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Electroencephalograph (EEG) plays a significant role in the diagnostics process of

epilepsy, but the detection rate is unsatisfactory when the length of interictal EEG

signals is relatively short. Although the deliberate attacking theories for undirected brain

network based on node removal method can extract potential network features, the

node removal method fails to sufficiently consider the directionality of brain electrical

activities. To solve the problems above, this study proposes a feature tensor-based

epileptic detection method of directed brain networks. First, a directed functional brain

network is constructed by calculating the transfer entropy of EEG signals between

different electrodes. Second, the edge removal method is used to imitate the disruptions

of brain connectivity, which may be related to the disorder of brain diseases, to obtain a

sequence of residual networks. After that, topological features of these residual networks

are extracted based on graph theory for constructing a five-way feature tensor. To exploit

the inherent interactions among multiple modes of the feature tensor, this study uses the

Tucker decomposition method to get a core tensor which is finally reshaped into a vector

and input into the support vectors machine (SVM) classifier. Experiment results suggest

that the proposed method has better epileptic screening performance for short-term

interictal EEG data.

Keywords: short-term EEG data, edge removal, epileptic detection, feature tensor, directed brain network

1. INTRODUCTION

Epilepsy is typically diagnosed by epileptic discharges combined with clinical manifestations
of patients (Noachtar and Rémi, 2009). During interictal periods, waveform and rhythm
characteristics of epileptic EEG may change as paroxysmal rhythmic slow waves, sharp waves,
spikes, or spike-and-wave complexes. Nevertheless, sometimes normal EEG signals account for
most of the detection time, which makes it hard to detect epileptic discharges (Pittau et al., 2011;
Maganti and Rutecki, 2013). A study stated that the detection rate of epileptic discharge was
only 19.2% under the 30-min EEG data when 240 epilepsy patients with conscious resting status
were examined (Qin and Dou, 2016). Therefore, long-term interictal EEG data are required for
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time-domain feature-based methods to improve the detection
rate. For example, Krishnan et al. (2014) developed a novel
classification method of spike detection to achieve an
87% detection rate of epileptic discharge, but EEG data
must be collected for several hours, which is too long for
general experiments.

To obtain ideal results in a shorter detection period, the
existing approach is to analyze the EEG information interaction
between different brain regions, that is, to build brain networks
to provide the possibility to distinguish epilepsy patients from
healthy controls (Hassan et al., 2017; Najm, 2018; Park et al.,
2018). According to the brain network, disruptions of its
connectivity are likely to generate brain disorders such as
epilepsy, migraine, and schizophrenia (Van den Heuvel and
Fornito, 2014; Van Mierlo et al., 2014). Analogically, epileptic
discharges are likely to cause abnormal brain network wiring
and dynamics. Therefore, exploring the differences in topological
features between epileptic and healthy brain networks has
become a common method to detect epilepsy, but the detection
effect is not always satisfactory (De Lathauwer et al., 2000; Booth,
2005; Subramaniyam andHyttinen, 2013; Preti et al., 2014; Najm,
2018; Park et al., 2018; Rosch et al., 2018; Li and Cao, 2019).

Moreover, different network structures can lead to different
attacking tolerances for edge damage tolerances, so the deliberate
attacking methods have been proposed to improve the ability
of distinguishing different tolerances network types (Alstott
et al., 2009). Typically, most deliberate attacking methods
devote themselves to research undirected networks based on
node removal (Joyce et al., 2013). The node removal method
attempts to analyze the changes of topological features by
removing important nodes one after another (Aerts et al., 2016).
Different residual networks can be obtained in different removal
times, and then the analysis of topological features is naturally
generalized from original networks to a sequence of residual
networks, and the details of brain networks can be extracted
quite adequately (Schlesinger et al., 2017). Nonetheless, the above
researches fail to sufficiently take full account of the directionality
of brain electrical activities, which makes it hard to reflect
the directed information transmission abnormality of epileptic
brain networks.

To take directed networks into account more ideally,
improved edge removal (ImpER) algorithm, an improved
deliberate attacking method for directed networks is proposed
in this paper. Furthermore, a feature tensor-based epileptic
detection model is designed based on ImpER. After brain
network construction, edge removal, Tucker decomposition, and
support vector machine (SVM) are employed to feature tensor
construction, decomposition, and classification respectively.

When constructing brain networks, transfer entropy
(Schreiber, 2000) is exploited to calculate weighted directed
edges quantitatively. Transfer entropy is a kind of information
theory function reflecting the varying trends of two signals and
the dynamic and directional information interaction between
two systems (Ma et al., 2018). It has been proved to be very
suitable for analyzing time series and has become an increasingly
crucial index to measure causality based on predictability and
information transfer (Murari et al., 2015). Furthermore, it is the
information amount transferred between signals that transfer

entropy takes into consideration, which means assumed a
specific form of relationship between signals is not necessary
(Ma et al., 2018). Hence, it has better applicability in quantitative
calculation of brain networks than the Wiener-Granger causality
analysis method and mutual information method, especially for
non-linear systems (Barnett et al., 2009; Li and Zhang, 2014).

Besides, Lin et al. (2020) also demonstrate that physiologic
states can not be fully described by focusing only on individual
brain rhythms and on certain pairwise interactions. They
discover the dynamic brain networks of interactions among
brain rhythms by calculating cross-correlations, but the threshold
selection is kind of subjective. Transfer entropy is also a measure
of the degree to which two variables are related to each other
considering the dynamic process, which emphasizes the amount
of information transferred from one variable to another in a
period of time.

When it comes to edge removal, rather than analyzing
residual networks individually, this study tends to construct
feature tensors including topological properties of all residual
networks, because tensor analysis technique can fully preserve
the multidimensional correlation information.

To improve the generalization ability and reduce the
computation costs of classification, the tensor decomposition
algorithm should be exploited for extracting principal typical
components. In general, typical tensor decomposition methods
are CP and Tucker decomposition (Kolda and Bader, 2009). CP
decomposition attempts to express a tensor as the sum of a finite
number of rank-one tensors. Since there is no finite algorithm
for determining the rank of a tensor, it is difficult to determine
a suitable number of rank-one tensors (Bro and Kiers, 2003).
Therefore, Tucker decomposition is employed in this paper to
realize data dimensionality reduction.

Support vector machine (SVM) and its kernel extensions
are selected as classifiers in this paper which has been proved
to have satisfactory classification accuracy and generalization
ability for small-sample and non-linear data (Chauhan et al.,
2019). Remarkably, SVM classifiers normally use vectors as input,
however, the Tucker decomposition extracts core tensors. Hence,
this paper attempts to reshape core tensors into vectors and the
performance of these classifiers is evaluated with the method of
K-fold cross-validation (Bengio and Grandvalet, 2004).

In this paper, a detailed description of the creation of a feature
tensor-based epileptic detection model based on ImpER and
its experiments on various groups of subjects is provided. The
organization of this paper is as follows: In section 2, we briefly
describe the ImpER method. In section 3, we introduce the steps
of constructing feature tensors of directed brain networks. In
section 4, we conduct experiments on both epilepsy patients and
healthy controls and discuss the results. In section 5, we give
the conclusions obtained in this paper and the prospects for
further research.

2. IMPROVED EDGE REMOVAL
ALGORITHM

When evaluating the robustness and survivability of an
undirected network, the node removal algorithm is adopted
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FIGURE 1 | An example of the node removal method. (A) Undirected network A. (B) Undirected network B. (C) The varying curves of the average clustering

coefficient with the times of node removal. (D) The varying curves of the network efficiency with the times of node removal.

to imitate deliberate attack by deleting important nodes from
networks in succession (Alstott et al., 2009; Joyce et al.,
2013; Aerts et al., 2016; Schlesinger et al., 2017), and the
performance of residual networks is analyzed for exploring
potential information. By contrast with an undirected network,
each node in the directed network plays two different roles
simultaneously as a receiver and a sender. When all nodes are
regarded as receivers, they can be sorted according to their ability
to receive information, and the same is true for the senders. In
this section, the node removal algorithm is extended to directed
networks in this way, which means improved edge removal
(ImpER) algorithm an improved deliberate attacking approach
based on edge removal is exploited for directed networks.

2.1. Original Node Removal Algorithm for
Undirected Network
The deliberate attacking theories (Joyce et al., 2013; Aerts et al.,
2016; Schlesinger et al., 2017) suggest that, for two undirected
networks with similar features, when several important nodes of
each network are removed, topological differences between two
residual structures may emerge. Figure 1 provides an example
of the node removal method, in which the undirected network
A and B are randomly generated. Their topological features are
shown in Table 1. In this paper, the average clustering coefficient
(Strogatz, 2001; Eggemann and Noble, 2011) and the network
efficiency (Latora and Marchiori, 2003) are selected to separately
reflect functional segregation and integration ability of networks.

A network is defined as G(V ,E) whose number of nodes and
edges are n and m respectively. V = {v1, v2, · · · , vn} is the set of
nodes, E is the set of edges and exy is the edge between vx and vy.
lvivj is the shortest path length between nodes vi and vj. For node

TABLE 1 | The topological features of Network A and B.

Topological features Network A Network B

Average degree 4 4

Average clustering coefficient 0.0264 0.0262

Network efficiency 0.566 0.5551

vi, Cvi is the clustering coefficient, ϒ(vi) is the set of neighbor
nodes, and kvi is the degree of node vi respectively. Above all,
the average degree K, the network efficiency N, and the average
clustering coefficient C can be defined as:

K =
1

n

∑

vi∈V

kvi , (1)

N =
1

n(n− 1)

∑

vi 6=vj∈V

1

lvivj
, (2)

C =
1

n

∑

vi∈V

Cvi

=







1
n

∑

vi∈V

2|{exy|vx∈ϒ(vi),vy∈ϒ(vi),exy∈E}|
kvi (kvi−1)

, (kvi ≥ 2)

0, (kvi < 2)

. (3)

From Figure 1, we can see that the differences between network
A and B is subtle. Now, we regard the degree as the node
importance evaluation and attempt to remove one node with
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the largest degree at a time. Figures 1C,D show the varying
curves of topological features with the times of node removal.
Obviously, there are significant differences in the variation trend
of the average clustering coefficient between network A and B.
Furthermore, after removing 35 nodes, the network efficiency
of network B is obviously higher than that of network A. This
example shows that the node removal method is effective to
explore potential information of undirected networks.

2.2. Improved Edge Removal Algorithm for
Directed Network
For directed networks, there are two types of edges connected to a
node: receiving edges and sending edges. At this point, the node
removal method, which removes all edges connected to a node,
neglects the directionality of edges. Therefore, this study attempts
to design an improved deliberate attacking method for directed
networks based on edge removal. Here, nodes of a directed
network are considered to play two different roles simultaneously
as receivers and senders.

Sub-approach I. Receiving-Edge Removal (Re-ER). When
all nodes are regarded as receivers, prohibit the node with the
strongest receiving capability from receiving information, which
means all of the edges pointing to this node are deleted to obtain
the First Residual Network (1stRN). Next, repeat this process
in the 1stRN to obtain the Second Residual Network (2ndRN).
Finally, repeat this step continuously until all nodes are deprived
of the receiving capability, which means all edges in the network
have been deleted. Hence, the Last Residual Network (nthRN) is
formed with isolated nodes. At this point, a sequence of residual
networks can be obtained. Above all, this removal sub-approach
is named receiving-edge removal.

Sub-approach II. Sending-Edge Removal (Se-ER). When all
nodes are regarded as senders, all processes are similar to Re-
ER, only substituting sending for receiving. Also, this removal
sub-approach is called sending-edge removal.

To measure the directionality of network nodes well, in-
degree and out-degree are employed as relevant indices in
this paper. A directed network with 8 nodes in Figure 2A are
randomly generated, to which both Re-ER and Se-ER method in
the process will be applied in the next three steps.

Step I. Sorting. Sort receiving and sending capability of nodes
based on their in-degree and out-degree from high to low, as
shown in Table 2.

Step II. Application of Re-ER. Now, all nodes are considered
as receivers. First, delete all of the edges pointing to node C to
obtain the 1stRN. Next, delete all of the edges pointing to node
B to obtain the 2ndRN, and node A,E, F,H,D,G will also be
operated sequentially in this way. In the process, the original
network and the first four residual networks are exhibited in
Figure 2.

Step III. Application of Se-ER. The operations are completed
in a similar way like Step II according to sending capability, as
shown in Figure 3.

In Figures 2, 3, it is obvious that the network is becoming
sparser with the increasing of the edge removal times. Moreover,
the residual network structures with Re-ER and Se-ER are
different, so the topological features of two residual network
sequences can be analyzed separately.

Similar to the node removal method, the varying curve
of topological features with the times of edge removal can
be obtained based on the two sub-methods respectively. The
network efficiency N and the average clustering coefficient C are
also exploited to evaluate local and global topological features.
Remarkably, for directed networks, the average clustering
coefficient C should be rewritten as follows.

C =
1

n

∑

vi∈V

Cvi =







1
n

∑

vi∈V

|{exy|vx∈ϒ(vi),vy∈ϒ(vi),exy∈E}|
kvi (kvi−1)

, (kvi ≥ 2)

0, (kvi < 2)

.

(4)
The network efficiency N is also supposed to embody the
directionality, lvivj is the shortest path length from nodes vi to vj,
but not between themselves.

TABLE 2 | The order of nodes’ receiving and sending capability.

Receiving capability C B A E F H D G

(In-degree) 4 3 2 2 2 2 1 1

Sending capability A G B E D F C H

(Out-degree) 5 4 3 3 1 1 0 0

FIGURE 2 | The original network and the first four residual networks based on receiving-edge removal. (A) The original network. (B) The 1stRN. (C) The 2ndRN. (D)

The 3rdRN. (E) The 4thRN.
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FIGURE 3 | The original network and the first four residual networks based on sending-edge removal. (A) The original network. (B) The 1stRN. (C) The 2ndRN. (D)

The 3rdRN. (E) The 4thRN.

To illustrate the effectiveness of the edge removal method,
we compare it with the traditional node removal method.
Figure 4 randomly generates two directed networks with 200
nodes as network C and network D, whose topological features
are shown in Table 3. Figures 4C,D are the results of the node
removal method, and Figures 4E–H are the results of the edge
removal method.

For the node removal method, the network efficiency curves
of network C and D are extremely similar. By contrast, based
on the Re-ER, after removing 40 nodes, the network efficiency
of network C is higher than that of network D. Meanwhile,
based on the Se-ER, after removing 60 nodes, the network
efficiency of network D is obviously higher than that of network
C. Additionally, whether based on the Re-ER or the Se-ER, there
are significant differences in the average clustering coefficient
between network C and D. Hence, compared with the node
removal method, the edge removal method can more fully
explore the intrinsic information of directed networks.

3. FEATURE TENSOR-BASED EPILEPSY
DETECTION METHOD

Due to the differences between effects of the Re-ER and Se-ER
on directed networks, to integrate the results of these two sub-
approaches, a feature tensor-based epilepsy detection model of
directed brain networks is designed in this paper, of which the six
steps are as follows.

Step I. EEG signals from different electrodes are supposed to
be collected simultaneously.

Step II. Transfer entropy is employed to calculate weighted
directed edges quantitatively.

Step III. The weighted network needs to be binarized into
a certain number of unweighted sparse networks based on
multiple thresholds.

Step IV. We can use these unweighted networks to construct
a five-way feature tensor with the edge removal approach.

Step V. We attempt to extract a core component from the
feature tensor by the Tucker decomposition method for epilepsy
detection. The whole model is described in detail below.

Step VI. Epileptic brain networks can be distinguished from
healthy ones by using Support Vector Machine (SVM) classifiers.

In this six-step process, the first three steps consist of the
Brain Network Construction, which will be stated in section 3.1
detailedly. Comprehensively, an integral flowchart is displayed in
Figure 5.

3.1. Brain Network Construction
First, we should simultaneously collect EEG signals from
different electrodes. Since EEG rhythms are related to specific
cerebral functions of different brain regions (Gastaut et al., 1985;
Duque-Munoz et al., 2013; Pyrzowski et al., 2015), original EEG
signals are decomposed into different rhythm components as β
(13–30 Hz), α (8–13 Hz), θ (4–8 Hz), and δ (1–4 Hz) rhythm.

Next, we attempt to respectively build weighted directed
brain networks in each EEG rhythm. The widely used
EEG directed connectivity measurement methods are Wiener-
Granger causality (Korzeniewska et al., 2003; Blinowska et al.,
2004; Bressler and Seth, 2011) and transfer entropy (Schreiber,
2000). To obtain accurate results, the calculation of Wiener-
Granger causality must satisfy three prerequisites as: I. The
interaction between the two signals should be approximately
linear. II. The noise of observations should be relatively weak.
III. The crosstalk between the two signals should be weak.

Nevertheless, interactions between EEG signals are always
non-linear, and if EEG electrodes are placed on the scalp, due to
the volume conduction of human heads (volume conductors), a
single-channel EEG signal always contains causally-related brain
signals from different sources. Coupled with noise and artifacts, it
is difficult for Wiener-Granger causality to estimate information
flow between brain regions.

By contrast withWiener-Granger causality, transfer entropy is
not absolutely bound by the above three prerequisites and suffer
from problems of non-linearity, data noise and cross talk to a
lesser extent, which means transfer entropy is robust to volume
conduction (Astolfi et al., 2007; Gourévitch and Eggermont, 2007;
Supp et al., 2007; Sabesan et al., 2009; Besserve et al., 2010; Lee
et al., 2012). Therefore, transfer entropy is employed in this paper
to reveal non-linear interactions. Transfer entropy is proposed to
evaluate conditional transition probabilities between two signals
evolving. Suppose two simultaneously measured EEG signals,
which can be approximated by a stationary Markov process of
finite order d, as X = xt and Y = yt . At this point, reconstruct
the state space of X by a delay τ embedded vector of dimension d
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FIGURE 4 | The comparisons of the node removal and the edge removal method in exploring potential information of directed networks. (A) Directed network C. (B)

Directed network D. (C) The varying curves of the average clustering coefficient with the times of node removal. (D) The varying curves of the network efficiency with

the times of node removal. (E) The varying curves of the average clustering coefficient with the times of receiving-edge removal. (F) The varying curved of the network

efficiency with the times of receiving-edge removal. (G) The varying curves of the average clustering coefficient with the times of sending-edge removal. (H) The

varying curves of the network efficiency with the times of sending-edge removal.

TABLE 3 | The Topological features of Network C and D.

Topological features Network C Network D

Average degree 7.87 7.61

Average in-degree 3.935 3.805

Average out-degree 3.935 3.805

Average clustering coefficient 0.0192 0.0184

Network efficiency 0.135 0.1361

as Xd
t = (xt , xt−τ , xt−2τ , · · · , xt−(d−1)τ ). Since p(·) is regarded as

the probability, the transition probabilities of X can be written
as p(xt+1|X

d
t ). Accordingly, when the prediction time is u, the

entropy rate H(·) can be computed as:

H(xt+u|X
d
t ) = −

∑

Xt+u ,X
d
t

p(xt+u,X
d
t ) log p(xt+u|X

d
t ), (5)

p(xt+u|X
d
t ) = p(xt+u,X

d
t )/p(X

d
t ), (6)

which represents the average number of bits required to obtain an
additional state if all previous states are known. Now, a directed
measure of information transfer from Y to X can be computed
based on Kullback divergence or mutual information (Van Erven
and Harremos, 2014; Gabrié et al., 2018). At this point, the
transfer entropy T—amount of information transferred from Y

to X, can be expressed as:

T(Y → X) =
∑

p(xt+u,X
d
t ,Y

m
t ) log

p(xt+u|X
d
t ,Y

m
t )

p(xt+u|X
d
t )

, (7)

Ym
t = (yt , yt−τ , · · · , yt−(m−1)τ ), (8)

where Ym
t indicates thatX depends onm states of Y . Based on the

differential entropy, the transfer entropy can be rewritten as:

T(Y → X) = H(Xd
t ,Y

m
t )−H(xt+u,X

d
t ,Y

m
t )+H(xt+u,X

d
t )−H(Xd

t ).
(9)

Remarkably, transfer entropy can indicate the direction of
information transmission, ordinarily T(Y → X) 6= T(X → Y).
Also, when X and Y are independent, T(Y → X) 6= T(X →

Y) = 0.
Since the constructed brain networks are directed, weighted,

and fully connected, to adapt to the edge removal method, it
is necessary to set thresholds to obtain unweighted networks.
Nonetheless, choosing one threshold may ignore useful
information under other thresholds, this paper attempts to select
multiple thresholds rather than a single one.

3.2. Feature Tensor Construction Based on
ImpER
For each rhythm, we can get a certain number of unweighted
sparse networks, each of whom can be used to get a large
number of topological features based on the ImpER method.
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To avoid damaging the relationship among features, we attempt
to use the tensor method to organize them, as shown in
Figure 6.

To be more specific, five-way feature tensors is obtained
as Q ∈ Rǫ1×ǫ2×ǫ3×ǫ4×ǫ5 , and ǫ1 to ǫ5,respectively indicates
threshold, removal time, edge removal sub-approach, topological
feature, and EEG rhythm. If the number of thresholds and
network nodes are set as h and n, the size of feature tensors
should be h × n × 2 × 2 × 4 (two edge removal sub-
methods as the receiving and sending-edge removal sub-
method, two topological features as the average clustering
coefficient and the network efficiency, and four EEG rhythms

as the β , α, θ , and δ rhythm). For example, the <

1, 1, 1, 1, 1 >th element of Q represents the average clustering
coefficient of a network which have been attacked for one
time with the Re-ER sub-approach, and the original network
is constructed by beta EEG rhythm and binarized under the
first threshold.

3.3. Tensor Decomposition and
Classification
Tucker decomposition is the higher-order generalization of the
singular value decomposition, which attempts to decompose a

FIGURE 5 | Flowchart of the feature tensor-based epileptic detection model of brain networks based on edge removal.

FIGURE 6 | The five-way feature tensor. (A) The average clustering coefficient and the network efficiency can be calculated respectively based on different threshold

values, different times of edge removal and different edge removal sub-methods. (B) The five-way feature tensor of brain networks.
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tensor into several factor matrices and a lower-dimensional core
tensor (Kolda and Bader, 2009). To graphically demonstrate the
principle of Tucker decomposition, Figure 7 is illustrated with
a three-way tensor as an example. As shown in Figure 7, the
three-way tensor A ∈ RI×J×K can be decomposed as:

A = ζ×1U×2V×3W + ρ, (10)

where ζ ∈ RL×M×N is the core tensor, being generally smaller
than A. Moreover, U ∈ RL×I , V ∈ RJ×M , and W ∈ RK×N are
the factor matrices; ρ ∈ RI×J×K is the error term and ×i is the
product of a tensor and a matrix along mode-i.

Since the purpose of applying Tucker decomposition in this
paper is to extract core components for the epileptic detection,
but not to restore the original tensors, it is unnecessary to find the
exact Tucker decomposition, and excessively fine features are not
conducive to the generalization ability of classification models.
Furthermore, to guarantee the classification algorithms, the core
tensors are supposed to be set to the same size. Therefore, this
paper attempts to extract core tensors3 = λ1×λ2×λ3×λ4×λ5,
whose size is smaller than the original feature tensors Q. For data
dimensionality reduction, λi(i = 1, 2, · · · , 5) should be greater
than 1 but less than 10. Since the size of Q is u × n × 2 × 2 × 4,
we can get that λ3 = 2, λ4 = 2, and λ5 can be taken as 2, 3, or
4. In addition, if u ≥ 10, λ1 can be taken as 2, 3, · · · , 9; otherwise
λ1 = 2, 3, · · · , h, and the possible value of λ2 is similar to that of
λ1. Therefore, there are 3×min(u−1, 8)×min(n−1, 8) selections
of core tensors size. To look for the global optimal solution, this
paper adopts the complete trial scheme, namely, considering all
possible combinations.

To make core tensors 3 represent Q as fully as possible, this
paper uses the fraction ψ explained by model (Bader and Kolda,
2006) as:

ψ = 1−

√

Ŵ(Q)2 − Ŵ(3)2

Ŵ(Q)
, (11)

where Ŵ· is the norm of tensors. Hence, higher-order orthogonal
iteration is used to compute the best n-rank approximation of Q
and the number of algorithm iterations should be based on ψ ,
but lower than an upper limit.

Since the number of both positive and negative samples
used in this paper is small (50 epileptic and 50 normal persons

described in section 4, SVM and its kernel extensions are
selected as classifiers in this paper which has been proved
to have satisfactory classification accuracy and generalization
ability for small-sample and non-linear data (Chauhan et al.,
2019). Remarkably, SVM classifiers normally use vectors as
input, however, the Tucker decomposition extracts core tensors.
Hence, this paper attempts to reshape core tensors into vectors
and the performance of these classifiers is evaluated with the
method of K-fold cross-validation (Bengio and Grandvalet,
2004).

4. EXPERIMENTAL VERIFICATION AND
RESULTS

4.1. Data Recording and Pre-processing
The subjects of this study were 50 epileptic patients (25
females, 25 males; the mean age: 29.59 ± 4.34 years) and 50
healthy controls (25 males, 25 females; the mean age: 26.86
± 3.69 years). EEG data of those subjects were collected by
NeuroTop NT9200 (SYMTOP instrument Co. Ltd. China)
at the Neurology Department of the General Hospital of
Eastern Theater Command (approval number [2016NZGKJ-
021]). All the patients were diagnosed with epilepsy by at
least 2 qualified neurologists after reviewing their medical
records systematically. The 30 controls were selected from
volunteers who were matched to patients based on age and
gender. All participants were right-handed with no history of
smoking, diabetes, head trauma, alcohol or drug abuse, and
substance dependence, and they were fully informed about
this experiment, signed the written consent form before this
experiment. When EEG data were acquired from 16 scalp loci
(Fp1, Fp2, F3, F4,C3,C4, P3, P4,O1,O2, F7, F8,T3,T4,T5,T6)
with Ag/AgCl electrodes which were placed per the international
standard 10–20 system (thus the total number of nodes
n = 16). Every participant with eyes closed was sitting in
a dimly lit, electromagnetic shield, and noiseless laboratory.
The sampling frequency was set to 512 Hz and recording
time was longer than 2 min. Furthermore, power interference
of 50 Hz was eliminated. After eliminating the apparent
problems like the obvious signal loss, the EEG data of
more than 2 min are divided according to a period of
every 20 s.

FIGURE 7 | The sketch maps of Tucker decomposition for a three-way tensor. (A) The original feature tensor A. (B) The result of Tucker decomposition algorithm.

(Note) U, V, and W are the factor matrices; ζ is the core tensor; ρ is the approximation error.
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The pretreatment steps in the analysis of EEG signals included
reducing ambient noise and removing artifacts including EMG,
EOG, and ECG based on the ICA algorithm. Then the sampling
frequency was reduced to 256 Hz for computation reduction. The
preprocessed EEG signals were decomposed into four rhythms as
β , α, θ , and δ rhythm by db4 wavelet packet.

4.2. Results and Discussion
Based on transfer entropy, weighted brain networks of different
EEG rhythms can be constructed. Before training the SVM
classifier, this study attempts to take the weighted networks of 50
epileptic patients as a sample, and then to apply the right-tailed
T-test to the edge weight sample of each pair of nodes. If the edge

FIGURE 8 | When the threshold is 0.003. (A) Directed binarized network of healthy sample in α rhythm. (B) Directed binarized network of epileptic sample in α rhythm.

FIGURE 9 | The average clustering coefficient of residual networks in alpha rhythm. (A) Healthy sample brain networks based on receiving-edge removal. (B) Healthy

sample brain networks based on sending-edge removal. (C) The difference between (A) and (B). (D) Epileptic sample brain networks based on receiving-edge

removal. (E) Epileptic sample brain networks based on sending-edge removal. (F) The difference between (D) and (E). (G) The difference between (A) and (D). (H)

The difference between (B) and (E). (I) The difference between (C) and (F).
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weight sample of one pair of nodes is significantly greater than
the threshold (Significance level P < 0.01), these two nodes are
considered to connect. In this way, we can construct an epileptic
sample brain network under a certain threshold. As mentioned in
section 3.1, this study sets a fixed step to get multiple thresholds.
The fixed step is 5–10 which makes the threshold increase from 0
to 0.006 (i.e., 600 thresholds). Healthy sample brain networks can
be obtained in the same way. Figure 8 schematically shows the
healthy and the epileptic sample brain network in alpha rhythm
when the threshold is 0.003. Then the methods of receiving-
edge and sending-edge removal can be used to obtain a series of
residual networks for extracting topological features.

Figures 9, 10 respectively show the average clustering
coefficient and the network efficiency of residual networks. These
residual networks are generated by epileptic and healthy sample
brain networks based on different thresholds, edge removal sub-
approaches, and times of edge removal in alpha rhythm. The
horizontal axis in every sub-graph represents the thresholds and
the vertical axis represents the times of edge removal.

Figures 9, 10 indicate, along with the increase of the
thresholds and the edge removal times, topological parameters
of epileptic and healthy sample brain networks have the same
changing trend. However, for both Re-ER and Se-ER sub-
approach, when the thresholds are set between 0.001 and
0.0015, healthy sample networks have a lower average clustering
coefficient than epileptic ones. Moreover, when the thresholds

are set between 0.002 and 0.003 and the edge removal times are
between 0 and 5, network efficiencies of healthy sample networks
are larger than those of epileptic ones.

Now we attempt to construct five-way feature tensors of
every 50 epileptic patients and 50 healthy controls with the edge
removal method, and then to decompose these feature tensors
by Tucker decomposition algorithm. The five-way feature tensor
is X ∈ R600×16×2×2×4, because there are 600 different thresholds,
16 times of edge removal (16 network nodes) and 4 EEG rhythms,
and the core tensors are set to ζ ∈ R8×6×2×2×4. All the core
tensors can be reshaped into 100 labeled (epileptic and healthy),
768-dimensional feature vectors for training the SVM classifier.

The performance of classifiers is evaluated in terms of
sensitivity, specificity, and accuracy (Stehman, 1997), which are all
statistical measures of the performance of a binary classification
test. The sensitivity measures the proportion of epileptic patients
who are correctly identified, that is defined as:

sensitivity =
TP

TP + FN
, (12)

where TP is True Positive the number of epileptic patients
correctly identified as epilepsy and FN is False Negative the
number of epileptic patients incorrectly identified as healthy.
Similarly, the specificity measures the proportion of healthy

FIGURE 10 | The network efficiency values of residual networks in alpha rhythm. (A) Healthy sample brain networks based on receiving-edge removal. (B) Healthy

sample brain networks based on sending-edge removal. (C) The difference between (A) and (B). (D) Epileptic sample brain networks based on receiving-edge

removal. (E) Epileptic sample brain networks based on sending-edge removal. (F) The difference between (D) and (E). (G) The difference between (A) and (D). (H)

The difference between (B) and (E). (I) The difference between (C) and (F).
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TABLE 4 | The SVM performance compare with different kernel for the proposed

method.

Sensitivity % Specificity % Accuracy %

Linear 73.30 70.00 71.70

Fine Gaussian 60.00 93.30 76.70

Medium Gaussian 86.60 90.00 88.30

Coarse Gaussian 96.70 43.30 70.00

TABLE 5 | The epileptic detection accuracy and EEG signal length of this paper

and other studies.

Method Accuracy % Signal length The number

of channels

Type of signal

This paper 88.30 20 s 16 EEG

Krishnan et al.

(2014)

87 2 h 6 EEG

De Lathauwer

et al. (2000)

89.01 20 min 32 EEG

Soriano et al.

(2017)

86 5 s 102 MEG

controls that are correctly identified. It is defined as:

specificity =
TN

TN + FP
, (13)

where TN is True Negative the number of healthy controls
correctly identified as healthy and FP is False Positive the
number of healthy controls incorrectly identified as epilepsy. The
accuracy is a measure of statistical bias, and it is defined as:

accuracy =
TP + TN

TP + FP + FN + TN
. (14)

The performance of all classifiers is evaluated based on the mean
results of twenty 10-fold cross-validations. It shows that the
classification results when λ5 = 3 are generally lower than those
when λ4 = 2or4. Besides, the results are also unsatisfactory
when the values of λ1 and λ2 are too large or small. Through
comparative analysis, when λ1 = 6 and λ2 = 4, namely the size
of core tensors is 6×4×2×2×3, SVM classifiers perform best and
the results are shown in Table 4. we can see that the performance
of the linear kernel is mediocre, while the coarse Gaussian kernel
performs well insensitivity, but do less well in specificity, and the
opposite performance can be found in coarse Gaussian kernel.
In general, the classification performance of medium Gaussian
kernel is the best, and the sensitivity, specificity, and accuracy are
all more than 86%.

Table 5 compares the proposed method with other
studies from three perspectives as accuracy, signallength,
thenumberofchannels, and the typeofsignal. The result shows that
the method proposed in this paper can use relatively shorter EEG
signals and less acquisition channels to obtain better accuracy.
Although paper (Soriano et al., 2017) needs the shortest signals,

the number of channels is the most and the examination of MEG
is more complicated than EEG.

5. CONCLUSION

This study proposes a feature tensor-based detection model to
detect epilepsy by using short-time interictal EEG data. This
method tends to construct directed binary brain networks based
on different basic EEG rhythms and to use the edge removal
method to analyze topological features for constructing multi-
way tensors. Besides, this study uses Tucker decomposition
for obtaining core tensors to distinguish epileptic patients
from healthy controls. The experimental results show that the
specificity, sensitivity, and accuracy values of the proposed
method are all more than 86% with only 20-s EEG data.

In this paper, in-degree and out-degree are employed to
measure the nodes’ characteristics in constructed brain networks
only the local characteristics of the network are considered in
this way. when encountering special nodes like “bridge nodes,”the
global characteristics also need to be considered, or there will be
some misalignment of the evaluation. in future research, more
comprehensive methods will be considered, such as the K-order
propagation number approach (Tang et al., 2020). Furthermore,
(Liu et al., 2015) introduce the concept of time delay stability
(TDS) to quantify coordinated bursts in the activity of brain
waves, which reveals information about the dynamic interactions
between various brain rhythms at different brain locations. In
further research, not only specific brain rhythms or bilateral
information should be taken into consideration, but also both the
global and local communications.
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