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Abstract

Background: This research characterized mucociliary clearance (MCC) in young children with 

cystic fibrosis (CF).

Methods: Fourteen children (5–7 years old) with CF underwent: two baseline MCC 

measurements (Visits 1 and 2); one MCC measurement approximately one year later (Visit 3); 

and measurements of lung clearance index (LCI), a measure of ventilation inhomogeneity.

Results: Median (range) percent MCC through 60 minutes (MCC60) was similar on Visits 1 and 

2 with 11.0 (0.9–33.7) and 12.8 (2.7–26.8), respectively (p=0.95), and reproducible (Spearman 

Rho=0.69; p=0.007). Mucociliary clearance did not change significantly over one year with 

median percent MCC60 on Visit 3 [12.8 (3.7 – 17.6)] similar to Visit 2 (p=0.58). Lower 

percent MCC60 on Visit 3 was significantly associated with higher LCI scores on Visit 3 (N=14; 

Spearman Rho=−0.56; p=0.04).
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Conclusions: Tests of MCC were reproducible and reliable over a two-week period and stable 

over a one-year period in 5–7 year-old children with CF. Lower MCC values were associated 

with increased ventilation inhomogeneity. These results suggest that measurements of MCC could 

be used in short-term clinical trials of interventions designed to modulate MCC and as a new, 

non-invasive test to evaluate early lung pathology in children with CF.

Introduction

Currently, the state of the art, non-invasive method, for evaluating lung pathology in people 

with CF is pulmonary function testing. However, many children who are <6 years of age 

cannot perform this test and physicians must rely on radiologic tests, oropharyngeal cultures 

and cultures of bronchoalveolar lavage to assess lung disease objectively in this population. 

A non-invasive test that young children can perform is needed to impartially evaluate early 

lung pathology in CF.

Mucociliary clearance (MCC) measurements are non-invasive, and defective MCC is an 

integral step in the pathogenesis of CF lung disease. Mutations in the CF transmembrane 

conductance regulator (CFTR) gene lead to impaired mucus removal, accumulation of 

bacteria and fungi in the airways and infection (1–4). Chronic infection of the airways is the 

major cause of morbidity and mortality (5).

Previously, we have measured MCC in children with CF who are ≥7 years of age and found 

that MCC declines significantly when quantified over several years (6), and lower MCC 

values are associated with higher incidence of infection with Pseudomonas aeruginosa (PA), 

increased ventilation inhomogeneity and increased peripheral lung damage (6, 7). However, 

MCC has not been characterized in children with CF who are ≤7 years old. Thus, it is 

unknown if younger children can perform the procedure and if results are reproducible. It is 

also unknown if MCC values in this population change over time and what factors lead to 

variability in MCC measurements.

We hypothesized that: (1) MCC measurements are reproducible and reliable in children with 

CF who are 5–7 years old; (2) MCC values decline significantly over a one-year period; 

and (3) variability in MCC is associated with PA infection history, mucus composition, 

ventilation inhomogeneity and/or peripheral lung damage. In two exploratory analyses, we 

examined variability in MCC in relation to environmental exposures and variants in genes 

related to pulmonary phenotype in CF, or MCC. Results from these experiments would 

determine if MCC measurements can be performed in young children with CF and whether 

they provide a novel test to evaluate early lung pathology.

Materials and Methods

Study Overview:

The study consisted of Visits 1 and 2 during a two-week period and Visit 3, approximately 

one year later. All visits were approved by the Johns Hopkins Institutional Review Board. 

Written, informed consent was obtained from parents, or guardians, of children who 
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participated in the study. An historic group of adult subjects who had undergone an MCC 

procedure previously in our laboratory (8) served as controls for MCC measurements.

Eligibility Criteria for Children with CF:

(1) Males and females between the ages of five and seven years; (2) diagnosis of CF by 

sweat chloride >60 meq/L, or by the presence of two CFTR mutations known to cause CF; 

and (3) FEV1 ≥80 percent predicted. Children who could not perform spirometry reliably, or 

whose FEV1 was less than 80 percent predicted, were eligible if they had a minimal history 

of infection and chronic symptoms, as determined by a physician investigator.

Eligibility Criteria for Controls:

Healthy, nonsmoking adults with no history, or evidence, of lung disease.

Use of Concomitant Therapies:

Use of concomitant therapies was documented through chart review. Short-acting 

bronchodilators, dornase alfa and airway clearance with high frequency chest wall 

oscillation were discontinued for 12 hours and hypertonic saline for 72 hours before all 

three study visits. Treatment with lumacaftor/ivacaftor were not discontinued. Visits were 

scheduled at least two weeks following completion of antibiotic treatment for a pulmonary 

exacerbation.

Lung Function Measurements:

Initially, the protocol did not include spirometry. This was amended after the first child 

completed Visits 1 and 2. For all other children, forced expiratory volume in one second 

(FEV1) was measured on Visits 1 and 3, after MCC, using a MicroLab Mk8 spirometer (MD 

Spiro; Lewiston, ME), according to accepted guidelines (9). FEV1 was reported as percent 

of predicted values, calculated using Global Lung Function Initiative 2012 equations (10).

High Resolution Computed Tomography (HRCT) Lung Scan:

Peripheral lung damage was assessed from HRCT scans performed on Visit 3 and scored as 

described by Brody et al. (11). A total combined score for severity of bronchiectasis, mucous 

plugging, peribronchial thickening, air trapping and parenchymal opacities in both lungs was 

reported. HRCT scans were not performed on Visit 1 to avoid additional radiation exposure.

Multiple Breath Washout Test:

Multiple breath washout (MBW) tests measure lung ventilation inhomogeneity (12). 

Lung Clearance Index (LCI), measured by MBW, is considered to be a more sensitive 

indicator of early lung disease than FEV1 (13–17). Ventilation inhomogeneity was evaluated 

after MCC on Visits 1 and 3, in terms of absolute LCI2.5%, according to consensus 

guidelines (12). MBW tests were performed using the EXHALYZER® D (ECO Medics 

AG; Bubikonerstrasse, Switzerland).

Laube et al. Page 3

Pediatr Res. Author manuscript; available in PMC 2022 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pseudomonas aeruginosa (PA) Infection and Hospitalization History:

Age of initial PA+ culture, number of PA+ cultures/year and percent of respiratory cultures 

per year that were PA+ prior to Visit 2 and between Visits 2 and 3 were documented through 

chart review. Number of hospitalizations for a pulmonary exacerbation and/or treatment with 

antibiotics between Visits 2 and 3 were documented through questionnaires and review of 

medical records.

Environmental Exposures:

Caregivers completed questionnaires documenting their child’s exposure to pets, pests, 

secondhand tobacco smoke, gas combustion in the home and respiratory syncytial virus 

(RSV) infection prior to Visits 2 and 3.

Genes of Interest:

The following genes were of interest. Each could have a deleterious clinical effect on 

CF lung disease: TGFβ1 (18), MBL2 (19), MUC4/MUC20 (20, 21), SLC9A3 (20), 
AGTR2/SLC6A14 (20), EHF/APIP (22), DNAH14, DNAAF3, DNAH6 (23), DCNT4 (24), 
MUC5AC (25) and MUC5B (26).

Genetic Testing:

Blood was collected on Visit 1. DNA was sequenced by Broad Genomics (Cambridge, MA) 

using bead-based capture. Genetic variants were called using the Genomic Analysis Tool 

Kit (GATK) pipeline (Broad Genomics). All samples passed sample quality thresholds for 

contamination, chimera rate and coverage, and only variants that passed Variant Quality 

Score Recalibration conducted by Broad Genomics were assessed. Variants in genes of 

interest were annotated with cDNA and protein change and frequency. Null variants (i.e. 

nonsense, frameshift, canonical +/− 1, or 2, splice sites, initiation codon, single exon, or 

multi-exon deletion) and candidate variants (i.e. reported in the literature [27 and 28], or 

pathogenic in ClinVar [29]) were evaluated.

Mucus Composition:

Sputum samples were collected on Visit 1, after MCC, using a standardized sputum 

induction procedure (30). MUC5B and MUC5AC quantities were determined by dot-blot 

ELISA, using rabbit-anti-MUC5B (H-300, Santa Cruz Biotechnology, 1:5,000) and rabbit 

anti-MUC5AC (MAN5AC, provided by Dr. David Thornton, University of Manchester, 

1:2,000). Irrelevant rabbit antisera used to verify observed signals were specific for each 

primary antibody, when used at the dilutions above. Standard curves for MUC5B were 

calibrated against mucin purified from human saliva (provided by Dr. Thornton). Standard 

curves for MUC5AC were generated using a sputum sample from a previous study (6). 

Because MUC5AC standards were not tested against purified protein, MUC5AC data are 

presented in arbitrary units rather than mass concentrations.

Quantification of MCC:

MCC was quantified immediately following inhalation of an aerosol containing the 

radioisotope 99mtechnetium sulfur-colloid (radioaerosol) and for 90 minutes, thereafter, 
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using a gamma camera (6, 31, 8). On all three visits, MCC endpoints were calculated 

for the right lung as average percent clearance through 60 minutes (MCC60) and 90 

minutes (MCC90), as described previously (6, 31, 8). Between 60 and 90 minutes, children 

performed 30 programmed-coughs (9).

Radioaerosol Deposition Pattern:

To determine if MCC was influenced by the initial radioaerosol deposition pattern, we 

compared deposition in outer (O) and inner (I) regions of the lung for each visit as described 

previously (6, 31). Deposition patterns were compared in terms of Outer:Inner (O:I) ratio, as 

recommended by a consensus of imaging experts (32).

Sample Size:

Based on demographics of patients who attended the Johns Hopkins CF Clinic at the time 

of study design, we estimated there would be approximately 35 eligible children on the 

projected study start date and approximately 20 of those children would be willing to 

participate in the study. The sample size of 20 was fixed by this estimate.

Statistical Analysis:

The following primary endpoints were selected a priori according to a pre-study protocol: 

percent MCC60 and MCC90, FEV1 percent predicted, absolute LCI2.5%, HRCT score, O:I 

ratio, PA infection history and MUC5B and MUC5AC concentrations.

Due to the small sample size, all MCC, FEV1, LCI2.5%, HRCT, O:I ratio, PA, MUC5B 

and MUC5AC data are presented as median (minimum-maximum) and non-parametric tests 

were used to test for statistical differences in comparisons and associations.

Data from Visits 1 and 2 were used to determine MCC reproducibility and reliability over 

the two-week period. Data from Visit 2 were used for comparisons with data obtained on 

Visit 3 and for comparisons with other endpoints obtained during the two-week period. 

We chose not to average MCC data on Visits 1 and 2 for comparisons because an average 

could lead to an artificially more stable estimate of the baseline value. We chose not to use 

MCC data from Visit 1 for comparisons for the following reason. Consistency in performing 

the breathing maneuvers during radioaerosol administration is key to reproducible aerosol 

deposition in the lungs, which leads to more reproducible MCC results. Children were first 

introduced to the breathing maneuvers on Visit 1. On Visit 2, children remembered the 

breathing maneuvers learned on Visit 1 and became more proficient with additional practice. 

We assumed the additional proficiency gained on Visit 2 would lead to the most reproducible 

results for comparisons.

Ad hoc comparisons were performed between percent MCC60 and O:I from historic 

controls (8) and children with CF in the current study. Comparisons between percent 

MCC90 for the two groups were not performed because control subjects coughed 60 times 

between 60 and 90 minutes and children with CF coughed 30 times.

Reliability of MCC measurements was quantified in terms of intraclass correlation 

coefficients (ICCs), with ICCs >0.70 indicating good reliability (33).
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In two exploratory analyses, we examined variability in MCC60 and MCC90 in relation to 

different environmental exposures and variants in genes related to pulmonary phenotype in 

CF, or MCC. Associations between each environmental exposure (independent variable) and 

percent MCC60, or MCC90, (dependent variable) were assessed using mixed effects models 

adjusted for sex and age and nested by individual to account for values obtained on Visits 2 

and 3.

Analyses were performed using SAS version 9.4 (SAS Institute, Inc., Cary, North Carolina), 

Microsoft Excel 2016, or Stata IC 14 (College Station, Texas). All tests were two-sided and 

significance was set at p<0.05.

Results

Timeline:

Visits 1 and 2 occurred between April 2014 and September 2018. Visit 3 occurred between 

July 2015 and July 2019.

Children with CF:

At the start of the project, the number of eligible children who attended the CF Clinic 

at Johns Hopkins was less than projected. To increase recruitment capabilities, we added 

two additional sites: the CF Centers at Walter Reed National Military Medical Center 

(Bethesda, MD) and Children’s Hospital Colorado (Aurora, CO). Nevertheless, we were 

only able to enroll 17 children from all three sites and three of the children discontinued 

their participation before completing any study visits. Therefore, a total of 14 children (n=5 

males) completed all three study visits. Nine children were referred by the CF Clinic at 

Johns Hopkins. Three children were referred by Walter Reed National Military Medical 

Center and two children were referred by Children’s Hospital Colorado.

Thirteen children were between 5–6 years old and one child was 7 years old at the time 

of Visits 1 and 2. Median age at Visit 1 was 5.7 (5.2–7.2) years. Two children were full 

genetic siblings. Twelve children were Caucasians. Seven of 14 children were homozygous 

for F508del CFTR mutations. Five children had one F508del CFTR mutation, including one 

residual function mutation (R117H). Two children had no F508del CFTR mutations, but 

other minimal function mutations. Those genotypes were I507del/621 + 1G>T and exon 2,3 

del/R553X. Thirteen children were pancreatic insufficient.

Control Subjects:

There were 10 control subjects for the MCC60 measurements (n=6 males). Median age was 

24 (18–37) years. Median FEV1 was 103 percent predicted (82–115).

Use of Concomitant Therapies in Children with CF:

The use of concomitant therapies is shown in Table 1. The effect of treatment with 

lumacaftor/ivacaftor varied between children. In the two children treated with lumacaftor/

ivacaftor at the time of Visit 2, percent MCC60 on Visit 2 was faster in one child and 

slower in the other, with 26.8% and 5.0%, respectively. In the five children treated with 
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lumacaftor/ivacaftor after Visit 2, MCC60 at Visit 3 was slower compared to Visit 2 in two 

children and faster in three children.

Reproducibility, Reliability and Stability of MCC Measurements in Children with CF:

Percent MCC60 and MCC90 on Visits 1 and 2 are shown in Figures 1A and 1B. Median 

number of days between the two visits was seven (4–14). Median percent MCC60 and 

MCC90 were similar on Visits 1 and 2 (Table 2).

Percent MCC60 on Visit 1 was correlated with percent MCC60 on Visit 2 and 10/14 data 

points fell on, or near, the line of identity, indicating good reproducibility (Figure 2A). 

Percent MCC90 on Visit 1 was also correlated with percent MCC90 on Visit 2 (Spearman 

Rho= 0.73; p=0.003; data not shown). ICCs for the two MCC60 and MCC90 measurements 

were 0.72 and 0.77, respectively, indicating good reliability

There was no significant difference between percent median MCC60 and MCC90 on Visits 

2 and 3, showing stability over the one-year period (Table 2). However, percent MCC60 on 

Visit 2 was not correlated with MCC60 on Visit 3 and intrasubject variability in MCC varied 

considerably over the longer time period (Figure 2B). Percent MCC90 on Visit 2 also was 

not correlated with MCC90 on Visit 3 (Spearman Rho= 0.14; p=0.63; data not shown). ICCs 

for the two MCC60 and MCC90 measurements were 0.25 and 0.17, respectively, indicating 

poor reliability.

Outer:Inner (O:I) Ratios:

O:I ratios on Visits 1 and 2 were similar (Table 2) and significantly correlated (Figure 3A), 

indicating good reproducibility. ICC for these O:I measurements was 0.72, indicating good 

reliability. O:I ratios on Visits 2 and 3 were also similar (Table 2). However, O:I ratios on 

Visits 2 and 3 were not correlated (Figure 3B), indicating poor reproducibility and the ICC 

for these O:I measurements was 0.35, indicating poor reliability. There were no significant 

associations between O:I ratio and MCC60 on any of the three visits. (Spearman Rho= 0.26; 

p=0.38; −0.38; p=0.18 and −0.18; p=0.53 on Visits 1, 2 and 3, respectively). Similar results 

were obtained for O:I ratio and MCC90 (Spearman Rho= 0.24; p=0.40; −0.40; p=0.16; 

−0.17; p=0.57 on Visits 1, 2 and 3, respectively).

Absolute change in O:I ratio on Visits 2 and 3 was significantly related to absolute change 

in MCC90 on Visits 2 and 3. Greater changes in O:I ratio were significantly correlated with 

greater changes in MCC90 (Spearman Rho= 0.56; p=0.04). Absolute change in O:I ratio 

on Visits 2 and 3 was similarly associated with absolute change in MCC60. However, that 

relationship was not statistically significant (Spearman Rho= 0.51; p=0.06).

Ad Hoc Analysis in Controls Subjects:

Median percent MCC60 for control subjects was 12.4 (0.7–19.7), which was similar to 

median percent MCC60 reported for children with CF on Visit 2 (Table 2) (Mann-Whitney 

U test; p=0.73). Median O:I for control subjects was 0.52 (0.24–0.83), which was similar 

to median O:I reported for children with CF on Visit 2 (Table 2) (Mann-Whitney U test; 

p=0.33).
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Relationship between MCC and Age of Initial PA+ Culture:

Seven children were PA− prior to Visit 2. Age of initial PA+ culture in the other seven 

children was 21 (3–69) months. There were no statistically significant associations between 

age of initial PA+ culture and percent MCC60, or MCC90, on Visit 2 (Spearman Rho= 

−0.20; p=0.50 and −0.17; p=0.57, respectively) (n=14).

Relationship between MCC and PA+ Cultures/Year:

Number of bacterial cultures performed/year prior to Visit 2 was 3.6 (1.1–8.0). Number 

of PA+ cultures/year prior to Visit 2 was 0.06 (0–1.08). Percent MCC60 and MCC90 in 

children with zero PA cultures/year prior to Visit 2 were not significantly different from 

MCC60 and MCC90 in children with positive PA cultures prior to Visit 2 (Mann-Whitney 

U test; p=0.57 and p=0.52, respectively). Percent MCC60 and MCC90 on Visit 2 were 

not significantly associated with number of PA+ cultures/year prior to Visit 2 (Spearman 

Rho= −0.33; p=0.24 and −0.36; p=0.21, respectively), or with percent of respiratory cultures 

that were PA+/year, prior to Visit 2 (Spearman Rho= −0.24; p=0.40 and −0.28; p=0.34, 

respectively) (n=14).

Ten children were PA− between Visits 2 and 3. Median number of bacterial cultures 

performed between Visits 2 and 3 was 5.0 (1.0–8.0). Median number of PA+ cultures/year 

between Visits 2 and 3 was zero (0–1.2). Percent MCC60 and MCC90 on Visit 3 were 

not significantly associated with the number of PA+ cultures/year between Visits 2 and 3 

(Spearman Rho= 0.35; p=0.22 and 0.28; p=0.33, respectively), or with percent of respiratory 

cultures that were PA+/year between Visits 2 and 3 (Spearman Rho= 0.35; p=0.22 and 0.28; 

p=0.32, respectively).

Relationship between MCC, MUC5B, MUC5AC and MUC5AC/MUC5B:

Three children could not produce a sputum sample. Concentrations of MUC5B, MUC5AC 

and MUC5AC/MUC5B in the sputa were, therefore, determined from the remaining 11 

children. Concentrations of MUC5B and MUC5AC were 77.6 (3.1–245.4) μg/mL and 

65.6 (4.6–3984.0) AU/mL, respectively. Ratios of MUC5AC/MUC5B were 1.0 (0.4–16.23). 

There were no significant associations between MUC5B, MUC5AC, or MUC5AC/MUC5B 

and number of PA+ cultures/year prior to Visit 2 (Spearman Rho= 0.49; p=0.12, 0.03; 

p=0.92 and −0.03; p=0.93, respectively). Percent MCC60 was not significantly correlated 

with MUC5B, MUC5AC, or MUC5AC/MUC5B (Spearman Rho= −0.40; p=0.22, −0.01; 

p=0.98 and −0.03; p=0.94, respectively). Percent MCC90 was not significantly correlated 

with MUC5B, MUC5AC, or MUC5AC/MUC5B (Spearman Rho= −0.46; p=0.16, −0.01; 

p=0.98 and 0.05; p=0.89, respectively).

Relationship between MCC and LCI2.5%:

LCI2.5% was measured in 13 children on Visit 1 (Year 1) and 14 children on Visit 3 (Year 

2). Median LCI2.5% increased from 7.7 to 8.2 between Visits 1 and 3 (n=13), but was not 

statistically different on the two visits (Table 2).

Percent MCC60 on Visit 2 was not significantly associated with LCI2.5% in Year 1 (Figure 

4A), whereas lower percent MCC60 on Visit 3 was associated with higher LCI2.5% in Year 
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2 (Figure 4B). Lower percent MCC90 on Visit 2 was associated with higher LCI2.5% in Year 

1 (Figure 5A), whereas, percent MCC90 on Visit 3 was non-significantly associated with 

LCI2.5% in Year 2 (Figure 5B).

Correlation tests between the directional change in percent MCC60 and percent MCC90 and 

the directional change in LCI2.5% between Years 1 and 2 showed no significant associations 

(Spearman Rho= 0.06; p=0.86; and 0.03; p=0.92, respectively).

Relationship between MCC and FEV1:

FEV1 was obtained in 12 of 14 children on Visit 1. Spirometry was not included in the 

protocol at the time of Visit 1 for one child and one child could not perform spirometry 

reliably. FEV1 was below 80 percent predicted in two of the 12 children, with 75.1 and 76.9 

percent, respectively. All four children remained in the study because they had a minimal 

history of infection and no chronic symptoms.

FEV1 values for the 12 children were similar on Visits 1 and 3 (Table 2). Percent MCC60 

and MCC90 on Visit 2 were not significantly associated with FEV1 values measured on Visit 

1 (Spearman Rho= −0.09; p=0.78 and −0.06; p=0.85, respectively). Percent MCC60 and 

MCC90 on Visit 3 were not significantly associated with FEV1 values measured on Visit 3 

(Spearman Rho= −0.22; p=0.45 and −0.32; p=0.27, respectively).

Relationship between MCC and HRCT Scores:

HRCT scans were performed in 14 children on Visit 3. Median HRCT score for both 

lungs combined was 5.0 (0–58.0). There was no evidence of mucus plugging (n = 10), or 

bronchiectasis (n = 6), in either lung. Percent MCC60 and MCC90 on Visit 3 were not 

significantly associated with HRCT scores on Visit 3 (Spearman Rho= −0.10; p=0.75 and 

−0.16; p=0.59, respectively).

Relationship between MCC and Genetic Variants:

Null variants and candidate variants were identified in the following genes: MBL2, 
DNAH14, MUC5B, MUC5AC and APIP. Seven children carried at least one candidate 

variant. Four children carried one null variant. The genetic variant and the number of 

individuals with each is shown in Tables 3A and 3B. Two variants were identified in three 

individuals (#3, #4, and #13). Three variants were identified in one individual (#9). Median 

MCC60 and MCC90 on Visit 2 were not significantly different in children with no candidate 

variants [14.7 (2.7–26.8) and 18.9 (3.5–29.1), respectively], compared to children with at 

least one variant [10.3 (5.0–25.1) and 13.4 (6.9–29.8), respectively] (Mann-Whitney U test; 

p=0.28 and p=0.37, respectively). The sample size was too small to test for differences 

between MCC endpoints in children with one null variant.

Relationship between MCC and Environmental Exposures:

Table 4 shows the percent of children whose caregivers reported exposures to pets, pests, 

secondhand smoke, gas combustion in the home and RSV infection prior to Visits 2 and/or 

3. MCC was not significantly associated with any of these exposures (Table 5).
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Discussion

To our knowledge, this is the first study to show that mucus clearance from the lungs by 

ciliary mechanisms (MCC60) and ciliary/cough mechanisms combined (MCC90) can be 

measured and is reproducible and reliable over a two-week period in 5–7 year-old children 

with CF. In addition, median MCC60 for these children, as well as the range of values, 

appear to be normal, since they were similar to values observed in a group of healthy, 

adult controls. Healthy, aged-matched children would have been the preferred control group. 

However, ethical considerations do not allow healthy children to be exposed to ionizing 

radiation for research purposes.

We hypothesized that MCC values would decline over the one-year study period. However, 

this was not the case. Median MCC values for Visits 2 and 3 were not statistically 

different, indicating MCC measurements were stable during this time period. Interestingly, 

PA infection rate in the majority of children was low over the one-year period and there was 

only one hospitalization for a pulmonary exacerbation. This lack of infection with PA and 

hospitalization might account for the lack of a significant decline in MCC between Visits 2 

and 3.

MCC measurements on Visits 2 and 3 were less reproducible and reliable than on Visits 

1 and 2. These results suggest that the change in MCC over time varies and multiple 

observations will be most reproducible when made over a short time interval. Reduced 

reproducibility and reliability in MCC on Visits 2 and 3 could have been related to changes 

in the distribution of the radioaerosol used to measure MCC within the lung, possibly due 

to alterations in ventilation homogeneity. It is well-known that changes in the deposition 

pattern of the radioaerosol, measured in this study in terms of O:I ratio, can influence MCC 

measurements (32) and absolute change in MCC90 between the two visits was significantly 

associated with absolute change in O:I ratio.

LCI2.5% did not change significantly over the one-year study period. However, MCC90 

measurements on Visit 2 (Year 1) and MCC60 measurements on Visit 3 (Year 2) were 

significantly, negatively correlated with LCI2.5% values obtained at the same time points. 

These results suggest that variability in MCC is related to differences in ventilation 

homogeneity in this age group and lower MCC values are associated with increased 

ventilation inhomogeneity. It is unknown if variability in MCC and changes in ventilation 

homogeneity are independent markers of lung disease, or if altered ventilation homogeneity 

impacts MCC tests directly via changes in deposition. It is also unclear why MCC60 on 

Visit 2 and MCC90 on Visit 3 were not correlated with LCI2.5% values. This could be due to 

the small number of study subjects.

Inter-subject variability in MCC measurements in these children does not appear to be due 

to differences in therapy, since the majority of children in the study were treated with similar 

drugs during the study protocol. A small number of children were treated with lumacaftor/

ivacaftor during the study. However, the effect of this drug combination on MCC is unclear, 

since some children demonstrated faster clearance with treatment and others demonstrated 

slower clearance after starting the drug.
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Inter-subject variability in MCC measurements was not associated with age of initial PA+ 

culture. This finding is similar to what we found in older children with CF (6). However, 

unlike the previous study, there was no significant association between MCC and PA 

infection rate. Also, unlike another study (7), there was no difference in MCC between 

children who were PA− vs. PA+, prior to the MCC test. It is unknown why variability in 

MCC in these young children was not associated with PA infection rate. However, only 

four of 14 children in the present study were PA+ between Visits 2 and 3, with median 

PA+ cultures/year at zero. In the previous study (6), PA+ cultures/year between visits was 

much higher, averaging 0.90, and the time between visits was much longer with a median 

of 4.6 (3.1–10.0) years. This suggests that changes in MCC may be related to the length 

of time the infection is present. With such a low infection rate and short study period, it is 

not be surprising that there was no association between MCC measurements and infection 

rate in the present study. Similar to studies in older children with CF (6, 7), FEV1 in these 

younger children did not change significantly during the one-year study period and MCC 

measurements were not associated with FEV1 values.

In contrast to previous studies (6,7), there was no association between percent MCC and 

HRCT scores in these young children with CF. It is not clear why this was the case. 

However, the lack of an association could be due to the large percentage of children with 

scores of zero for both mucus plugging and bronchiectasis, two components of HRCT 

scoring that directly pertain to MCC. Additionally, the effects of changes in MCC on the 

parenchymal damage observed in CT scanning may be cumulative, such that abnormalities 

appear over time (6, 7).

Other investigators have compared MUC5B and MUC5AC concentrations in healthy adults 

and adults with CF. Henke et al. showed that MUC5AC and MUC5B are increased in adult 

patients with CF during a pulmonary exacerbation (34) and Henderson et al. showed that 

concentrations of these two mucins are higher in young adults with CF who were infected 

with PA, compared to normal, uninfected adults (35). However, neither of these studies 

explored possible relationships between MCC and MUC5B and MUC5AC concentrations in 

these adults with CF.

To our knowledge, this is the first study to examine the relationship between MCC and 

these two mucins in young children with CF. Our results indicate that, during a period of 

stability (i.e. low infection rate with PA), MCC is not significantly related to MUC5B, or 

MUC5AC, concentrations, or MUC5B/MUC5AC ratio, measured in induced sputum in 5–7 

year-old children with CF. Because of the small sample size, additional studies investigating 

the amounts and integrity of MUC5AC and MUC5B in larger cohorts are warranted.

In the two exploratory analyses, we found that MCC on Visit 2 was not significantly 

different in children with no candidate gene variants, compared to children with at least one 

variant. We also found no significant associations between MCC and reported environmental 

exposures.

In conclusion, this was the first study to characterize MCC in children with CF who 

were 5–7 years old. Findings from this study showed that measurements of MCC were 
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reproducible and reliable over a two-week period and stable over a one-year period. In 

addition, variability in MCC between children was associated with differences in ventilation 

homogeneity, such that children with lower MCC values had increased ventilation 

inhomogeneity. These results suggest that measurements of MCC could be used in short-

term clinical trials of interventions designed to modulate MCC and as a new, non-invasive 

test to evaluate early lung pathology in children with CF.
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Impact Statement:

• This is the first study to characterize mucociliary clearance (MCC) in children 

with cystic fibrosis (CF) who were 5–7 years old.

• Measurements of mucociliary clearance were reproducible and reliable over a 

two-week period and stable over a one-year period.

• Variability in MCC between children was associated with differences in 

ventilation homogeneity, such that children with lower MCC values had 

increased ventilation inhomogeneity.

• These results suggest that measurements of MCC could be used in short-term 

clinical trials of interventions designed to modulate MCC and as a new, 

non-invasive test to evaluate early lung pathology in children with CF.

Laube et al. Page 15

Pediatr Res. Author manuscript; available in PMC 2022 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Comparison of percent MCC60 (A) and MCC90 (B) for each of the 14 children on Visits 

1 and 2. Visit 1 is represented as (1) and Visit 2 is represented as (2). Horizontal black 

lines represent median values. MCC60 and MCC90 were similar on the two visits (p=0.95 

and p=0.99, respectively). Abbreviations: MCC60, average percent mucociliary clearance 

through 60 minutes; MCC90, average percent mucociliary clearance through 90 minutes. P 

values were determined by Wilcoxon signed rank tests.
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Figure 2: 
(A) Line of identity for average percent MCC60 measurements (N=14 pairs) on Visits 1 

and 2. Visit 1 is represented as (1) and Visit 2 is represented as (2). Percent MCC60 on the 

two visits was significantly correlated (p=0.007). A similar result was obtained for MCC90 

(rs =0.73; p=0.003; data not shown). (B) Line of identity for average percent MCC60 

measurements (N=14 pairs) on Visits 2 and 3. Visit 2 is represented as (2) and Visit 3 

is represented as (3). Percent MCC60 on the two visits was not significantly correlated 

(p=0.32). A similar result was obtained for MCC90 (rs =0.14; p=0.63; data not shown). 

Rs values were determined by Spearman correlation test. Abbreviation: MCC60, average 

percent mucociliary clearance through 60 minutes; MCC90, average percent mucociliary 

clearance through 90 minutes.
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Figure 3: 
(A) Line of identity for O:I ratio (N=14 pairs) on Visits 1 and 2. Visit 1 is represented as 

(1) and Visit 2 is represented as (2). O:I ratio on the two visits was significantly correlated 

(p=0.008). (B) Line of identity for O:I ratio (N=14 pairs) on Visits 2 and 3. Visit 2 is 

represented as (2) and Visit 3 is represented as (3). O:I ratio on the two visits was not 

significantly correlated (p=0.38). Rs value was determined by Spearman correlation test. 

Abbreviation: O:I ratio, percent of radioactivity deposited in outer region of right lung 

divided by percent of radioactivity deposited in inner region of right lung.
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Figure 4: 
(A) Non-significant correlation between percent MCC60 on Visit 2 (2) and LCI2.5% in 

Year 1 (N=13) (p=0.09). (B) Significant correlation between percent MCC60 on Visit 3 (3) 

and LCI2.5% in Year 2 (N=14) (p=0.04). Linear trendlines, or best-fit straight lines, for the 

data, are included. Rs values were determined by Spearman correlation test. Abbreviation: 

MCC60, average percent mucociliary clearance through 60 minutes.
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Figure 5: 
(A) Significant correlation between percent MCC90 on Visit 2 (2) and LCI2.5% in Year 1 

(N=13) (p=0.02). (B) Non-significant correlation between percent MCC90 on Visit 3 (3) 

and LCI2.5% in Year 2 (N=14) (p=0.07). Linear trendlines, or best-fit straight lines, for the 

data, are included. Rs values were determined by Spearman correlation test. Abbreviation: 

MCC90, average percent mucociliary clearance through 90 minutes.
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Table 1.

Use of concomitant therapies during study protocol.

Therapy N (%)

Dornase alfa 12 (86)

Hypertonic saline 9 (64)

Airway clearance with high frequency chest wall oscillation 12 (86)

Albuterol 13 (93)

Lumacaftor/ivacaftor at time of Visit 2 2 (14)

Lumacaftor/ivacaftor at time of Visit 3 5 (36)

Any oral antibiotic 10 (71)

 1–2 courses of an oral antibiotic 8 (57)

 3 or more courses of an oral antibiotic 2 (14)

Inhaled tobramycin (single 28-day course) 2 (14)

Intravenous antibiotic course during hospitalization 1 (7)

Abbreviation: N, number of children; %, percent of 14 children
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Table 2.

Median (min-max) assessments in children with CF on three Visits.

Assessment Visit 1 Visit 2 P value Visit 3 P value

Percent MCC60 (n =14) 11.0 (0.9–33.7) 12.8 (2.7–26.8) 0.95* 12.8 (3.7–17.6) 0.58**

Percent MCC90 (n =14) 13.2 (4.2–36.5) 14.6 (3.5–29.8) 0.99* 13.8 (6.8–20.5) 0.68**

O:I Ratio (n =14) 0.56 (0.39–0.77) 0.60 (0.36–0.81) 0.42* 0.57 (0.38–0.89) 0.93**

Percent Predicted FEV1 (n=12) 89.4 (75.1–123.6) ---- ---- 92.5 (59.5–113.4) 0.94+

LCI2.5% (n=13) 7.7 (6.4–12.3) ---- ---- 8.2 (6.5–14.3) 0.28+

All P values obtained from Wilcoxon signed rank tests.

*
P value for MCC Visit 1 vs. MCC Visit 2.

**
P value for MCC Visit 2 vs. MCC Visit 3.

+
P value for MCC Visit 1 vs. MCC Visit 3.

Abbreviations: CF, Cystic Fibrosis, MCC60, average percent mucociliary clearance through 60 minutes; MCC90, average percent mucociliary 
clearance through 90 minutes; O:I ratio, percent of radioactivity deposited in outer region of right lung divided by percent of radioactivity deposited 
in inner region of right lung; FEV1, forced expiratory volume in one second; LCI, lung clearance index.
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Table 3A.

Null variants in genes of interest.

Gene Chr Position (hg38) nucleotide change Protein change Consequence gnomAD freq. (v2.1.1) # inds. ID

DNAH14 1 225147216 CAATT>C Ile1637ArgfsTer30 Frameshift 2.29E-03 1 11

DNAH14 1 225360679 A>G . Splice site 7.56E-05 1 9

MUC5AC 11 1190841 CA>C Thr4233GlnfsTer57 Frameshift 0.000 1 4

APIP 11 34883367 C>CA Trp200LeufsTer13 Frameshift 8.01E-06 1 3
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Table 3B.

Candidate variants in genes of interest, determined through variants reported in literature, or pathogenic in 

ClinVar*.

Gene rsID chr
position
(hg38) Change Reference Consequence

gnomAD 
freq. (v2.1.1) # inds. ID

MBL2 rs1800450 10 52771475
C>T 

(Gly54Asp) VCV000014350.1† missense 0.138 4 3, 5, 8, 9

MUC5B rs35705950 11 1219991 G>T 23321605‡ upstream 0.077 2 1, 13

MUC5B rs885454 11 1222161 G>A 15709052‡ upstream 0.105 1 4

MUC5B rs7115457 11 1222830 G>A 15709052‡ upstream 0.130 2 9, 13

*
ClinVar is a freely accessible, public archive of reports of the relationships among human variations and phenotypes, with supporting evidence 

(https://www.ncbi.nlm.nih.gov/clinvar/).

†:
ClinVar accession number.

‡:
PubMed ID.

Abbreviations: Chr, chromosome; freq., frequency; inds., individuals; ID, identification #.
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Table 4.

Percent of children with CF (n =14) with environmental exposures during study protocol.

Environmental Exposure

Pets (% any yes) 64%

Pests (% any yes) 29%

Secondhand Smoke (% any yes) 14%

Gas Combustion in the Home (% any yes) 71%

History of RSV (% any yes) 21%

Abbreviations: CF, Cystic Fibrosis; RSV, respiratory syncytial virus.

Pediatr Res. Author manuscript; available in PMC 2022 March 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Laube et al. Page 26

Table 5.

Effect of environmental exposures on mucociliary clearance.

Exposure
MCC60 MCC90

Coefficient* (95% CI) P value Coefficient* (95% CI) P value

Pets (no=0; yes=1) 1.4 (−3.0, 5.8) 0.54 1.3 (−3.3, 5.9) 0.57

Pests (no=0; yes=1) (cockroaches, mice, rats, mold) 1.2 (−4.0, 6.7) 0.65 2.0 (−3.5, 7.5) 0.48

Secondhand Smoke (no=0; yes=1) 6.0 (−1.2, 13.2) 0.10 6.8 (−1.1, 14.6) 0.09

Gas Combustion in the Home (no=0; yes=1) 3.1 (−1.6, 7.8) 0.19 4.1 (−0.5, 8.7) 0.08

History of RSV (no=0; yes=1) 3.0 (−2.6, 8.7) 0.29 3.6 (−2.0, 9.3) 0.21

*
Coefficients represent the change in percent MCC with a given exposure. Positive numbers represent an increase in MCC and negative numbers 

represent a decrease. For each regression, there were 14 individuals with 2 measurements each.

Abbreviations: MCC60, average percent mucociliary clearance through 60 minutes; MCC90, average percent mucociliary clearance through 90 
minutes; RSV, respiratory syncytial virus.
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