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1 Trinity Biomedical Science Institute, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland,
2 Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology,
Trinity College, Dublin, Ireland, 3 APC Microbiome Ireland, University College Cork, Cork, Ireland

In recent decades, probiotic bacteria have become increasingly popular as a result of
mounting scientific evidence to indicate their beneficial role in modulating human health.
Although there is strong evidence associating various Lactobacillus probiotics to various
health benefits, further research is needed, in particular to determine the various
mechanisms by which probiotics may exert these effects and indeed to gauge inter-
individual value one can expect from consuming these products. One must take into
consideration the differences in individual and combination strains, and conditions which
create difficulty in making direct comparisons. The aim of this paper is to review the current
understanding of the means by which Lactobacillus species stand to benefit our
gastrointestinal health.
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INTRODUCTION

Ilya Ilyich Mechnikov (Elie Metchnikoff), a Nobel Laureate for his work on macrophage
phagocytosis, is credited as the first to propose that the gut microbiota could be manipulated to
benefit the host. Mechnikov believed that putrefactive activity of microbes in the intestine produced
toxic substances that were damaging to the nervous and vascular systems and caused humans to age.
He had observed that Bulgarian peasants consumed large quantities of yogurt and had a long life
expectancy. He also observed that natural fermentation of food by lactic acid-producing bacteria
prevented the growth of putrefactive organisms. In his book, titled ‘The Prolongation of Life’, he
concludes that: “as lactic fermentation serves so well to arrest putrefaction in general, why should it
not be used for the same purpose within the digestive tube?” (1). Although Mechnikov’s concept of
aging by “intestinal auto-intoxication” has no scientific basis today, Mechnikov’s theories remain
influential and have contributed to the commonly held opinion that Lactobacilli display important
functional characteristics that contribute to gut health.

Lactobacillus is a genus of rod-shaped, gram-positive, non-spore-forming, facultative anaerobic
bacteria of the phylum ‘Firmicutes’ (2, 3). Lactobacillimetabolise carbohydrates to produce lactic acid
making them the largest genus within the lactic acid bacteria (LAB) group. As of March 2020 the 261
species of the Lactobacillacae were reclassified into 25 genera (including 23 novel genera) due to their
extremely high genotypic, phenotypic and ecological diversity (4). For the purpose of this review,
‘Lactobacillus’ will refer to those species previously classified as Lactobacillus. Traditionally,
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Lactobacillus species may be divided into three groups based on
their metabolism. The obligate homofermentative group which
ferment carbohydrates to produce lactic acid as the main by-
product (e.g. L. acidophilus and L. salivarius), the facultatively
heterofermentative group which, under certain conditions or with
certain substrates, ferment carbohydrates to produce lactic acid,
ethanol/acetic acid and carbon dioxide as by-products (e.g. L. casei
and L. plantarum) and the obligately heterofermentative group
which always ferment carbohydrates to produce lactic acid,
ethanol/acetic acid and carbon dioxide as by-products (e.g.
L. reuteri and L. fermentum) (5).

Lactobacilli have colonised multiple areas of the human body,
most notably the digestive tract including the oral cavity, and the
female genital tract (6). The association between Lactobacilli and
humans is a mutualistic relationship, with Lactobacillus species
offering the host aid in digestion of certain dietary substrates, as
well as protection from pathogens, in return for accommodation
and nutrients (7). Lactobacillus species possess qualities that are
commercially desirable both as health supplements and as tools in
the food technology sector. The main uses for Lactobacilli are in
the manufacturing process of fermented dairy, meat, or vegetable
foods and sourdough breads, and they are also widely used as
probiotics i.e., live micro-organisms that, when administered in
adequate amounts, confer a health benefit on the host (8, 9).
Lactobacilli have been granted a ‘generally recognised as safe’
(GRAS) status from the U.S. Food and Drug Administration
(USFDA) and ‘qualified presumption of safety’ (QPS) status
from the European Food Safety Authority (EFSA) thus making
their use in food manufacture relatively straightforward. Due to
their economic importance, Lactobacilli are highly studied and,
relative to other bacterial genus’, are well characterised in terms of
genomics and also their interactions with humans in terms of both
health and disease. These features make Lactobacillus species ideal
probiotic candidates.

Considering the widespread media attention that the
microbiota have attracted in recent years with many news
outlets covering this link between microbes and health it is
little wonder that the commercial probiotic market is worth
approximately $54 billion USD worldwide (10). For a list
including some of the most common Lactobacillus strains
found in probiotic products and their sources see George
Kerry et al. (11). Although the strain L. rhamnosus GG is one
of the most heavily studied, L. acidophilus is the most commonly
used in commercial products. For an in-depth review of common
commercial Lactobacillus strains see the chapter by Tang and
Zhao in the book ‘Lactic Acid Bacteria: Omics and Functional
Evaluation’ (12).

In 2002 a joint Food and Agriculture Organisation (FAO) and
WHO working group released guidelines for the evaluation of
probiotics in food (8). The minimum requirements include:
assessment of strain identity (genus, species, strain), in vitro
tests to show probiotic effects (e.g. resistance to gastric acidity,
digestive enzymes and bile acid, and anti-microbial activity
against pathogens), safety assessment to prove that the
probiotic product is safe for consumption and without
contamination, and finally in vivo studies to authenticate the
purported health claims of the product (13). In Europe, the EFSA
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considers the terms ‘probiotic’, ‘prebiotic’ and the words ‘live’ or
‘active’ when used in relation to bacteria, to be health claims.
Legislation on products purporting to carry health claims are
strictly controlled although in recent years countries including
Spain, Denmark and the Netherlands have released national
guidelines allowing use of the word probiotic under certain
conditions. This has renewed appeals to the EU Commission
to reconsider the strict regulation. Unfortunately, in the US and
Canada the FAO/WHO guidelines are not followed and indeed
the use of the term probiotic has not been controlled by
legislation. This means that any product can use the word
‘probiotic’ on its packaging thereby making it extremely
difficult for consumers to determine which products are
genuine probiotics that may actually be beneficial for their
health (14).

In order to be considered efficacious, a probiotic must have the
capacity to survive in the gastrointestinal (GI) tract, must resist the
low pH of the stomach, must lack antibiotic resistance genes and
must provide a clear benefit to the host (15). Of all probiotics,
Lactobacillus species are the most widely used and studied (16).
The main probiotic Lactobacillus species include: L. acidophilus, L.
brevis, L. casei, L. delbrueckii subsp. bulgaricus, L. delbrueckii
subsp. lactis, L. fermentum, L. gasseri, L. helveticus, L. johnsonii,
L. paracasei subsp. paracasei, L. plantarum, L. reuteri and L.
rhamnosus. There is much research into the potential health
benefits of Lactobacillus species, although evidence indicates that
many features of these probiotic bacteria are both species and
strain -dependent (17). Despite this it has been observed that a
single probiotic species may demonstrate improvement in
different patient cohorts eg. L. rhamnosus GG (18) and
additionally that a range of different probiotics or probiotic
combinations may demonstrate efficacy in the same condition
eg. C. difficile infection (19) highlighting the existence of conserved
beneficial features. As is the case for many translational therapies,
efficacy is not always maintained from in vitro observations
through preclinical to clinical studies for a myriad of factors.
Unfortunately, for many probiotics, one of these factors being that
the mechanisms of action by which beneficial clinical outcomes
are achieved have yet to be elucidated (20). The consequences for
this mean that we are not utilising these tools to their full potential,
opportunities for improving existing treatments may not be
realised and we are at risk of probiotic treatments resulting in
worse outcomes for particular subsets of patients (21).
Additionally, mechanistic data may be required in order to gain
approval from regulatory bodies for health claims – a mode of
action is defined by the World Health Organisation (WHO) and
EFSA as ‘a biologically plausible sequence of key events leading to
an observed effect supported by robust experimental observations
and mechanistic data’ (22). Kleerebezem and colleagues (23)
propose the establishment of a translational pipeline connecting
mechanistic insights to probiotic efficacy in order to improve the
initial selection of probiotic strains by being able to predict their
expected outcomes while supporting the design of the most
appropriate clinical trials in well-defined subpopulations. They
also suggest that this would be used in the inverse allowing us to
predict explanations for observed clinical effects by drawing on
existing knowledge of the probiotic modes of action. Determining
April 2022 | Volume 13 | Article 840245

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dempsey and Corr Lactobacillus and Gut Health
the precise beneficial features of probiotics would certainly allow
us to make better predictions for improved health outcomes.

On this note, further research is exploring ways to increase
the efficiency, efficacy, safety and quality of probiotics by
isolating probiotic-derived biomolecules. These have been
described as postbiotics, paraprobiotics, heat-killed probiotics,
Tyndallised probiotics among others: generally referring to
metabolic products or secreted products of the bacteria, non-
viable microbial cells (intact or broken) or crude cell extracts;
specifically this includes enzymes, secreted peptides/proteins,
bacteriocins, short chain fatty acids (SCFA), organic acids and
cell envelope components of bacteria including peptidoglycans,
teichoic acids, cell surface proteins and cell wall polysaccharides
(24). The International Scientific Association for Probiotics and
Prebiotics (ISAPP) has released a consensus statement on the
definition of postbiotics establishing it as a “preparation of
inanimate micro-organisms and/or their components that
confers a health benefit on the host. Effective postbiotics must
contain inactivated microbial cells or cell components, with or
without metabolites, that contribute to observed health benefits”.
(25). Postbiotics maintain several advantages over probiotics as
described by Pique et al. (26): (I) No risk of translocation from
the gut lumen to blood among vulnerable subjects, (II) No risk of
acquisition and transfer of antibiotic resistance genes, (III) No
risk of interference with normal gut colonisation in neonates,
(IV) Release of active molecules from the disrupted inactivated
cells, pass through the mucus layers and stimulate epithelial cells
more directly, (V) Loss of viability by cell lysis can produce
further more complex beneficial effects and (VI) Easier to extract,
standardize, transport, and store. Accordingly, the use of
postbiotics may very well represent a much-improved
alternative to live probiotics and would be a likely replacement
for them in future. A recent review has nicely summarised the
composition and beneficial functions of postbiotics from
Lactobacillus species (27). In short, postbiotics derived from
Lactobacillus comprise a range of molecules which have
various beneficial effects including immunomodulation,
epithelial barrier protection, anti-pathogenic effects and anti-
tumour effects.

Lactobacilli have demonstrated efficacy in treating various
conditions including bacterial vaginosis, atopic dermatitis, and
upper respiratory tract infections (28–30). However, as first
proposed by Mechnikov over 100 years ago, the majority of
Lactobacillus probiotics are consumed with a view to improving
GI health. In the century since this hypothesis, interest and
knowledge surrounding this subject has grown massively,
however the potential for further growth in this area is
exponential and much more work will be required before we
fully understand and profit from the complexities of the
relationships between Lactobacillus and gut health.
LACTOBACILLUS SPP. AND INTESTINAL
BARRIER INTEGRITY

The GI mucosa is the largest and one of the most critical barrier
sites of the body where foreign antigens, microbes and potential
Frontiers in Immunology | www.frontiersin.org 3
pathogens come into close contact with the host’s immune
system. It is a semi-permeable barrier which allows for the
absorption of nutrients and immune sensing while restricting
the influx of potentially harmful antigens or microbes. The GI
barrier is composed of four major elements: the commensal
microbiota, the mucus layer – which contains secretory IgA
molecules (sIgA) and anti-microbial peptides, the intestinal
epithelial cell (IEC) monolayer, and the gut associated
lymphoid tissue (GALT) - which constitutes various
populations of immune cells in compartments along the GI
tract. The complexity of regulating this semi-permeable barrier
is mitigated by dynamic inter-regulation between these elements
which work together to maintain intestinal barrier integrity and
homeostasis (31). Loss of intestinal barrier function has been
implicated as an early event in the pathogenesis of various GI
disorders, such as coeliac disease and inflammatory bowel
disease, as well as systemic disorders including type I diabetes,
obesity and multiple sclerosis (31).

Intestinal barrier function may be enhanced with the intake of
non-pathogenic micro-organisms which augment the physical
barrier of the mucus layer, enhance innate defence against
pathogens and decrease paracellular permeability of IECs (32).
Lactobacillus strains consumed as probiotics are thought to
modulate the native intestinal microbiota and improve health
via multiple mechanisms of action. As illustrated in Figure 1,
probiotics strengthen intestinal barrier function by increasing
mucus production, stimulating release of anti-microbial
peptides, and production of secretory immunoglobulin A
(sIgA) production, increasing tight junction integrity of IECs
and providing a competitive resistance against pathogens such as
for host colonisation receptors (33, 34).

Mucus Production
Goblet cells (GC) of the GI tract express rod-shaped mucins
which either adhere to the epithelium or are released into the GI
lumen. These mucins are highly glycosylated and link together via
di-sulfide bonds to form a glycoprotein matrix that shields the
intestinal epithelium from gut luminal contents (containing
digestive enzymes), prevents interaction between pathogenic
antigens/bacteria and the epithelial monolayer, and also aids GI
motility. The mucus layer is generally between 50-800 µm thick
and in healthy individuals the first 30 µm closest to the epithelial
surface should be free of microbes. Lactobacillus species are
believed to enhance intestinal barrier defence by promoting
mucus secretion. In vitro studies have demonstrated that
conditioned media from L. casei T21 can up-regulate the
mucosal protective MUC2 gene in colonic epithelial cells
(Caco2 and HT29) challenged with C. difficile (35). Although it
has been proposed that acid may stimulate enteric cells to produce
mucins (36) incubating HT29 cells with lactic acid did not
replicate these findings indicating that other substances secreted
by L. casei T21 are responsible for the increased gene expression.
Similar results have also been obtained in the Caco-2 intestinal
epithelial cell line using L. casei GG (37). In terms of in vivo
studies, L. rhamnosus CNCM I-3690 has recently been shown to
protect and/or restore the GC population and protect mucus layer
thickness in mice following low-grade colon inflammation (38).
April 2022 | Volume 13 | Article 840245
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Similarly, mice administered one of two strains of L. reuteri
(L. reuteri R2LC or 4659) and exposed to DSS colitis displayed
reduced colitis severity which the authors attribute at least partly
to the increase in mucus thickness seen in mice given the
probiotic both in control and inflammatory conditions (39).

The commercially available probiotic VSL#3 contains a
combination of eight lactic acid producing bacteria of which
four are Lactobacilli (L. plantarum, L. delbrueckii subsp.
Bulgaricus, L. casei, L. acidophilus, Bifidobacterium breve, B.
longum, B. infantis and Streptococcus salivarius subsp.
thermophilus). Although the contribution of each bacterial
strain cannot be clarified, both in vitro and in vivo experiments
by Caballero-Franco et al. (40) using this probiotic in rats have
indicated enhancement of the mucus layer measured by over-
expression of mucin genes and increased basal luminal mucin
content. Conversely, a similar study in mice failed to show
altered mucin expression or mucus layer thickness using this
probiotic (41). Further work is required to determine whether
the in vitro effects of probiotics on mucus production are
maintained in vivo.

Anti-Microbial Peptides/Factors
Host-produced GI anti-microbial peptides are generally
categorised into cathelicidins and defensins. Cathelicidins are
a-helical cationic peptides constitutively expressed in the GI
tract which may also be activated by butyrate. Butyrate is
produced by the enteric microbiota however few studies have
examined the effect of probiotics on cathelicidin expression.
Defensins are small, cationic peptides further classified into b-
defensins, produced by epithelial cells throughout the intestine,
and a-defensins, expressed in the small intestine. Defensins are
constitutively expressed in the GI tract and display anti-
Frontiers in Immunology | www.frontiersin.org 4
microbial activity against many bacteria, fungi and some
viruses. L. acidophilus PZ1138 and L. fermentum PZ1162, were
shown to induce expression of human b-defensin-2 gene in
Caco-2 cells via classic pro-inflammatory mechanisms (42). L.
reuteri (FINELACT®) administered to broiler chicks was
associated with anti-microbial peptide modulation in the
cecum and ileum in addition to upregulation of pro-
inflammatory mediators (43).

In addition to host-derived anti-microbial peptide stimulation,
commensal bacteria also produce anti-microbial factors to aid in
host barrier defence. These factors include short chain fatty acids
(SCFA), hydrogen peroxide and bacteriocins. Lactobacilli
alter luminal pH by producing lactic acid. This inhibits the
growth of some bacteria and damages the outer cell membrane
of Gram-negative bacteria, including E. coli O157:H7,
Pseudomonas aeruginosa, and Salmonella enterica serovar
Typhimurium making them more vulnerable to other anti-
microbial molecules (44). Anti-microbial activity by L. johnsonii
NCC533 has been associated with lactic acid and hydrogen
peroxide production (45). Bacteriocins are small, ribosomally
synthesised, heat-stable peptides produced by many species of
bacteria which function to inhibit the growth of (bacteriostatic),
or kill (bactericidal), other bacteria (46). Bacteriocins produced by
Gram-positive bacteria generally exert their antibiotic effects by
destabilisation of membrane function, typically against other
Gram-positive bacteria, though some Gram-negative bacteria
may also be susceptible (47). Lactobacillus strains produce
SCFAs including acetate, propionate and butyrate, which have
been shown to shown to increase transepithelial electrical
resistance and stimulate the formation of tight junction in
Caco-2 intestinal epithelial cells in vitro via inhibition of the
NLRP3 inflammasome and autophagy (48). L. plantarum strains
FIGURE 1 | Probiotic mechanisms of intestinal barrier enhancement.
April 2022 | Volume 13 | Article 840245
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produce several bacteriocins which demonstrate anti-microbial
activity against food borne pathogens such as Listeria
monocytogenes as well as food spoilage bacteria are applied
in food production to reduce the use of chemical preservatives
(49). Corr et al. (50) demonstrated that Abp118 produced
by L. salivarius UCC118 in vivo protects mice against
L. monocytogenes infection. Two other bacteriocins analogous
to Abp118 have since been identified by comparative genome
hybridisation analysis from L. salivarius DPC6488: salivaricin
L and T. Both bacteriocins demonstrated inhibitory activity
towards L. delbrueckii subsp bulgaricus LMG 6901 with
salivaricin L additionally inhibiting L. monocytogenes NCTC
11994 and L. innocua DPC3572 (51).

Secretory IgA
The production of IgA is an important strategy utilised by the GI
tract to generate immune protection in a non-inflammatory
mode (52). IgA dimers (secreted by intestinal B cells located in
Peyer’s patches or lamina propria) interact with the polymeric IG
receptor (pIgR) on the basolateral surface of epithelial cells,
translocate to the surface of the epithelial cells and are released
as sIgA (53). sIgA primarily promotes the maintenance of
suitable commensal bacterial communities in the gut by
binding dietary antigens and potential pathogens in the mucus
and down-regulating the expression of pro-inflammatory
bacterial epitopes on commensal bacteria (54). Furthermore,
sIgA enhances the intestinal barrier by blocking microbial
components involved in epithelial adherence, facilitating
intraepithelial defence against pathogens and microbial
products and enabling antigen sampling (55). In addition,
locally released IgA dimers function to remove micro-
organisms that have breached the epithelial barrier by
facilitating their removal or promoting their clearance by
binding to the CD89 receptor on immune cells such as
dendritic cells, neutrophils and other phagocytes (56).
Although commensal bacteria are believed to induce sIgA
expression in the GI tract the mechanisms are not well
understood, although there appear to be differences in the
microbes responsible for small intestine and large intestine
sIgA induction (57). Various Lactobacillus strains including L.
paracasei MCC1849, L. gasseri SBT2055, and L. plantarum AYA
are known to increase sIgA levels in the small intestine (58–60).
In a clinical trial of children 12 to 24 months old,
supplementation with L. plantarum IS-10506 increased sIgA
faecal titres and a significant positive correlation was observed
between this and TGF-b1/TNF-a ratios (61). The authors
propose a probiotic induced immune activation of TGF-b1,
which in turn increases the production of sIgA.

Epithelial Cell Barrier
As previously described, IECs form a monolayer of cells which
act as a physical barrier between the external environment of the
gut lumen and the host’s immune system. The integrity of this
barrier is ensured by tight junctions (TJ) which are multi-protein
complexes that bind the cells tightly together as well as adherens
junctions, gap junctions and desmosomes. TJs are located
towards the apical side of the epithelial cells. They consist of
Frontiers in Immunology | www.frontiersin.org 5
transmembrane proteins (claudin, occludin, and junctional
adhesion molecules) which interact extra-cellularly with similar
proteins of TJs in neighbouring cells and intra-cellularly with the
cells own cytoskeleton via zonula occludens (ZO) proteins and
filamentous actin (62). Loss of TJ integrity has been observed in
chronic inflammatory disease, and mechanisms of disrupting TJ
proteins in order to breach the GI barrier have been observed in
infection by enteric pathogens such as C. difficile, E. coli,
Salmonella Typhimurium, C. rodentium, Vibrio cholera among
others (62). It has been demonstrated that L. rhamnosus GG
ATCC 53103 up-regulates ZO-1, claudin and occludin
expression in Caco-2 cells (63). This probiotic strain has been
observed to increase levels of ZO-1 expression and enhance
distribution of claudin-1 protein as a protective mechanism
against enterohemorrhagic E. coli O157:H7 infection (64).
Increased expression of ZO and occludin was also observed
using various L. plantarum strains (L. plantarum WCSF1,
CGMCC 1258, and MB 452) (65–67). L. plantarum WCSF1
administration into the duodenum of healthy human subjects
increased ZO-1 and occludin staining in the vicinity of TJ
structures via activation of TLR-2 (65). The addition of a TLR-
2 agonist PCSK to Caco2 monolayers in vitro increased staining
of occludin in TJ regions and was protective against epithelial
barrier disruption. TLR-2 ligand binding leads to PKC activation
which has been demonstrated to cause translocation of tight
junction components (68) thereby it is likely that barrier integrity
is enhanced by alterations to composition of tight junction
proteins rather than an increase in these proteins. Lactobacillus
species may also stabilise adherens junctions by increasing
expression of E-cadherin, as well as by strengthening the E-
cadherin/b-catenin complex (which connects adherens junctions
to the cytoskeleton) via enhanced phosphorylation of b-catenin
(69). In a clinical study of small intestine barrier function, biopsy
samples demonstrated that L. plantarum strain TIFN101 and to
a lesser extent L. plantarum WCFS1 and CIP104448, modulated
an increase in gene expression of TJ and adherens junction
proteins (70).

Competitive Resistance
Lactobacilli also aid intestinal barrier resistance to invading
pathogens by competing for binding sites on IECs,
glycoproteins in the mucus layer or to the plasminogen of
extracellular matrix (71). In order to facilitate the necessary
interactions with host cells, Lactobacillus species display
various different components on their outer surface. These
may include cell wall proteins, S-layer proteins, pili proteins,
and moonlight proteins (72) (see Figure 2). These surface
proteins facilitate adhesion of Lactobacilli to the host, for
example LPXTG proteins found in several Lactobacillus strains
are cell surface proteins covalently bound to the peptidoglycan
layer and can bind to both mucus and epithelial cells (73). Several
Lactobacillus strains possess a crystalline, glycoprotein surface
layer, also known as the S-layer, non-covalently anchored to the
peptidoglycan cell wall (74). The S-layer S-proteins of L.
acidophilus ATCC 4356 have demonstrated anti-viral activity
against alphavirus and flavivirus infection of 3T3 cells by
blocking pathogen adhesion to C-type Leptin receptors
April 2022 | Volume 13 | Article 840245
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(DC-SIGN) an attachment factor which strongly promoted viral
infection (75). Further work is required to elucidate the
mechanism for this, which may be multi-faceted, though the
time-dependant aspect of the anti-viral function may indicate
that S-layer proteins are activating downstream anti-viral
signalling pathways.

Pili are long protein structures, first observed in a non-
pathogenic bacteria in L. rhamnosus GG, which protrude from
the bacterial cell playing a major role in adhesion to the
epithelium. In L. rhamnosus GG (ATCC 53103) SpaC pili have
been demonstrated to out-compete the pathogenic Enterococcus
faecium (76).

Moonlighting proteins are multifunctional proteins in which
one polypeptide chain performs more than one unrelated
biochemical or biophysical function (77). In Lactobacilli,
moonlighting proteins may have a primary function as
intracellular proteins but are also found on the cell surface
where they facilitate adhesion, for example, L. plantarum 299v
(78), L. acidophilus (79), L. reuteri ZJ617 (80), display GAPDH
on their surface to mediate adhesion and colonisation of the GI
tract. So far in the case of L. plantarum 299v it has been
demonstrated that this results in competitive exclusion and
displacement of pathogenic bacteria (81). The mechanism for
the secretion of moonlighting proteins to the cell surface has not
yet been elucidated.

L. rhamnosus R0011 and L. acidophilus R0052 adhere to Hep-
2 and T84 intestinal cell lines in vitro preventing the binding of
enterohemorrhagic E. coli and enteropathogenic E. coli (82). In
Caco-2 cells, various strains of L. reuteri (LR5, LR6, LR9, LR11,
LR19, LR20, LR26, and LR34) have been shown to adhere and
inhibit and displace the binding of E. coli ATCC 25922, S. Typhi
Frontiers in Immunology | www.frontiersin.org 6
NCDC 113, L. monocytogenes ATCC 53135, and E. faecalis
NCDC115 (83). It should be noted that competition for
binding sites is species and strain -specific; L. rhamnosus
ATCC 53103, L. gasseri DSM 20243, L. casei ATCC 393 and L.
plantarum ATCC 14917 pre-treatments did not block
enterohemorrhagic E. coli binding to human colon epithelial
cell line C2BBe1 cells (although the L. rhamnosus strain
prevented internalisation of E. coli into the cell line) (84). In a
chronic stress model in vivo, pre-treatment with L. helveticus
R0052 and L. rhamnosus R0011 reduced commensal adherence
and translocation (85). Interestingly, in a hemorrhagic shock
model in vivo, L. rhamnosus LMG P-22799 but not L. fermentum
NumRes2 reduced bacterial translocation and cytoskeleton
rearrangement despite both strains displaying similar pathogen
exclusion properties in vitro in Caco2 cells (86). Indeed, L.
fermentum NumRes2 increased bacterial translocation,
primarily Lactobacillus spp., to the spleen highlighting the need
for careful characterisation of the effects of individual.
LACTOBACILLUS SPP. AND
GASTROINTESTINAL INFECTION

Understandably, the beneficial impact on gut health is one of the
most widely studied topics in probiotic research. As discussed in
the previous section, Lactobacilli protect the intestinal barrier
from infection by promoting mucus production and barrier-
related proteins, secreting anti-microbial substances such as
SCFAs, bacteriocins and hydrogen peroxide which inhibit the
growth of or kill pathogens, by modulating the host’s immune
response to pathogens, and preventing adherence of pathogens
FIGURE 2 | Representation of the Lactobacillus cell surface structure including important effector molecules.
April 2022 | Volume 13 | Article 840245
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and competing for binding sites. Thus, Lactobacilli are capable of
preventing intestinal damage caused by certain bacterial
infections. Lactobacillus probiotics have been demonstrated to
inhibit the development of infection by pathogenic bacteria, such
as C. difficile and C. perfringens (87), Campylobacter jejuni (88),
S. Enteritidis (89), E. coli (90), Staphylococcus aureus (91), and
Yersinia (92), among others. Two major GI disorders resulting
from infection, H. pylori infection and antibiotic-associated
diarrhoea, have been shown to greatly benefit from
Lactobacillus probiotics and are outlined below.

H. pylori Infection and Lactobacilli
H. pylori infection is one of the most common bacterial
infections in the world with more than half of the global
population infected; though prevalence ranges from 24% in
Oceania to 70% in Africa (93). H. pylori infects the epithelial
lining of the stomach causing disorders such as peptic ulcer
disease, chronic gastritis, and gastric cancer although many
infected individuals are asymptomatic (94). Twenty percent of
infected patients develop symptomatic gastritis, gastric or
duodenal ulcers, gastric adenocarcinoma, or non-Hodgkin’s
gastric lymphoma. The current recommended treatment for H.
pylori infection involves multiple antibiotic drugs as well as a
proton pump inhibitor however the effectiveness of this
treatment is decreasing as H. pylori antibiotic resistance rises.
The addition of a Lactobacillus probiotic (L. casei DN-114 001
(OAC-LC) and L. casei Shirota separately) and an L. acidophilus
LB postbiotic have been shown to improve the efficacy of this
therapy in various randomised controlled trials (95–97), however
some trials have found no or only slight beneficial effects (98–
101). Although the probiotic L. johnsonii NCC533 failed to
eradicate H. pylori infection when administered alone, it did
decrease inflammatory scores and urea breath test (used for the
diagnosis of H. pylori infection) values (102, 103).

Cell-free spent culture supernatants (CFCS) derived from L.
casei Shirota exhibited pH-dependant bactericidal activity
against H. pylori in vitro (104). The CFCS of L. johnsonii
NCC533 and L. acidophilus LB both resulted in the loss of H.
pylori viability (105–107). Furthermore, the CFCS from these
three Lactobacillus strains resulted in altered morphology of H.
pylori bacteria to U-shaped or coccoid forms which are dormant
forms of the bacteria with the coccoid form being less capable of
colonising and inducing inflammation (108, 109). L. johnsonii
NCC 533 and L. casei Shirota are also known to produce
bacteriocins which are active against H. pylori (110). H. pylori
is a spiral-shaped bacterium with multiple flagella allowing it to
swim in the gastric mucus layer and interact with epithelial cells,
an ability which is required for colonisation in the stomach (111).
L. casei Shirota has been demonstrated to cause H. pylori to lose
its flagellar motility due to transformation into dormant forms
with no flagella and also by secretion of small anti-microbial
compounds which inhibit swimming ability (104). Similarly, L.
johnsonii NCC 533 also secretes compounds that inhibit the
swimming ability ofH. pylori (112). In order to survive in the low
pH of the stomach,H. pylori expresses urease as a surface protein
to neutralise the surrounding acidic environment. CFCSs from L.
acidophilus LB and L. johnsonii La1 have been demonstrated to
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reduce urease activity of H. pylori (105, 106). In terms of
adherence, L. acidophilus CFCS prevented the adhesion of H.
pylori onto human HT-29 cells resulting in the death of adhering
cells and reducing the urease activity of remaining adherent cells
causing their lysis (105).

Antibiotic-Associated Diarrhoea
and Lactobacilli
Antibiotic-associated diarrhoea (AAD) results from disruption
of the normal microbiota of the gut by antibiotics with symptoms
ranging from mild diarrhoea to more serious disease like
pseudomembranous colitis (PMC) (113). AAD occurs in 5-
30% of patients receiving antibiotics either during antibiotic
therapy or up to 2 months after cessation of treatment. One of
the major pathogens associated with AAD is C. difficile,
responsible for 10-30% of normal AAD cases and 90-100% of
severe cases such as PMC (114). Although other microbes
including C. perfringens, S. aureus and Klebsiella oxytoca are
associated with this disorder, they are not common (113). As the
cause for AAD is known to be disruption of the normal intestinal
microflora, and also due to the fears surrounding anti-microbial
resistance, recent therapeutic research has focused on the use of
probiotics or faecal microbiota transplantation to restore
microbial equilibrium (115, 116). Though the mechanism of
action of probiotics is not explicitly known in this case their
efficacy seems to be maintenance of gut flora, out-competing
pathogenic bacteria, preservation of intestinal barrier function
and potentially immunomodulation. Treatment with several
Lactobacillus strains including L. rhamnosus GG (ATCC
53103) and L. gasseri have been shown to be effective as a
preventive measure for AAD (117). However, the effects are
strain-dependent. A systematic review examined 51 randomised
controlled trials and found that L. rhamnosus GG was
significantly more effective than other probiotics, however L.
casei species were most effective against C. difficile infection
(118). Another recent review demonstrated similar results in
children concluding that L. rhamnosusGG (ATCC 53103) can be
safely given to prevent AAD and additionally to manage
symptoms of acute gastroenteritis (119).
LACTOBACILLUS SPP. AND
INTESTINAL INFLAMMATION

In humans, the immune system can be divided into the innate
immune system and the adaptive immune system. Innate
immunity is the first line of immune defence and is a non-
specific response which acts as an immediate reaction to
pathogens. Phagocytic cells such as natural killer (NK) cells,
macrophages, monocytes and neutrophils recognise pathogenic
targets and engulf and destroy them. Antigen presenting cells
(APC) such as dendritic cells (DC) maybe activated via the innate
response and in turn activate the adaptive immune response. The
adaptive immune response relies largely on activation and
differentiation of B and T cells. B cells recognise antigens via B
cell receptors and act by secreting antibodies (humoral immunity).
April 2022 | Volume 13 | Article 840245
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T cells recognise antigens via T cell receptors and differentiate into
T helper cells (Th; CD4+) or cytotoxic T cells (CD8+). Th cells
recognise antigen via MHC class I complexes and CD8+ cells do
this viaMHC class II complexes. Th cells differentiate into Th1 or
Th2 effector cells which activate and regulate macrophages (Th1)
and B cells (Th2) while CD8+ cells convert into cytotoxic T cells.
In the GI tract the immune system is made up of the epithelial
layer, the lamina propria and the gut associated lymphoid tissue.
The GALT is populated by B and T cells as well as plasma cells,
macrophages and M cells. APCs in Peyer’s patches take IgA
antigen from epithelial cells to activate T cells and also transport
it to lymphoid tissue of the lamina propria and mesenteric lymph
nodes. M cells present in Peyer’s patches of the small intestine
transport antigens, macromolecules, micro-organisms and inert
peptides from the gut lumen into the tissue via adsorptive
endocytosis. These antigens may then activate the innate and
adaptive immune systems.

As alluded to in the previous sections, Lactobacilli play an
immunological role within the GI tract of the host, strengthening
the intestinal barrier and conferring protection from potential
pathogens. Lactobacilli can interact with both the innate and
adaptive immune response systems via micro-organism-
associated molecular patterns (MAMPs) interacting with pattern
recognition receptors such as Toll-like receptors (TLRs),
nucleotide-binding oligomerization domain (NOD) receptors and
C-type lectins expressed on immune cells or on tissues including
intestinal epithelium (120). The Lactobacillus cell envelope
comprises several types of molecules which act as MAMPs
including the peptidoglycan multi-layer, teichoic acids
(lipoteichoic acid (LTA) bound to the cell membrane and wall
teichoic acid bound to the peptidoglycan layer), exopolysaccharides
(EPS) along with cell surface adhesion molecules previously
discussed (see Figure 2). The immunomodulatory effect of
Lactobacilli is achieved with the release of cytokines, including
interleukins (IL), tumour necrosis factors (TNF), interferons (IFN),
transforming growth factor (TGF), and chemokines from immune
cells (121). The inflammatory process depends on pro-
inflammatory versus anti-inflammatory cytokines and in this way
probiotics may act in an immunoregulatory or immunostimulatory
manner. Immunoregulatory probiotics decrease inflammatory
responses protecting the host against autoimmune diseases,
inflammatory bowel disease and allergy and are characterised by
IL-10 and regulatory T cell (Treg) production. IL-10 is an anti-
inflammatory cytokine produced by monocytes, T cells, B cells,
macrophages, NK cells and DCs to inhibit pro-inflammatory
cytokines, chemokines and chemokine receptors protecting
against intestinal inflammation. Immunostimulatory probiotics
defend the host against infection and cancer development
activating NK cells and developing Th1 cells via IL-12
production, and also defend the host against allergy by balancing
Th1 and Th2 production. Mounting evidence would suggest that
probiotic Lactobacilli have the potential to prevent or treat certain
inflammatory conditions (122).

The activation of specific immune receptors by MAMPs on
Lactobacillus species has been characterized to an extent.
Peptidoglycan of L. casei Shirota, L. johnsonii JCM 2012 and L.
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plantarum ATCC 14917 has been shown to down-regulate IL-12
production via TLR2 (123). Peptidoglycan from L. rhamnosus
CRL1505 demonstrated an enhancement of innate and adaptive
immune responses ameliorating the Th2 response when
administered nasally in mice (124). LTA of L. plantarum has
been shown to elicit an anti-inflammatory response in both
human and porcine intestinal epithelial cells via inhibition of
IL-8 (125, 126). The knockout mutant for the SpaCBA pilus of L.
rhamnosusGG demonstrated that not only are these pili essential
for adhesion but also the knockout demonstrated an increase in
IL-8 likely via LTA TLR2 signalling which suggests an
immunomodulatory role for this adhesion molecule (127). The
protective exopolysaccharide layer has also demonstrated
immunomodulatory capabilities with EPS from L. rhamnosus
RW-9595M inducing macrophage production of IL-10 and no
induction of TNF-a, IL-6, or IL-12 (128) and L. plantarum 14
EPS decreasing the IL-6 and IL-8 production in response to an
enterotoxigenic E. coli challenge in porcine epithelial cells (129).
In mice, EPS derived from L. delbrueckii subsp.bulgaricus
OLL1073R-1 fermented yogurt had an immunostimulatory
effect, activating natural killer (NK) cells and inducing IFN-g
production in the spleen (130).

Some immunomodulatory effects are mediated by the
metabolites of Lactobacillus, such as SCFAs, in particular,
propionate, acetate, and butyrate. These postbiotics bind to
specific receptors on intestinal epithelial cells to inhibit pro-
inflammatory activity and Treg suppressive effects of neutrophils
and macrophages (131–133). Indeed butyrate enemas have
demonstrated efficacy and become an accepted treatment for
diversion colitis though this is believed to be due to a relaxation
effect on smooth muscle (134).Lactobacilli are also capable of
producing antioxidants like glutathione (GSH) and can induce
reductions in oxidative stress. Two strains of L. bulgaricus (L.
delbrueckii subsp. bulgaricus B3 and A13) have been
demonstrated to reduce lipid peroxidation, increase
measurements of antioxidant enzymes, and reduce oxidative
stress in a rat model of colitis (135). In a mouse model of
gastric damage L. fermentum Suo significantly reduced
malondialdehyde (MDA; a measure of oxidative damage)
concentrations and serum concentrations of IL-6, IL-12, TNF-
a, and IFN-g (136). L. casei 114001 administered to rats
increased the antioxidant capacity of plasma, liver and
intestines and decreased MDA plasma concentration (137). In
healthy human subjects, L. casei capsules administered with
prebiotic inulin significantly decreased MDA and glutathione
disulphide (GSSG; another measure of oxidation) concentrations
and increased concentrations of antioxidant indicators: GSH,
total GSH (GSHt) and free sulfhydryl group (-SH) in the plasma
(138). Pre-treatment with L. acidophilus NCDC15 with inulin
and L. rhamnosus GG MTCC 1408 with inulin in a model of
colon cancer in mice lead to a reduction in MDA and an increase
in antioxidants GSH-reductase, GSH-peroxidase and superoxide
dismutase as well as fewer dysplastic changes (139).

Lactobacilli may also modulate the immune system by
secretion of proteinaceous compounds. Proteins p40 and p75
released from L. rhamnosus GG ATCC 53103 both activated the
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Akt signalling pathway, inhibiting TNF-a –induced apoptosis in
human and murine colonic epithelial cells and murine colon
explants (140). Pre-treatment with L. rhamnosus GG milk prior
to induction of dextran sulphate sodium –induced colitis in mice
significantly reduced colonic inflammation and injury,
suppressing cytokine-induced apoptosis and reducing H2O2-
induced disruption of TJs. Depletion of two soluble proteins
found in L. rhamnosus milk, p40 and p75, abolished these anti-
inflammatory effects (141). L. rhamnosus GG ATCC 53103
increased production of the heat-shock proteins HSP25 and
HSP72 in murine colon cells via secretion of soluble peptides
which function via activation of MAPK signal transduction
pathway (142).

There have been many reports of Lactobacilli influencing the
immune system while also enhancing the intestinal barrier. In
vitro, L. acidophilus PZ1138, L. fermentum PZ1162, and L.
paracasei LMG P-17806 induced expression of human b-
defensin-2 gene in Caco-2 cells via modulation of nuclear
factor kB (NF-kB) and the activator protein 1 (AP-1) resulting
in IL-8 expression (42). L. salivarius Ls33 peptidoglycan induced
anti-inflammatory IL-10 production, and stimulated Treg
responses via NOD2 rescuing symptoms in a tri-nitrobenzene
sulfonic acid (TNBS) -induced colitis murine model (143).
Enteral administration of L. rhamnosus GG decreased
inflammation in the developing mouse colon, attenuating pro-
inflammatory MIP-2 and TNF-a concentrations in an IL-10
receptor-dependent manner (144). In Caco-2 cells L. plantarum
WCSF1 has been shown to enhance ZO-1 trafficking to TJ
regions in a toll-like receptor (TLR)-2-dependent manner (65).
In a porcine intestinal cell line, L. rhamnosus GG ATCC 7469
pre-treatment increased ZO-1 and occludin protein expression
in a TLR-2-dependent mechanism and also attenuated
enterotoxigenic E. coli –induced increases in TNF-a via a
partly TLR-2-mediated mechanism (145).

Lactobacilli may interact with enterocytes, DCs, Th1, Th2 and
Treg cells in their immunomodulatory capacity in the intestine.
Studies in vitro and in vivo demonstrated that L. paracasei and L.
acidophilus strains induced early innate and adaptive immune
responses in developing mice and rats in terms of phagocytosis,
polymorphonuclear cell recruitment and TNF-a, IL-6, IL-10, IFN-g
production in a TLR-dependent mechanism (146). Homogenates
prepared from several probiotics including L. rhamnosus GG
ATCC53103, L. rhamnosus LC-705, L. acidophilus NCFB-Lb1748,
and L. bulgaricus ATCC 11842 have demonstrated the ability to
suppress peripheral blood mononuclear cell proliferation and L.
acidophilus homogenates also down-regulated expression of IL-2
and IL-4 (147). In a mouse model of colitis where IL-10-deficient
mice were infected with H. hepaticus, the combination of L.
paracasei 1602 and L. reuteri 6798 reduced mucosal inflammatory
cytokines TNF-a and IL-12 and also reduced intestinal
inflammation (148). In an in vitro model, L. sakei LTH681
induced the inflammatory cytokines IL-1b, IL-8 and TNF-a in
Caco-2 cells while L. johnsonii La1 failed to induce pro-
inflammatory cytokines and instead induced production of anti-
inflammatory TGF-b (149). Co-culture of ileal explants from
patients with Crohn’s disease with L. casei DN-114001 and L.
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bulgaricus LB10 resulted in decreased TNF-a expression as well as
decreased numbers of CD4+ T cells within the inflamed mucosa
(150). CFCS from L. acidophilus ATCC 4356, L. casei ATCC 334, L.
lactisATCC 11454 and L. reuteriATCC 55148 down-regulated IL-8
expression in humanHT-29 cells and had differing strain-dependent
efficacies in decreasing pro-inflammatory cytokines (IL-1b, IL-6,
TNF-a) and in increasing anti-inflammatory IL-10 production in
LPS-stimulated monocyte-derived macrophages (151).

Inflammatory bowel disease (IBD) is an example of an
intestinal inflammatory disease which may be modulated by
Lactobacilli probiotics. IBD is a chronic, relapsing and remitting
disorder characterised by inflammation of the GI tract with two
main classifications: Crohn’s disease and ulcerative colitis.
Although the cause of IBD is unclear, dysbiosis of the GI
microbiota is a feature of the disorder and it is believed
probiotics may have a therapeutic benefit by restoring
microbial balance and also by immunomodulation (152). Data
from both in vitro and in vivo studies in animal models of colitis
are extremely promising in terms of reducing inflammatory
markers and decreasing colitis severity (153–155), however the
same cannot be said for clinical trials of probiotics in IBD.
Although it would appear that probiotics have beneficial effects
in inducing remission and increasing remission times in UC
(156) this has not yet been demonstrated for CD (157). A meta-
analysis recently showed that L. rhamnosus GG displayed no
beneficial effects in IBD patients, though VSL#3 (a combination
of eight lactic acid bacteria strains - of which four are
Lactobacilli) was better than placebo in terms of a higher
remission rate and lower relapse rate (158). Similarly, another
recent meta-analysis and systematic review concluded that a
combination of Lactobacillus probiotics and prebiotics were
effective in UC, although probiotics in general were not
effective in CD (159). Further randomised, placebo controlled,
clinical trials will be required to clarify the role of Lactobacilli in
IBD and to elucidate the most beneficial strain, dose, and mode
of administration.
CONCLUSION AND
FUTURE PERSPECTIVES

There is increasing evidence to suggest that commercial and
clinical use of probiotics is outpacing proven science. A recent
study in healthy human subjects given probiotic supplements
indicated that the colonisation of the GI tract featured person,
region and strain -specific differences. In some individuals
colonisation did not occur with the GI tract demonstrating
colonisation resistance to the probiotics. The authors conclude
that considering the transient, individualised effect of probiotics,
the development of new personalised probiotic approaches is
merited (160).

Despite the ever-increasing prevalence of probiotic use, there
are also many limitations and unknowns (161–163). Data from
research trials on efficacy of probiotics in the treatment and
prevention of disease can often have conflicting results with
similar studies pointing to opposing conclusions. These
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confusing data are somewhat to be expected and may be
accounted for given the extremely complex nature of host –
probiotic – microbiota interactions. One must allow for the
unique individual differences in human microbiota
composition, due to age, health, diet etc., which may affect the
response to the intervention and may even account for adverse
effects. Risks associated with probiotic use are generally
concerned with the safety of vulnerable patient cohort such as
the elderly or the immunocompromised. Thorough elucidation
of mechanistic properties and host interactions will required in
order to determine the probiotic strains and required intake
levels required to achieve the desired health outcomes. It is also
of note particularly for probiotic use in healthy individuals, and
indeed for mechanisms requiring microbe-host interaction, that
evidence indicates that probiotics are unlikely to be capable of
maintaining colonisation in the host with any differences in
microbiota composition being transient and dependent on
continued probiotic intake. In terms of study design, it is often
the case that mechanistic observations are founded in in vitro cell
populations which cannot give the full picture of host and
microbiota interactions. These are not always supported by in
vivo observations in animal models which themselves may be
flawed given incompatibilities or inconsistencies between human
and animal microbiomes. On top of this the variety of available
and potential new probiotics is vast and, as we have seen,
beneficial effects can be species or strain specific and may
require combination with other probiotics or prebiotics to be
effective. Additionally, it is often the case that probiotic trials are
initiated and funded by components of the probiotic industry
who have commercial interests and may have a motive to
downplay adverse effects. Although systematic reviews and
meta-analyses of existing studies go some way in trying to
overcome biased or underpowered research and allow for
observation of overall trends, they are not themselves immune
from the introduction of bias. Large, long-term, multicentre
Frontiers in Immunology | www.frontiersin.org 10
randomised controlled trials of probiotics chosen based on
mechanistic information with specific beneficial outcomes for
specific human cohorts in mind and involving collaborations
with non-affiliated groups should be the aim to truly separate the
good from the ineffective or bad.

It is clear that we have a long way to go in understanding all of
the complexities of the microbiota and the effects of probiotic
bacteria for health. Far more in-depth clinical testing will be
required in order to substantiate the health claims of
commercially available probiotic health supplements. Further
elucidation of the modes of action of beneficial probiotics in
clearly defined subsets of populations will hopefully allow us to
make better predictions about efficacy, improve clinical trial
design and enable improvement in development of probiotic
health strategies. Expansion in the field of bacterial-derived
products i.e. postbiotics signals a more precise, effective and
safer future for the probiotic health market. In the interim, those
looking to improve their overall health by enhancing their GI
microbial complexity might find it more advantageous to focus
on consuming a healthy varied diet of grains, fruit, vegetables
and fermented foods such as miso, nattō, kimchi and sauerkraut.
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