 6
and 7, respectively.

The input to the neural network can be regarded as a single
vector of size 784. Further, it is natural to choose the number of
output nodes to be 10, with each node representing a different
digit from the set {0, 1,…, 9}. To complete the specification of
the structure of the neural network, we will, somewhat arbitra-
rily, choose to have a single hidden layer with 40 nodes.
Therefore, our neural network has:

c0 ¼ 784, c1 ¼ 40, c2 ¼ 10:



Table 1. Components of an elementary reaction network—chemical implementation of a single directed edge (eX 0, eX) along with nodes eX 0 and eX of the neural
network. A neural network is naturally viewed as a disjoint union of its edges, which allows putting together a chemical implementation as an appropriate
union of elementary reaction networks.

which aspect of neural network is
implemented chemically?

chemical implementation of a single
directed edge (eX 0, eX) of the neural network which term results in the ODE for the

species X?

closeness to ReLU H �! H þ X h

input eX 0 and weight of
the edge (eX 0, eX) X 0 þ Wþ þ X �! X 0 þ Wþ þ 2X

X 0 þ W� þ X �! X 0 þ W�
(w+− w−)x0x,
where w : w+− w− implements the edge weight

additive node bias of eX Bþ þ X �! Bþ þ 2X

B� þ X �! B�
(b+− b−)x,

where b : b+− b− implements the node bias

q-polynomial decay,

stability/convergence from ∞
qX �! X

(q > 1)

(q− 1)xq

X1

X2

Xc

X

'

'

'

Figure 6. Step two: node eX along with all its c inputs.

Figure 7. Representative examples of hand-drawn images from the MNIST
database [40].

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210031

10
As already mentioned, we will use the construction detailed in
§5.2, yielding a smoothed ReLU (3.2) as our activation function,
and we will choose h = 1 as our smoothing parameter.

We will now clearly specify how we implemented our
neural network in Matlab. For the sake of reproducibility,
we first set the seed of our random number generator by
using the command ‘rng(1234)’. We used this seed for
every computation we are reporting in this section. We then
initialized our weights and biases randomly by using
scaled Gaussians via the following commands:

W1 ¼ ð1=sqrtðc0ÞÞ 	 randnðc1; c0Þ;
W2 ¼ ð1=sqrtðc1ÞÞ 	 randnðc2; c1Þ;

beta1 ¼ randnðc1; 1Þ;
beta2 ¼ randnðc2; 1Þ;

In order to ensure that we use exactly the same random
variables as does the reaction network implementation, we
also defined an initial condition via the command

x00 ¼ 10 	 randð½50; 1
Þ;
as that call is necessary in our reaction network implemen-
tation in which each of the hidden and output nodes is a
dynamic variable and therefore uses an initial condition.
While present in the code, this term is not used in the
standard neural network implementation.

We used a quadratic cost function (3.7) in which the
‘truth’, denoted τ(d ), was a vector with a 10 in the place of
the true digit (i.e. if the digit represented by d is zero, then
τ(d ) has a 10 in the first component, if the digit represented
by d is 1, then τ(d ) has a 10 in the second component, etc.),
and has ones in all other components. In order to implement
gradient descent, we used a learning rate of η = 0.1 so that
after each iteration of the neural network, we update our
parameters via

b‘  b‘ � hrb‘Cost

W‘
ij  W‘

ij � h
@Cost
@W‘

ij
,

for appropriate ℓ, i and j. In order to estimate the derivatives
above, we utilized stochastic gradient descent by using a
batch of 300 randomly selected elements from the first
60 000 entries in the MNIST dataset. The specific call we
used in our Matlab code was

Vals ¼ randpermð60000; BatchSizeÞ;

where BatchSize had been set to 300. See figure 8 for (i) the
estimate of the cost function and (ii) the number correctly pre-
dicted, out of the randomly chosen batch of 300, by the neural
network over 1000 iterations of the learning process. Note
that near the end of the 1000 iterations, the neural network
is correctly identifying just over 95% of the digits. For the
sake of comparison, in figure 9 we give similar plots for the
standard ReLU activation function (i.e. taking h = 0). Now
the neural network correctly identifies around 88% of the
digits. The superiority of the smoothed version of the ReLU
activation function was apparent in nearly all the seeds of
the random number generator that we tried (data not
shown). The precise reason for the superiority of the
smoothed version of the ReLU activation function in the pre-
sent setting is unclear to us, though perhaps the lack of a zero
derivative for y < 0 is playing a role.

We now demonstrate the learning of the reaction
network in a different manner: by visualizing the output
trajectories of a subset of the nodes on a particular image
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Figure 8. Performance of the smoothed ReLU cost function with h = 1. (a) Estimate of the cost function over each iteration of the neural network (from 300
randomly selected elements from the MINST dataset). (b) Total number of images from the 300 whose digits were correctly identified. For each image, the x-
axis represents the iteration number of the learning process.
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Figure 9. Performance of the ReLU cost function (i.e. h = 0). (a) Estimate of the cost function over each iteration of the neural network (from 300 randomly selected
elements from the MINST dataset). (b) Total number of images from the 300 whose digits were correctly identified. For each image, the x-axis represents the
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from the database, but after a different number of iterations of
the learning process. We arbitrarily chose the 30th image in
the database, which is the 7 presented as the right-most
image in figure 7. Note that since the image is that of a 7,
we hope and expect that the equilibrium value associated
with the 8th output node of our system will eventually con-
verge towards 10, whereas the values of the other output
nodes will converge towards 1. See figure 10 for trajectories
of output nodes 1, 2, 6 and 8 (associated with the digits 0,
1, 5 and 7), and hidden nodes 1 and 32. As expected, the equi-
librium value associated with the 8th output node does
indeed separate from the others and moves towards 10, as
the number of iterations increases, whereas the other output
nodes remain near the value 1. Also of interest is that the
equilibrium value associated with output node 2, which is
associated with the digit 1, converges towards 1 slower
than do the other output nodes. We assume this is because
the digit, which is a seven, has characteristics similar to the
digit 1. For the purposes of this particular calculation,
our initial condition for all 50 nodes was chosen to be equal
to one.
As mentioned above, the fact that a neural network
using a ReLU activation function (smoothed or not) can be
trained to identify the hand-drawn digits from the MNIST
dataset is not the point of this paper, and is very well
known. Instead, we now focus on the behaviour of the ODE
associated with the reaction network implementation. Using
the same set-up as detailed above (including the randomized
initial conditions), but with both the BatchSize and the
number of iterations set to 1, we may output the values of
the activations aℓ for the neural network with the smoothed
ReLU activation function with h = 1. There are a total of 50
terms (one for each node) in these vectors, which is too
many to visualize. We therefore arbitrarily selected the first
and third nodes from the output layer and the first and
32nd nodes from the hidden layer. The resulting values are

a21 ¼ 1:54691661955827, a23 ¼ 0:885658219979311,

a11 ¼ 1:06208572398989, a132 ¼ 0:72187173499449:

Next, we solved the system of 50 ODEs associated with
our reaction network construction, with randomized initial
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Figure 10. Plots of trajectories from the ODEs associated with our reaction network construction after different numbers of iterations. Note how the equilibrium of
the 8th output node, which is associated with the correct digit of 7, seems to be converging towards 10 as the number of iterations increases, whereas the equilibria
associated with the other output nodes converge towards 1.
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Figure 11. Representative plots with ‘regularly sized’ initial conditions. We
chose to visualize nodes 1 and 3 from the output layer and nodes 1 and
32 from the hidden layer.
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conditions detailed above, while using exactly the same
random variables as in the standard neural network
implementation. We solved the resulting system of 50
ODEs, and representative plots for the chosen four
nodes are given in figure 11. We simulated until time 5
and found

x21(5) ¼ 1:54703516476441, x23(5) ¼ 0:885627963885228,

x11(5) ¼ 1:06216260026126, x132(5) ¼ 0:721901309123957:

As our theory guaranteed, the values match those of the
standard neural network very well.

Of course, it is impossible to ‘demonstrate’ convergence
from infinity. Instead, we simply modified the initial
conditions to

x00 ¼ 1000 	 randð½c1; 1
Þ;

and performed the same ODE computations as detailed
above. See figure 12 for plots of the solutions. The final
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values were

x21(5) ¼ 1:54686939850725, x23(5) ¼ 0:885624161108907,

x11(5) ¼ 1:06213690351638, x132(5) ¼ 0:721896022634959,

which, again, match the values from the previous iterations.
1.5

0.5

0
–20 –15 –10 –5 0

y
5 10 15 20

2.0

1.0

Figure 13. Activation function w implemented by the reaction network from
table 1 with q = 3 and h = 1. This function is defined as the map between y
and the unique positive fixed point of the polynomial 1 + yx− 2x3. A plot offfiffiffiffiffiffi

y=2
p

is added for the sake of comparison, which would be the correspond-
ing activation function if h were taken to be zero while q = 3.
6.1. Modifying the activation function
We slightly modify the reaction network construction of §5
by using q = 3 instead of q = 2 in the final column of table 1.
Thus, for each of the hidden and output nodes we simply
change the reaction network so that it includes the reaction
3X→X instead of 2X→X. This change modifies the ODE
for a particular node (hidden or output) to be

_x ¼ hþ r � x� 2x3, (6:1)

with h > 0 and ρ as before. Note that the above is the analogue
of f ‘i in (4.3), and we are suppressing subscripts and super-
scripts for the sake of clarity (as we have done at times
throughout the paper).

By Descartes’ rule of signs, for each particular choice
of h and ρ the system (6.1) has precisely one positive
fixed point. As can be shown by standard methods,
this fixed point is stable. Fixing h > 0, the activation
function for the resulting system is found by solving for
the unique positive fixed point as a function of ρ. See
figure 13 for a plot of this activation function when h = 1.
We see that the function is monotonic, grows like

ffiffiffiffiffiffiffiffi
y=2

p
,

as y→∞, and converges to zero, as y→−∞. Finally, it
can be shown by similar arguments as in the proof of
proposition 4.9 that the resulting chemical system
implements, in the sense of definition 4.1, the hardwired
feed-forward neural network (G, P, w) where w is given in
figure 13, and that the system converges from infinity in
finite time (due to it having 3-polynomial decay) and is
exponentially reliable.

In order to implement this chemical system, we solved the
associated ODEs, as detailed above. However, in the case
when q = 2 we had a nice analytic formula for the activation
function, w, given by (3.2), which we could easily differentiate
to find w0(z), and plug that expression into the relevant terms
in (3.8) for the purposes of gradient descent. In this case, we
are not so fortunate. However, this derivative can be calcu-
lated in a straightforward manner. For a fixed value of z,
we may denote the unique positive fixed point of (6.1),
with z = ρ, via w(z), in which case we have that w(z) is defined
implicitly via

0 ¼ hþ z � w(z)� 2w(z)3:

Differentiating with respect to z and solving yields

w0(z) ¼ � w(z)

z� 3 � 2 � w(z)2 :

As w(z) is the output from the ODE solver, we also get the
derivative in a straightforward manner.

With all the details in place, we can run the system
and implement the neural network via our new chemical
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the iteration number of the learning process.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210031

14
reaction network. In figure 14, we provide plots of the esti-
mated cost and the number of images correctly identified,
out of a batch of 300, using this new chemical system and
activation function when all other variables (i.e. numbers of
layers, hidden nodes, seed of the random number generator,
etc.) are kept the same as above. We note that this activation
function performs similarly to the ReLU activation function
(figure 9).

Finally, we note that we could also select q to be any inte-
ger greater than 3, and a similar analysis can be carried out.
In particular, when q is an integer greater than or equal to 2,
we get an activation function that grows like y1/(q−1). More-
over, the derivative can be calculated as above, and found
to satisfy

w0(z) ¼ � w(z)
z� q(q� 1)w(z)q�1

:

These systems with different activation functions could be
useful in different settings.
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Appendix A
Proposition A.1. Consider the ODE _u ¼ �cuq where c > 0,
u [ R�0, and q [ R. If q > 1, then u(t)≤ 1 for any t > ((q−
1)c)−1 and any u(0) ¼ u0 [ R�0.

Proof. For q > 1, the function−cuq is locallyLipschitz foru [ R�0
and so the initial value problem with u(0) ¼ u0 [ R�0 has a
unique solution which can be found by separation of variables:

u(t) ¼ 1

(q� 1)ctþ u�(q�1)0

� 	1=(q�1)
for all t [ R�0. Clearly, u(t) �!t!1

0 monotonically for any
u0 [ R�0. It suffices to assume that u0 > 1. Define t1 to be the
time for which u(t1) = 1. Then, since u0 > 1, we have
(q� 1)ct1 ¼ 1� u1�q0 [ (0, 1), implying

t1 ¼ 1
(q� 1)c

(1� u1�q0 ) [ 0,
1

(q� 1)c

� �
:

Noting the monotonicity of u(t) now finishes the proof. ▪

We provide a version of Grönwall’s inequality [41].
Lemma A.2 (Grönwall’s inequality). Consider the interval
I = [t0, t]. Let a : I ! R and b : I ! R be continuous functions.
Let V : I ! R be a continuously differentiable function satisfying

d
dt

V(t) � a(t)V(t)þ b(t) for t [ I: (A 1)

Let V(t0) =V0. Then,

V(t) � V0 exp
ðt
t0
a(s) ds

� �
þ
ðt
t0
exp

ðt
s
a(r) dr

� �
b(s) ds

for t [ I: (A 2)
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