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Abstract

During recent years, China has become a hotspot for the domestication of mandarin fish,

and this is of great commercial value. Although the food preference of domesticated manda-

rin fish has been studied, little is known about genes regulating their growth. We raised

hybrid mandarin fish on artificial feed for 3 months, the results showed that the survival rate

of hybrid mandarin fish was 60.00%. Their total length and body weight were 18.34 ±0.43

cm and 100.44 ±4.87 g. The absolute length and weight gain rates were 0.14 cm/d and 1.08

g/d, respectively. Finally, RNA sequencing (RNA-Seq) was performed to identify potential

genes and pathways activated in response to growth performance. The transcriptome anal-

ysis generated 68, 197 transcripts and 45,871 unigenes. Among them, 1025 genes were

up-regulated and 593 genes were down-regulated between the fast- and slow-growth fish.

Finally, we obtained 32 differentially expressed genes, which were mainly related to fatty

acid biosynthesis (e.g. FASN and ACACB), collecting duct acid secretion (e.g. ATP6E and

KCC4), cell cycle (e.g. CDC20 and CCNB), and the insulin-like growth factor (IGF) system

(IGFBP1). These pathways might be related to the growth of hybrid mandarin fish. In addi-

tion, more potential single nucleotide polymorphisms (SNPs) were detected in the fast-

growth fish than in the slow-growth fish. The results suggest that the interaction of metabo-

lism and abundant alleles might determine the growth of hybrid mandarin fish after food

conversion.

Introduction

Mandarin fish, a delicacy, is an economically important fish. It is also one of the four popular

freshwater fish and very popular in China. Siniperca chuatsi and Siniperca scherzeri are major

mandarin fish. S. chuatsi grows fast, but it is easily prone to infection during culture. Con-

trarily, S. scherzeri has superior characteristics of strong disease resistance and easy domestica-

tion; they can be fed artificial feeds. However, they grow slowly. During recent years, China
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has become a hotspot for the domestication of mandarin fish [1, 2]. In the wild, mandarin fish

feed on certain live fish, and this leads to some serious problems in the artificial culture of

mandarin fish. For example, feeding live fish to mandarin fish is very expensive and labour

intensive. Additionally, these fish can be a source of pathogens or parasites, which can lead to a

significant loss of cultured mandarin fish [3]. To overcome this problem, we used S. chuatsi
and S. scherzeri to develop a hybrid F1 generation in 2010, and then backcrossed it with S.

scherzeri three times and bred for two generations. Finally, the fifth generation fish was back-

crossed with S. chuatsi to obtain a new hybrid mandarin fish [4]. During domestication, we

found that the new hybrid mandarin fish has a faster growth rate and stronger disease resis-

tance than the F1 hybrid and its parents, and it was easier to domesticate [4]. Furthermore,

there were obvious growth differences in the hybrid fish after months of domestication. There-

fore, genetic breeding of mandarin fish is essential to study the effect of domestication on

growth and the underlying mechanism in the future.

During recent years, RNA sequencing (RNA-Seq) has been widely applied in fundamental

research as an effective tool and the standard for transcriptome analysis. Transcriptome stud-

ies can holistically elucidate the functions and structures of genes and the molecular mecha-

nisms of biological processes. The transcriptome is widely used to study the following: cold

adaptation and thermal response of polar ectothermic species [5]; genetic diversity [6] and

genetic management of commercially important fish [7]; genetic network regulating low-tem-

perature tolerance in fish [8]; high-altitude adaptation [9] and the skeletal muscle of swimming

fish [10]; adaptive responses to hypoxia [11], pathogenesis of diseases, and functions of the

immune system in fish [12]; and sexual plasticity in sex-changing fish [13].

In the present study, in order to increase understanding the molecular mechanism of

growth differences caused by food conversion, transcriptome sequencing was used to analysis

the growth performance of hybrid mandarin fish after food conversion. We believe that these

resources can be screened to reasonably explain the molecular mechanism of growth of fish,

and would greatly aid domestication and breeding programs for mandarin fish.

Materials and methods

Ethics statement

The fish were handled in accordance with the Guide for the Care and Use of Laboratory

Animals of the National Advisory Committee for Laboratory Animal Research. The protocol

was approved by the Institutional Animal Care and Use Committee (IACUC) of Shanghai

Fisheries Research Institute, Shanghai, China (Protocol Number: SHFRI-ACU-2018033). All

surgery was performed under eugenol anesthesia, and all efforts were made to minimize

suffering.

Experiment fish

S. chuatsi and S. scherzeri were obtained from Shanghai Fisheries Research Institute, shanghai,

China. In May 2010, S. scherzeri ♂ and S. chuatsi ♀ were used to produce hybrid F1. In 2013,

the hybrid F1 ♂ and S. scherzeri ♀ were used to produce hybrid F2. In 2014, the hybrid F2 ♂
and S. scherzeri ♀ were used to produce hybrid F3. In 2015, the hybrid F3 ♂ and S. scherzeri ♀
were used to produce hybrid F4. In 2017, the hybrid F4 ♂ and S. scherzeri ♀ were used to pro-

duce hybrid F5 [4]. In May 2018, the hybrid F5 and S. chuatsi were used as male and female

parents to produce hybrid F6 (H6) by artificial production and insemination. The selection

criteria of the broodstock were the same in the experiment, and the parents were all mature

adults with small growth differences. When the yolk of the H6 mandarin fry was almost

absorbed, we offered small-sized Megalobrama amblycephala fry as food to them. When the
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H6 hybrid mandarin fish were 3 cm long, we began to domesticate them on an artificial feed

(Qingdao Qihao Biotechnology Co., Ltd). Training was usually done in the morning and even-

ing. During training, live prey fish were used as feed in the beginning, and then changed to less

dynamic fish and finally to the artificial feed that contained 40% fish meat. The successful food

transition took approximately 15 days. After that, some of the untamed individuals will be

eliminated. When their body length reached about 5.5–6.0 cm, three net cages of size 2 m × 2

m × 1.2 m, with 200 fish of the same size per cage, were used to continue growth experiments.

The fish were counted every month, and the feeding period was 90 days.

Growth performance and sample collection

In order to evaluate the growth performance, the body weight (accuracy = 0.01 g) of fish was

measured using an electronic balance. Furthermore, the main traits (accuracy = 0.1 mm)

including total length, body length, body height, and body width were measured using a com-

pass and ruler at the end of the training period. Additionally, based on the body weight, the

trained fish were divided into two groups, fast- (F) and slow-growth (S) groups, with five fish

per group (S1 Table). The 10 fish were euthanised with Eugenol (JINYUAN, Jiangxi, China),

and then the liver was collected in RNAstore Reagent (TIANGEN, Beijing, China), according

to the manufacturer’s protocol.

Total RNA extraction, library construction and sequencing

According to the manufacturer’s protocol, the total RNA from the liver samples was extracted

using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and purified using the RNeasy Mini Kit

(Qiagen, Valencia, CA, USA). RNA quality was checked on 1% agarose gels. RNA purity was

analysed using Nanodrop 2000 (Thermo Scientific, MA, USA). The Truseq™ RNA Sample

Prep Kit (Illumina, USA) was used to construct a cDNA library, according to the manufactur-

er’s instructions. Magnetic beads with oligo(dT) (Invitrogen, USA) were used to purify the

mRNA from the total RNA. Fragmentation buffer was added to break the mRNA into short

fragments of approximately 300 bp. The first strand cDNA was synthesised with a short

mRNA fragment and random hexamers, and the second strand cDNA was subsequently

synthesised using DNA polymerase I and RNase H, to obtain a stable double-chain structure.

The adaptor-ligated, size-selected cDNA were amplified by polymerase chain reaction (PCR)

(15 cycles) and isolated on 2% agarose gels to construct the final cDNA library. Before

sequencing, TBS-380 Picogreen (Invitrogen, USA) was used to quantify the DNA libraries.

After cluster generation, the prepared libraries were sequenced on the Illumina Hiseq™ 4000

platform (Majorbio Biotech Co., Ltd., Shanghai, China), generating 2 × 150 bp paired-end

reads.

De novo assembly and functional annotation

In order to ensure the accuracy of the subsequent analysis results, we performed quality con-

trol of the original reads. Adapter sequences, >10% poly-N reads, and low quality reads were

removed, to generate clean reads. All clean reads were then assembled using Trinity [14].

TransRate [15] and CD-HIT [16] were used to optimise and filter the assembled data. Subse-

quently, BUSCO [17] was used to evaluate the final sequences, which were considered uni-

genes or transcripts. Finally, the unigenes with E-value < 10−5 were compared against those in

the Non-Redundant Protein (NR), SwissProt, Pfam, Clusters of Orthologous Group (COG),

Gene Onthology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to

obtain annotation information, and then counted them.
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Differential expression and functional enrichment analyses

To analyse the differentially expressed genes (DEGs) among different samples, RSEM [18] was

used to quantify the unigenes (Anders and Huber, 2010). DESeq2 was used to perform differ-

ential gene expression analysis. Genes identified using DEGSeq2 with an adjusted P-value <

0.05 were considered DEGs [19]. The GO and KEGG pathway enrichment analyses were per-

formed on the DEGs, using Goatools software [20] and R program, respectively.

Detection of simple sequence repeats and single nucleotide polymorphisms

To identify candidate single nucleotide polymorphisms (SNPs) from the assembled transcripts

of all samples, SAMtools (http://samtools.sourceforge.net/) and BCF tools (https://github.

com/samtools/bcftools) were used MISA (http://pgrc.ipk-gatersleben.de/misa/) was used for

simple sequence repeat (SSR) detection in unigenes with the default parameters.

Quantitative real-time PCR

Quantitative real-time (qRT)-PCR was used to verify the reliability of the RNA-Seq results.

RNA used for transcriptome sequencing was converted into cDNA using the PrimeScript RT

Reagent Kit (Takara, Japan). The cDNA was then used for the qRT-PCR analysis using specific

primers (Table 1). β-actin was used as the control mainly because of its stability. qRT-PCR was

performed with SYBR Green Premix ExTaq (TaKaRa, Japan) using the CFX96 Touch™ real-

time PCR Detection System (BioRad, USA). All the samples were analysed in triplicate, and

fold changes in gene expression were calculated using the 2-ΔΔCT method [21].

Statistical analysis

Data pertaining to growth performance were analysed using SPSS 19.0 software, and one way

analysis of variance (ANOVA) and significance test were performed. The results are expressed

as mean ± standard deviation (SD). Significance was accepted at the level of P< 0.05.

Results

Growth performance

The growth performance of the hybrid mandarin fish is shown in Fig 1. A comparison of data

obtained at 30 and 90 days revealed that with the increase in domestication period, the survival

rate of hybrid fish gradually decreased (Fig 1A). At the end of the training period, the survival

rates of the fish was 60.00% (S2 Table). Before domestication, the mean total length (TL) and

mean body weight (BW) were 5.82 ± 0.54 cm and 2.84 ± 0.65 g, respectively. After 3 months of

breeding, their total length and body weight were 18.34 ± 0.43 cm and 100.44 ± 4.87 g (Fig 1C

Table 1. Primer sequences used for real-time RT-PCR.

Gene name Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’)

FASN CGGTGACGCCACTCAACAAG GCACTGCAGGCCATAGCAAG

ACACB CTGGCCAAGATGGTGGGCTA CCTGCAGGCGAGGATTCAGT

ACSBG ATGTGTCACGGACGACAACG CTCCGACACCTTGGCTGCT

ATP6E TCGAGAAAGGTCGTCTGGTG TCCAAGTCTTTGACGAGCCT

CDC20 TTGGAGGGAAGCCGCTGAAT AGTCCTCCTCGCGCTCTAAC

CCNB CAGAGGTGCAGGTTCTGCCT ATGGCCCGCATGTTACCAGT

IGFBP1 CCCACATGATGCTCCCTTCT CGCAGGAGAAACTGAACGAC

β-actin ATCGCCGCACTGGTTGTTGAC CCTGTTGGCTTTGGGGTTC

https://doi.org/10.1371/journal.pone.0240308.t001
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and 1D). The absolute length and weight gain rates were 0.14 cm/d and 1.08 g/d. Furthermore,

these fish vary greatly in weight when the fish were counted at the end of the experiment (Fig

1B and S1 Table).

Sequencing and annotation of unigenes

After sequencing, 532.71 million paired-end reads (2 × 150 bp) and 80.44 billion bp were gen-

erated. After trimming and quality filtering, 526.65 million clean reads (98.86%) and 78.80 bil-

lion bp (97.96%) were obtained for the subsequent analyses. The number of clean reads per

sample ranged from 46.12 to 56.58 million, with a mean of 52.67 million. The Q20 and Q30

Fig 1. The growth performance of hybrid mandarin fish. (A) The survival number of hybrid mandarin fish. (B) The

morphology of domesticated hybrid mandarin fish. (C) The change of total length of hybrid mandarin fish. (D) The

change of body weight of hybrid mandarin fish. IM, Initial Measurement (0 day). FM, Final Measurement (90days).

https://doi.org/10.1371/journal.pone.0240308.g001

Table 2. Summary of sequences analysis.

Sample Raw reads Raw bases Clean reads Clean bases Q20(%) Q30(%) GC content(%)

F1 46620884 7039753484 46118582 6906670060 97.98 93.95 49.18

F2 57149480 8629571480 56580896 8470705187 97.99 93.99 49.60

F3 55573022 8391526322 54997656 8228952151 97.99 94.00 49.36

F4 55056242 8313492542 54491194 8154164513 98.08 94.22 49.47

F5 56702058 8562010758 56105974 8393382060 98.04 94.13 49.55

S1 49655296 7497949696 49037308 7337067610 97.76 93.46 49.69

S2 53680550 8105763050 53094284 7942035364 97.93 93.85 49.57

S3 55210500 8336785500 54653148 8176427560 97.81 93.56 49.74

S4 51259504 7740185104 50524030 7559072542 97.78 93.51 50.11

S5 51798836 7821624236 51051630 7635673150 97.83 93.63 50.18

Total 532706372 80438662172 526654702 78804150197 --- --- ---

https://doi.org/10.1371/journal.pone.0240308.t002
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values of all samples were approximately 98% and 94%, respectively, and the GC content was

approximately 49%–50% (Table 2). An optimised assembly of the reads generated 68 197 tran-

scripts and 45 871 unigenes, ranging from 201 to 24 264 bp, with an average length of 1472.99

bp. The N50 and E90N50 values of the obtained transcripts were 2324 and 2562 bp, respec-

tively. Approximately 51% of the transcripts and 58% of the unigenes were distributed in the

0–1000 bp region (S1 Fig). A total of 45 871 unigenes were annotated against those in the six

public databases (NR, Swiss-Prot, Pfam, COG, GO, and KEGG), using Blastx and Blastn.

Among these unigenes, 21 039 (45.87%) were annotated in the NR, 17 911(39.05%) in the

Swiss-Prot, 15 869 (34.59%) in the Pfam, 10 643(23.2%) in the COG, 6 187(13.49%) in the GO,

and14 077(30.69%) in the KEGG databases.

In the GO analysis, 30 400 unigenes (66.27%) had GO annotation, with 24.43% for molecu-

lar functions, 37.01% for cellular components, and 38.55% for biological processes. They were

further assigned to 46 functional terms, and binding (3249 unigenes), catalytic activity (2497

unigenes), and cellular process (2489 unigenes) represented the major terms (Fig 2). Func-

tional classification of the KEGG pathways provided a valuable resource for investigating spe-

cific processes and pathways in the liver of the hybrid mandarin fish. We mapped the 22 828

unigenes to the reference canonical pathways in the KEGG database to identify the biological

pathways related to growth. They were classified into six main categories, comprising 43 main

pathways. Human diseases was the largest category (6844 unigenes, 29.98%), followed by

Organismal Systems (5669 unigenes, 24.83%) (S2 Fig).

Differential expression analysis and functional enrichment

We found a high number of unigenes with differential expression in the S vs. F groups. Differ-

entially expressed genes with two-fold change in expression and adjusted p value< 0.05 were

identified. We identified 1618 DEGS in the liver of the S vs. F groups, with 1025 up- and 593

Fig 2. Functional annotation of hybrid mandarin fish transcripts based on GO categorization.

https://doi.org/10.1371/journal.pone.0240308.g002
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down-regulated genes (Fig 3). The KEGG pathway enrichment analysis of the DEGs showed

that there were 20 pathway in five categories, among which cell cycle was the most significant

pathway in the S vs. F groups after domestication (S3 Fig). This was followed by cell cycle, col-

lecting duct acid secretion and fatty acid biosynthesis. Additionally, we identified the IGF sys-

tem gene (IGFBP1) in the S vs. F groups. In all, we obtained 32 differentially expressed genes

in the S vs. F groups (Fig 4 and S3 Table).

SNP and SSR discovery

A large number of valuable and polymorphic markers were obtained from the RNA-Seq analy-

sis. We detected 2 311 424 potential SNPs in the F group and 2 214 210 potential SNPs in S

group (S4 Table). Transitions were more frequent than transversions among the identified

SNPs. The frequency of A/G (26.23%) and T/C (25.90%) was the highest in transition and the

frequency of A/T (14.30%) and T/A (14.20%) was the highest in transversion (Fig 5A). Addi-

tionally, we found 22 399 potential SSRs in 14 873 unigenes (32.42%). Most of the SSRs were

mono-nucleotide (44.78%) and di-nucleotide repeats (36.27%) (Fig 5B). The mainly type

repeat number of SSRs was 6–10 nucleotides.

qRT-PCR validation

The qRT-PCR was performed to validate the data obtained by RNA-Seq. Seven genes (namely,

ACACB, ACSBG, FASN, ATP6E, CCNB, CDC20, and IGFBP1) from various categories were

selected for confirmation. The results showed that the data obtained by qPCR were basically

consistent with those of the RNA-Seq analysis (Fig 6).

Fig 3. DEGs analysis and volcano plot for fast- (F) and slow-growth (S) groups of hybrid mandarin fish. The x-axis

is the value of Log2 (Fold Change), and the y-axis is the value of -Log10 (padjust). The red and blue dots reveal the up-

and down-regulated DEGs, the black dots reveal non-significantly genes.

https://doi.org/10.1371/journal.pone.0240308.g003
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Discussion

Fish domestication

Research on domestication of animals has been carried out for several years [22]. Environmen-

tal conditions significantly alter hybrids from wild types, and this considerably affects the effi-

ciency of domestication. Some studies on the mechanism of animal domestication have been

conducted [23–25]. The domestication of fish with high commercial values can reduce labour

force and cost, and also accelerate the development of aquaculture industry. So far, several fish

have been domesticated, including some carnivorous fish [1, 26]; for example, Elopichthys
bambusa [27], Epinephelus malabaricus [28], and Lateolabrax japonicus [29].

In recent years, some studies have been performed on the domestication for mandarin fish

[1, 2, 30, 31]. It is confirmed that fish size, breeding density, starvation time, and artificial feed

quality are closely related to the efficiency of mandarin fish culture [32]. In this study, the sur-

vival rates of mandarin fish was 60.00% at the end of the training period. The mortality of fish

was mainly due to illness and swallow cause of individual differences. Here, we found that the

growth performance of domesticated fish varied widely under the same feeding conditions,

that would lead weak individuals are restricted by the strong individuals. Some behaviours in

fish have a genetic basis, and therefore, the fish can respond to domestication selection. Differ-

ent feeding conditions can lead to growth differences [1]. A previous study reported that sen-

sory modality and associative learning appear to be critical factors in food conversion in fish

[31]. Interestingly, domestication caused behaviour and brain size changes in clonal Oncor-
hynchus mykiss lines [25].

Differentially expressed genes of growth

Growth trait is of great economic importance for all species used in aquaculture. Fast-growth

fish are more profitable than slow-growth fish, as it can accelerate the production. Previous

Fig 4. Hierarchical cluster analysis of DEGs involved in the growth superiority. Red and blue gradients indicate the

up- and down- regulation of DEGs, respectively.

https://doi.org/10.1371/journal.pone.0240308.g004

PLOS ONE The growth performance of hybrid mandarin fish after food conversion

PLOS ONE | https://doi.org/10.1371/journal.pone.0240308 October 9, 2020 8 / 16

https://doi.org/10.1371/journal.pone.0240308.g004
https://doi.org/10.1371/journal.pone.0240308


studies have revealed the unique mechanisms controlling food preference in the mandarin

fish, involving retinal photosensitivity, circadian rhythm, appetite control, learning and mem-

ory, and SNP abundance [2]. Here, we found that the growth of hybrid mandarin fish varied

greatly in the later stages during the feeding experiment for 3 months. RNA-Seq was

Fig 5. A, SNPs distribution in samples. The X-axis represents the type of SNP, and the y-axis represents the number of

SNPs in different samples. B, the percentage of different SSR motifs. Different colors represent the number of different

SSR types.

https://doi.org/10.1371/journal.pone.0240308.g005

Fig 6. Validation of RNA-seq data by qRT-PCR. (A) The RNA-seq data. (B) The qRT-PCR data. The values are the

ratio of gene expression levels in the fast-growth group to those in the slow-growth group by the two methods.

https://doi.org/10.1371/journal.pone.0240308.g006
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performed to identify genes associated with the difference in growth performance. We identi-

fied potential DEGs, mainly involved in fatty acid biosynthesis, collecting duct acid secretion,

cell cycle and IGF system (Fig 7).

Fatty acid biosynthesis. In animals, fatty acids (FAs) play an important role in several

physiological processes, and the majority of complex lipid molecules are derived by the trans-

formation of FAs through several biochemical pathways. Acetyl-CoA carboxylase (ACACA)

and fatty acid synthase (FASN) are crucial rate-limiting enzymes, and they play a crucial role

in weight difference in the abdominal adipose tissue in growing animals [33]. Four genes

involved in the FA biosynthesis pathway, namely, ACACA, ACACB, ACSBG, and FASN, were

differentially expressed in the S vs. F groups of hybrid mandarin fish in our study. The highest

expression of ACACA was observed in lipogenic tissues such as the liver and adipose tissue

[34]. ACACB was significantly associated with milk yield, fat yield, fat percentage, protein

yield, and protein percentage [35]. ACSBG is important for the lipid metabolism pathway in

vertebrates [36]. FASN plays an important role in FA metabolism, and variation in FASN
expression has been reported to be associated with both fat and meat traits [37]. Taken

together, changes in the expression levels of these fatty acid biosynthesis-related genes in the F

and S groups of mandarin fish might affect their growth.

Collecting duct acid secretion. H-K-ATPases are integral membrane proteins of the col-

lecting duct, a segment critical for the final regulation of electrolyte excretion and bicarbonate

(HCO3) synthesis and reabsorption [38, 39]. It has been shown that H(+)-K(+)-ATPase medi-

ates net acid secretion in rat terminal inner medullary collecting duct [40]. In animals, CA2
can interconvert carbon dioxide and bicarbonate to maintain acid–base balance in the blood

and other tissues, and to help transport carbon dioxide out of tissues (carbonic anhydrase-like

isoform X2, CA2). KCC4 mediates potassium and chloride exit from cells, and it might play an

important role in salt absorption via the distal convoluted tubule [41]. SLC4A1 plays a central

role in CO2 transport, and it is the major glucose transporter in human erythrocytes [42]. In

Fig 7. The predicted map of DEGs regulated growth superiority. Red and purple represent the up- and down-regulation of DEGs,

respectively.

https://doi.org/10.1371/journal.pone.0240308.g007
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our study, the expression of ATP6E and KCC4 was significantly higher in fast-growth fish than

in slow-growth fish, potentially contributing to acid secretion by the collecting duct.

Cell cycle. A previous study has shown that CCNB1/CDK1-mediated phosphorylation

provides cells the energy for G2/M transition and shortens the overall cell cycle duration, and

thus, plays an important role in the cell cycle and proliferation [43]. CDC20 can promote the

proliferation of cutaneous squamous cell carcinoma [44]. Moreover, overexpression of CDK1,

CCNB1, CDC20, BUB1, MAD2L1, and BUB1B in tumour tissues could increase cell prolifera-

tion and division [45]. DMBT1 links mucosal defence and epithelial regeneration [46]. Esp1

expression is localised to the mitotic spindle during anaphase [47]. Innormal hepatocytes,

Gadd45β facilitates cell survival, growth, and proliferation [48]. Polo-like kinase 1 (Plk1) is a

serine/threonine kinase that is involved in the G2/M phase transition in the cell cycle in verte-

brates [49]. TTK functions as a key regulator of spindle pole assembly, meiosis, DNA damage

response, and cytokinesis [50]. In the present study, we found that the expression of 21 cell

cycle-related genes was higher in the fast-growth fish than in the slow-growth fish; the up-reg-

ulation of these genes could influence cell proliferation and differentiation in mandarin fish.

IGF system. The IGF system plays a pivotal role in the regulation of growth. IGFBPs are

important regulatory factors in the IGF system. They are mainly synthesised by the liver. Previ-

ous research has indicated that IGFBPs can inhibit and/or potentiate IGF activities depending

on the physiological context [51, 52]. Under some conditions, IGFBP1 can also enhance IGF

function rather than inhibit it. For instance, IGFBP1 potently promoted β-cell regeneration by

potentiating α- to β-cell transdifferentiation in zebrafish [53]. Moreover, hypoxia significantly

up-regulated hepatic Igfbp1 expression in the liver [54]. In the present study, we observed a

higher expression of IGFBP1 in the fast-growth fish than in the slow-growth fish. Similar

results have been reported in hybrid grouper, suggesting the gene related to the GH/IGF axis

might play an important role in growth superiority of the hybrid fish [55].

Single nucleotide polymorphisms and simple sequence repeats

RNA-Seq technology has been effectively applied to develop molecular markers in fish [6].

High-quality transcriptomes and a large set of gene-linked SNPs would facilitate functional and

population genomic studies in endangered species [56]. Studies on molecular markers in man-

darin fish have been conducted, including food habit domestication traits (SNP) [30], growth

traits (SNP) [57] and SSR [58], and population genetic analysis (SSR) [59]. These studies were

performed in S. chuatsi. Furthermore, 40 polymorphic SSR markers have been developed and

characterised in S. scherzeri [60]. In the present study, numerous SNPs and SSRs were detected.

The number of SNPs in the F group was significantly higher than that in the S group. It has

been confirmed that abundant variant alleles are closely linked to food preference [2]. More-

over, the main types of SSRs were 6–10 mono and di-nucleotide repeats. These markers will be

useful for diversity, mapping, and marker-assisted studies in mandarin fish (S1 File) [59].

Conclusions

In the present study, new hybrid mandarin fish were raised for 3 months on an artificial feed

containing 40% fish meat. The results showed that using appropriate methods can obtain bet-

ter domestication effect, although the growth performance of domesticated fish varied widely

under the same feeding conditions. The liver transcriptome analysis revealed that fatty acid

biosynthesis, collecting duct acid secretion, cell cycle, IGF system, SNPs and SSRs were closely

related to the growth of hybrid mandarin fish after food conversion. These results of transcrip-

tome analysis will increase our understanding of the molecular mechanism involved in growth

differences caused by food conversion. Future studies should focus on specific molecular
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markers related to growth and domestication in order to accelerate the process of domestica-

tion and breeding of mandarin fish.
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