
IMIA Yearbook of Medical Informatics 2019

249

© 2019                                 IMIA and Georg Thieme Verlag KG

Beginnings of Artificial Intelligence in 
Medicine (AIM): Computational Artifice 
Assisting Scientific Inquiry and Clinical Art – 
with Reflections on Present AIM Challenges
Casimir A. Kulikowski
Department of Computer Science, Rutgers University, USA

1   Artificial Intelligence 
(AI), Biomedicine, and 
Healthcare: an Abbreviated 
Historical Overview
The history of early biomedical computing, 
including the first AI approaches, can be seen 
as a series of attempts to investigate, under-
stand, and build computational models of the 
scientific knowledge and problem solving 
heuristics used by biomedical scientists, 
while also developing and testing computa-
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tional systems for clinical data processing 
and interpretation, and modeling clinical 
reasoning in ways that were to go beyond 
the logical, statistical, and pattern recogni-
tion models for medical decision-making 
which had become popular, starting in the 
1950’s [1-22]. The outcome of a first phase 
of AI in medicine research came to fruition 
by the mid-1970’s when the SUMEX-AIM 
time-sharing resource at Stanford University 
[23] coupled with a series of AI in medicine 
workshops initiated at Rutgers University 
[24] capitalized on research directions in 
the USA which converged over the next 

decade to a knowledge engineering paradigm 
[25] for designing expert systems [26, 27]. 
This meant the widespread and worldwide 
development and adoption of heuristic 
problem-solving methods and rule-based 
systems for a wide range of fields beyond 
biomedicine, including the Japanese Fifth 
Generation Project [28]. Unfortunately, the 
excessive commercially-driven optimism 
that accompanied the premature general-
ization of knowledge-based systems, and 
the dramatic underestimate of the cost of 
developing, maintaining, keeping up-to-
date, and ensuring reliable performance 
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of expert knowledge-bases, contributed to 
a second “AI Winter” by the mid-to-end 
of the 1980’s [29]. The first AI Winter had 
followed the excessive enthusiasm for the 
initial generation of connectionist Artificial 
Neural Nets (ANNs) or Perceptrons, the the-
oretical limitations of which were exposed 
by Minsky in his 1968 book of that title [30], 
and underwhelming fulfillment of various 
promises of AI, including early automatic 
language translation systems as critiqued in 
the UK Lighthill Report [31]. 

As the second AI Winter loomed in the 
1980’s, AI in medicine re-examined many 
of the statistical, as well as heuristic models 
for machine learning, pattern recognition, 
and discovery, also emphasizing models 
of explanation and description as ways of 
teaching about the assumptions behind the 
first-generation knowledge and rule-based 
systems [32, 33]. Statistical and heuristic 
modeling classif ication and prediction 
approaches in turn contributed to data min-
ing and knowledge discovery developments 
in AI starting in the 1990’s [34]. And, a 
scholarly synthesis of AI around the design 
of “intelligent agents” was epitomized 
by the still-largely-current encyclopedic 
book of Russell and Norvig [35] which 
combines classic search and game-oriented 
AI with logical reasoning representations 
and inference methods as well as critical 
discussions of the multitude of empirical 
heuristic problem solving approaches 
that incorporate lessons from knowledge 
engineering for a wide range of problems 
ranging from computer vision to speech 
recognition and textual analysis. Over 
the past two decades, a new “AI Boom” 
has developed, first with kernel methods 
of machine learning or Support Vector 
Machines (SVMs) and shortly afterwards 
focusing around Deep Learning through a 
new generation of “deeper” multi-layered 
connectionist ANNs [36]. 

Models of the underlying knowledge for 
both application domains like medicine and 
computational process representations have 
led to the development of many medical 
computational ontologies such as the Foun-
dational Model of Anatomy [37], using gen-
eral ontology-building frameworks such as 
Protégé [38]. The reconciliation of user-cen-
tered knowledge engineering requirements 

with formal theories such as description 
logics for medicine, as in GALEN [39], 
raised many practical issues for their wider 
deployment and use in connecting with 
electronic health records and other clinical 
documentation [40]. The development of 
ontologies relied on the long-term research 
and development in biomedical information 
retrieval, while indexing of the literature 
and the coding of documentation were early 
requirements for library automation. The 
pioneering work starting in the early 1960’s 
at the National Library of Medicine (NLM) 
in the USA was essential in developing 
MEDLARS (Medical Literature Analysis 
and Retrieval System) [41], its online suc-
cessor MEDLINE, and its web-based search 
engine PubMed [42], accessing the world’s 
largest repository of biomedical literature 
PubMed Central. The NLM’s support for 
developing a Unified Medical Language 
System (UMLS) to capture and computa-
tionally represent medical terminologies 
and vocabularies [43] was a major contribu-
tor to the success of these efforts starting in 
the 1980’s. While not usually considered AI, 
the work of the NLM nevertheless provided 
the critical computational building blocks 
for augmenting intelligent discovery in 
biomedicine, and has been instrumental in 
accelerating biomedical research since that 
time. Meanwhile, on the AI side of scientific 
theory formation, most recently, proposals 
for largely Bayesian approaches for formal-
izing causal reasoning into a new type of 
causal science are the basis of a book which 
points out that current machine learning 
methods are barely at the lowest rung of a 
ladder for discovering causality in nature, 
highlighting the need to ascend much 
higher through an active experimentation 
as the integral part of the learning process, 
like it is in humans [44]. This would help 
generalize earlier efforts of AI in theory 
formation [2, 45]. In the past two decades, 
the Human Genome Project has produced 
such an abundance of scientific data that 
helps elucidate inheritance patterns of dis-
ease that the project has resulted in yet more 
abundant multi-omic data sets and raises 
very considerable challenges about how 
to incorporate them into clinical practice 
as translational medicine begins to impact 
healthcare significantly [46-48].

2   First Generation of AI in 
Biomedicine
AI in Medicine (AIM) arose in the 1970’s 
from new approaches for representing 
expert knowledge with computers, initially 
developed in the 1960’s by biomedical 
researchers Joshua Lederberg and Carl 
Djerassi, and AI researchers Edward Fei-
genbaum and Bruce Buchanan at Stanford 
University in the Heuristic Dendral Proj-
ect [1, 2]. The Dendral team work on the 
elucidation of molecular structures from 
mass-spectra was originally motivated by 
Lederberg’s interest in alien substances 
and species identification from the early 
space explorations of the time, and was 
directed towards scientific discovery and 
theory formation rather than clinical deci-
sion-making [49]. Earlier, starting in the 
1950’s and through the 1960’s, however, 
there had been a parallel trend of studies in 
biomedical research inspired by Weiner’s 
cybernetics [50] and McCulloch and Pitts’ 
modeling of neural nets [51] – leading to 
European initiatives and conferences on 
Cybernetic Medicine [52]. These studies, 
however, did not go very far, due to the 
largely theoretical and speculative nature 
of the models proposed for complex prob-
lems of feedback control in biology and for 
learning in humans, which turned out to 
be both technologically and scientifically 
premature. Instead, clinical documentation 
and medical systems developed in both 
Europe and the USA proved to be the first 
computer-based experimental software 
systems that showed promise for routine 
clinical application in recording and 
analyzing clinical data, as demonstrated 
at the f irst international conference in 
Elsinore, Denmark, in 1966 [53]. At that 
point, AI researchers were concentrating 
on issues of search and general means-
ends problem solving as in Newell’s GPS 
[54], demonstrating how to successfully 
solve game playing, as in the game of 
checkers by Samuel [55], while developing 
novel languages for problem-solving and 
list-processing such as IPL (Information 
Processing Language) and LISP. Such 
high-level logic approaches were not seen 
to usefully apply to the more complex, 
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highly ambiguous, and open-ended prob-
lems with imprecisely-defined categoriza-
tions for goals of decision-making under 
considerable risk and uncertainty, such 
as those arising in medical diagnosis and 
treatment. Instead, as mentioned above, 
statistical approaches were the norm 
for medical data analysis and decision 
modeling. After the Ledley and Lusted 
paper appeared in Science in 1959 [4], 
the Bayesian paradigm provided the main 
modeling approach to clinical reasoning. 
Nevertheless, the clinical work of the time 
illustrated the promise of practical systems 
for clinical data gathering and analysis 
[13], and decision support which a number 
of books shortly afterwards discussed and 
summarized [14, 19, 21]. All these, like 
the Elsinore presentations and papers, 
emphasized a combination of practical 
computer-based systems for information 
processing, formal probabilistic models 
for medical reasoning, or mixes of the 
two. Software for supporting scientif ic 
biomedical investigations, meanwhile, 
tended to be extensions and scaled-up 
versions of either statistical methods of 
analysis for population data sets, or simu-
lation models of biological mechanisms, 
often with medical applications for aiding 
in the interpretation of clinical data.

How AI came to be used for modeling 
medical problem solving originated from 
the notion that expertise and knowledge 
from specialists ought to be studied so as 
to model theory formation and problem 
solving with computational schemes. The 
clearest AI origins come from the work 
of Simon and Newell, whose economics, 
management, physics, and cognitive psy-
chology backgrounds combined, led them 
to share a curiosity about how human 
behavior could be both modeled and 
helped by computers in understanding 
problem solving. Simon coined the phrase 
“Sciences of the Artificial” to summarize 
and describe the emerging field of AI in 
his famous Compton lectures at MIT in 
the spring of 1968 which were collected 
and published [56]. Newell and Simon’s 
collaborative contributions received the 
Turing Award in 1976, with their joint 
prize lecture representing a crisp distilla-
tion of their philosophy for AI [57]. In the 

1960’s, Feigenbaum studied with Simon, 
and edited and contributed to a pioneering 
book on Computers and Thought [58]. 
When Feigenbaum moved from Carnegie 
Tech to Stanford, it is not surprising that he 
found fertile cross-pollination of his ideas 
about introducing explicit representations 
of heuristic expert knowledge with those 
of the Nobel Prize winner Joshua Leder-
berg, who was also interested in biological 
theory formation and scientific discovery. 
Feigenbaum also happened to be a friend 
of Saul Amarel, who was then directing 
the AI Lab at RCA’s Sarnoff Center in 
Princeton, and together they discussed and 
explored issues revolving around formal-
izations of human problem solving [59]. 
This intellectual rapport and friendship 
between Feigenbaum and Amarel proved 
to be a catalyst for discussions which 
came to the attention and stimulated the 
interest of Bill Raub at the US National 
Institute of Health’s Division of Research 
Resources, who was seeking new direc-
tions for biomedical research support with 
computational methods, including AI. A 
pilot Research Resource on Computers in 
Biomedicine was funded at Rutgers Uni-
versity under Amarel’s direction in 1971, 
and served to support research on problem 
solving approaches in the life sciences and 
psychology, as well as pattern recognition 
models of clinical decisions [60]. Shortly 
afterwards, in 1973, an inter-university 
resource using a time-shared computer sys-
tem based at Stanford, called SUMEX-AIM 
(Stanford University Medical Experimental 
– AI in Medicine), was funded, support-
ing the computational infrastructure that 
brought together primarily researchers from 
Stanford, Rutgers, Pittsburgh, and Tufts-
Harvard-MIT on the clinical side, and more 
in a range of biomedically-related research 
from other institutions [61, 62]. This led to 
a vibrant exchange of ideas about novel AI 
approaches to biomedical problem solving 
and clinical decision-making which were 
debated in a series of AI in Medicine 
Workshops sponsored by the NIH, starting 
at Rutgers in 1975 [24]. The productive 
sharing and cross-fertilization of ideas 
between researchers in clinical medicine 
and AI were subsequently summarized in 
the book edited by Szolovits [63].

3   Clinical AI: Medical 
Consultation as the First Goal
The clinical decision-making orientation 
of AI work had been earlier foreseen and 
advanced by Dr. William Schwartz from 
Tufts when he wrote a visionary paper in the 
New England Journal of Medicine in 1970 
entitled “Medicine and the Computer: The 
Promise and Problems of Change” [64]. In 
this paper, he said: “Computing science will 
probably exert its major effects by augment-
ing and, in some cases, largely replacing the 
intellectual functions of the physician. As the 
“intellectual” use of the computer influences 
in a fundamental fashion the problems of 
both physician manpower and quality of 
medical care, it will also inevitably exact 
important social costs — psychologic, orga-
nizational, legal, economic, and technical. 
Only through consideration of such potential 
costs will it be possible to introduce the new 
technology in an effective and acceptable 
manner. To accomplish this goal will require 
new interactions among medicine, the 
information sciences and the management 
sciences, and the development of new skills 
and attitudes on the part of policy-makers in 
the health-care system.” Schwartz in this way 
anticipated many of the difficult social and 
professional issues that confronted the intro-
duction of computers into medical practice, 
most especially for clinical decision-making. 
He was familiar with the work of his neigh-
bors at Harvard and MIT – the collaboration 
between Octo Barnett and Tony Gorry, 
who were investigating the computational 
modeling of sequential medical decisions 
with decision-analytic utility theory [20]. 
At around this time, Bob Greenes was at 
Harvard pursuing a post MD-PhD in Bar-
nett’s Laboratory for Computer Science at 
Massachusetts General Hospital, where he 
serendipitously connected with the young 
physician Ted Shortliffe and supervised his 
Honors Thesis at Harvard on computer-based 
patient-physician interactions [65]. When 
Shortliffe moved to Stanford for his PhD 
studies, he met and worked with Bruce 
Buchanan, whose research on computa-
tional logic and modeling had been central 
to Dendral’s rule-based representation of 
mass-spectrometry data and its interpreta-
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tion. Together they sought a generalization 
of the expert rule-based approach of Den-
dral to clinical problems in collaboration 
with Stanley Cohen who was working on 
avoiding deleterious drug interactions, which 
dovetailed well with Shortliffe’s medical 
background and expertise [66], and related 
to the NIH’s interest in the medical impact 
of its funded research. These collaborations 
led to the development of the rule-based 
system MYCIN [67, 68] for advising on 
antimicrobial therapies for infectious dis-
eases. It developed and used a highly original 
confidence-factor representation to measure 
clinical uncertainty [69]. While it was shown 
later that confidence factors could formally 
map into probability models, their psycho-
logical impact for the acceptance of the 
consultation program for infectious diseases 
in MYCIN was significant. MYCIN was the 
most influential expert system that demon-
strated the power of modularized rules for 
representing decision-making that was later 
generalized as a framework for developing 
rule-based systems called EMYCIN.

At Rutgers, we were fortunate in enlisting 
the collaboration of Aran Safir of the Mount 
Sinai School of Medicine, an ophthalmolo-
gist and inventor of medical instruments. I 
had been working with Safir on analyzing 
the precision and accuracy of data from 
his Ophthalmetron – a pioneering digital 
tomographic refractometer – which was 
being tested on students in New York City 
[70]. Following my own dissertation on 
pattern recognition subspace methods for the 
diagnosis of thyroid dysfunction [22], I had 
joined Rutgers as a young assistant professor 
and my first doctoral student, Sholom Weiss, 
worked with me to explore ways in which 
prior knowledge from the physician could 
be used to improve and explain results from 
computer decision models [71, 72]. In seek-
ing to overcome the difficulties of explaining 
probabilistic reasoning, we sought out ways 
for understanding clinical decision processes 
and struck on the notion of representing 
causal explanations of disease mechanisms 
that could computationally generate both 
the natural course and the treated course 
of diseases. Safir suggested that we try it 
out on the glaucomas – the group of eye 
diseases which lead to blindness as a result 
of excessive intra-ocular pressure restricting 

blood flow to the retina. After presenting 
a prototype at the American Research in 
Vision and Ophthalmology (ARVO) meeting 
in Sarasota in 1973, we were able to interest 
leading specialists in glaucoma, including 
Dr. Bernard Becker of Washington Univer-
sity in St. Louis, and Dr. Irving Pollack at 
Johns Hopkins in providing their expertise in 
the development of what became known as 
the CASNET (for CAusal Associational Net-
work) consultation program for glaucoma 
[73, 74]. The program showed how causal 
explanations of disease could be combined 
with empirical knowledge of presumptive 
diagnoses, prognoses, and treatments to 
provide advice on glaucoma patient man-
agement. CASNET was tested successfully 
before a large audience at the Academy of 
Ophthalmology in Las Vegas in 1976 [75]. 

At the University of Pittsburgh another 
line of research in modeling the knowledge 
supporting clinical decision-making and 
the use of inference was underway through 
the collaboration between a leading internal 
medicine specialist, Dr. Jack Myers, and AI 
researcher Harry Pople. Pople had proposed 
an abductive model for clinical reasoning 
[76], and with Myers and Dr. Randall Miller, 
they developed a taxonomic and causal 
model of diseases [77] based primarily on Dr. 
Myers’ knowledge and expertise in internal 
medicine. The model and a prototype pro-
gram, tested initially on grand rounds clini-
cal case descriptions from the New England 
Journal of Medicine (NEJM), was first called 
DIALOG then CADUCEUS and INTER-
NIST. While MYCIN and CASNET covered 
related sets of diseases, INTERNIST covered 
all of internal medicine, and required many 
years of development to capture the wide 
scope of heterogeneous knowledge, heuristic 
measures of confidence, and importance of 
clinical findings as they related to a large 
number of potential diagnoses. It eventually 
evolved into the microprocessor-based inter-
nal medical reference system QMR [78].

In New England, Dr. Steven Pauker from 
Tufts joined with Peter Szolovits of MIT 
(after Tony Gorry left for Rice) to develop 
the Present Illness Program which explored 
how patient findings in a presenting illness 
were typically obtained by clinicians in a 
sequential question-answering process. They 
were inspired by both cognitive and decision 

analytic models to develop an interactive 
consultation program using elements of 
categorical and probabilistic reasoning [79] 
which subsequently led to further studies of 
causality used in the modeling of disease 
processes [80].

Despite the development of very success-
ful prototype systems, the AI in Medicine 
focus on investigating and modeling medical 
consultation showed that, however intellec-
tually interesting, most physicians were not 
ready to use these systems in clinical prac-
tice. Involved contributing factors included 
the pressure and lack of time that most clini-
cians had to engage with a computer, and the 
great effort needed to keep the knowledge 
bases updated and current with the relevant 
science and clinical practices. As a result, 
most expert systems were largely used as 
explanatory tools for medical education [81]. 

4   Conclusion: History, 
Science, Technology, and 
Clinical Practice Related to AI 
and Biomedical and Health 
Informatics
From a historical perspective, it is somewhat 
premature to call what we are now writing 
“history”, since many of us who contributed 
to the beginnings of AI in medicine are still 
active, and can at best write about their 
personal reflections on the development 
of the field, as I do with this paper, rather 
than a more detached story and long-term 
assessment of how ideas, systems, and their 
impact have changed over the years. So, 
while uncovering longer-term patterns of 
human-technology symbiotic interactions 
in computing and related technological 
developments over the past 50 years may be 
unrealistic, these technologies have so dra-
matically revolutionized scientific discovery 
and medical practice, that it is not unreason-
able to suggest that a major paradigm shift a 
la Kuhn has occurred [82]. 

A major informatics factor driving 
biomedical advances is the world-wide 
dissemination and availability of the biomed-
ical information from the literature, largely 
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collected, digitized, and made retrievable 
through the NLM’s PubMed [42]. Biomed-
ical AI has benefited from these develop-
ments considerably, and the now-universal 
availability of large corpora of biomedical 
texts and journals has made it imperative to 
develop better natural language processing 
(NLP) algorithms for automatically clas-
sifying and interpreting the vast amount 
of data and knowledge that is contained 
online and on the web. This, however, raises 
deep issues that have been central to AI but 
which have proven difficult to deal with. 
Understanding complete texts, as opposed 
to just “text mining” to find and retrieve 
articles by words or textual fragments (such 
as keywords or named topics) has made 
progress but remains an open problem for 
science, and for AI, because our perceptual, 
cognitive, linguistic, and mental models 
of what constitutes human understanding 
are still very inadequate. Cognitive science 
approaches have been investigated since the 
early 2000’s [83, 84], but scientific insights 
into shared conscious understanding about 
our very faculties of understanding still 
await breakthroughs necessary beyond cur-
rent research in the cognitive neuroscience 
of memory, for instance [85], since it also 
needs to be considered in the context of how 
languages, consciousness, and cultures are 
related [86]. Brain science is advancing, but 
still entirely new paradigms are needed to 
model and better understand, for instance, 
the functioning of glial networks that are 
so signif icant in interacting with, and 
modulating neural networks [87]. From a 
linguistic perspective, the role of perceived 
images and mental constructs of the sensed 
world, and their relation to beliefs in science, 
metaphorical expression, their mathematical 
modeling assumptions, and descriptions by 
shared logic and language present very deep 
challenges [88, 89], and raise critical issues 
about the role of descriptions, visualizations, 
and narratives in reconstructing our mem-
ories and mental models of the world [90] 
as well as the shared foundations between 
artistic creativity and brain science [91].

Early AI models for clinical reasoning 
using rule-based, causal, hierarchical, and 
associational representations of clinical 
knowledge were so innovative that they 
inspired a whole school of heuristic knowl-

edge-based AI and many other AI applica-
tions. Subsequent attempts to connect these 
early knowledge engineering approaches 
and relate them to approaches from explor-
atory statistical data analysis and inference, 
information retrieval, machine learning, 
and computer vision are ongoing, and have 
been transformed radically since the advent 
of the World Wide Web. The up-scaling of 
computer data acquisition related to multiple 
human senses (especially vision, sound, and 
touch) makes their interpretation by humans 
using machines and the interconnected web 
of the Internet of Things a central challenge 
at the interface of intelligent humans and 
intelligent agents or artifacts invented 
through our artifice [92]. In biomedicine, 
novel instrumentation with automated data 
acquisition from nanoscale to population 
scale observations increasingly leverages 
current methods of machine learning, com-
puter vision, and other modalities to help 
transform scientif ic biomedical inquiry 
[93]. However, for translating biomedical 
insights into clinical practice, essential for 
the precision medicine of the future, serious 
challenges of personalization arise, not only 
related to the scientific complexities of gen-
otype-phenotype mappings, but also equally 
or more importantly, to the very different 
responsible professional roles of “intelligent 
agents” involved in the treatment of patients. 
Deep underlying issues arise involving how 
AI can contribute responsibly and ethically 
to the personalization of healthcare, which 
presents very different human clinical prob-
lems when dealing with individual patient 
care as work on narrative medicine illustrates 
[94, 95], compared to recommending direc-
tions for computational guidance of scien-
tific inquiry and discovery which are at the 
center of biomedical research, or to adopting 
business strategies for healthcare enterprises 
primarily influenced by economic goals.

We all tell each other stories to describe 
and complain about our ailments, and it is 
not unreasonable to conjecture that this has 
been happening since well before the time of 
recorded history. The foundations of western 
medicine come to us from Ancient Greece 
and the works of Asclepius and Hippocrates, 
recommending “natural” treatments of 
physical exercise and nutrition to main-
tain the balance between the body and the 

environment in a preventive way [96]. The 
admonition that is well-known for treating all 
physical ailments and trauma in a way that is 
most informed and balances active treatment 
with avoidance of possible harmful effects 
can be found in Hippocrates’ work “Of the 
Epidemics” where he narrates how many 
patients developed illnesses and provides 
information and rationales for his treatments 
[97]. The Hippocratic Oath that physicians 
take usually derives from a Latin translation 
“Primum, Non Nocere” or “First, do no 
harm” but is still the subject of much argu-
ment and debate as to whether this is really 
what Hippocrates meant, since another trans-
lation is cited as: “The physician must be 
able to tell the antecedents, know the present, 
and foretell the future — must mediate these 
things, and have two special objects in view 
with regard to disease, namely, to do good 
or to do no harm.”[98]. A more detailed and 
nuanced discussion of the issues involved in 
requiring an acknowledgement of personal 
responsibility by a physician taking care of 
an individual patient can be found in [99] 
since the Hippocratic Oath, which has been 
such a long-standing criterion for relating 
the practice of medicine to the ideals and 
principles for treating the suffering patient 
going back over 2000 years, is now finding 
these principled criteria challenged by the 
uncertainties in the new roles of physicians 
and nurses within group practices, clinics, 
and hospitals, where shared and delegated 
responsibilities are frequently not clearly 
defined. EHR-evidence-based medicine 
can additionally contribute to a diffusion 
of responsibilities from individuals to “sys-
tems” which can have extremely damaging 
effects on patients as the result of disruptive 
effects on clinical practice in the rapidly 
changing world of IT-influenced, transac-
tion-oriented, and bureaucratized health 
care practices [100]. Models for the intro-
duction of technologies in health care have 
been proposed [101] and the possibility that 
recurrent cycles of information technology 
improvements might help reduce potential 
harmful effects of IT disruptions has been 
discussed in the informatics literature [102].

Most recently, Coeira et al. have addressed 
these types of problems related to the intro-
duction of AI, specifically in an opinion 
piece published in the British Medical 
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Journal Opinion Online [103], where they 
state that: “We will need new principles 
and regulations to govern medical artificial 
intelligence”, supported by a most compel-
ling set of examples, such as one referring 
to end-of-life decisions, pointing out that: 
“The notion of “doing no harm” is stretched 
further when an AI must choose between 
patient and societal benefit. We thus need 
to develop broad principles to govern the 
design, creation, and use of AI in health-
care. These principles should encompass 
the three domains of technology, IT users, 
and the way in which both interact in the 
(socio-technical) health system.” Later in 
the article they make a crucial point about 
the current ethically and practically prob-
lematic issues with dependence on artifi-
cial neural network models for machine 
learning in data-driven medical systems: 
“explanation is challenging for AIs based 
on current-generation neural networks, 
because knowledge is no longer explicit, 
but rather is non-transparently encoded 
in the connections between “neurons”.” 
We can conjecture then that a possible 
useful direction for new AI research for 
biomedicine could entail investigations 
in how to combine the explanatory power 
of methods deployed in some of the early 
causal-mechanism and rule-based AI expert 
systems, with the new computational 
architectures that have strong inferencing 
power as is being promised by recent neu-
romorphic asynchronous spiking neural 
network (SNN) chips [104]. The detailed 
“empirical epistemology”, or AI methods 
implemented to synthesize the kinds of 
top-down model-to-data reasoning and 
the new and more powerful data-to-model 
inferences and reasoning will present more 
than enough challenges to be reconciled 
or made compatible with the exercise of 
individual responsibility following ethical 
principles and constraints. 

To ensure that AI amplifies, rather than 
replaces or distorts, human ethical judgment 
is a central conundrum facing medical AI 
researchers and practitioners. Discovering 
how to balance the “calculating brain” of 
humans driven by selfish and economic 
imperatives with the “altruistic brain” of 
those clinicians who want to keep honoring 
their Hippocratic Oath involves a wide 

range of hard choices and needs insights 
that should keep biomedical informatics 
researchers busy, awake, and hyper-con-
scious of their deepest obligations to help 
patients and practitioners live up to not 
only the latter’s Oath, but also to what the 
founder of cybernetics, Norbert Weiner, so 
presciently identified as the major challenge 
of complex human-machine systems in his 
book entitled “The Human Use of Human 
Beings” [105]. Whether a good ethical 
human can work with an AI and remain 
ethical is a major open problem for all of us 
that will have to be confronted not only sci-
entifically, but also in a socially acceptable 
and humanistic way in clinical informatics. 
“Cui Bono” suddenly takes on even more 
serious meanings than its usual ones, since 
AIs cannot be ascribed responsibility, and 
their likely embedding in complex human 
collaborative clinical practice groupings 
and IoTs will give rise to entirely novel 
evolutionary problems for people especially 
for those who become suffering patients. It 
is not clear that anyone to date has ready 
answers to these problems – but, if we are 
to live up to our responsibilities as ethi-
cal human technologists, scientists, and 
especially as responsible practitioners of 
healthcare, we must try!
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