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A B S T R A C T

We discuss different methods of sample size calculation for two independent means, aiming to provide insight
into the calculation of sample size at the design stage of a parallel two-arm randomised controlled trial (RCT).
We compare different methods for sample size calculation, using published results from a previous RCT. We use
variances and correlation coefficients to compare sample sizes using different methods, including

1. The choice of the primary outcome measure: post-intervention score vs. change from baseline score.
2. The choice of statistical methods: t-test without using correlation coefficients vs. analysis of covariance

(ANCOVA).
We show that the required sample size will depend on whether the outcome measure is the post-intervention

score, or the change from baseline score, with or without baseline score included as a covariate. We show that
certain assumptions have to be met when using simplified sample size equations, and discuss their implications
in sample size calculation when planning an RCT. We strongly recommend publishing the crucial result “mean
change (SE, standard error)” in a study paper, because it allows (i) the calculation of the variance of the change
score in each arm, and (ii) to pool the variances from both arms. It also enables us to calculate the correlation
coefficient in each arm. This subsequently allows us to calculate sample size using change score as the outcome
measure. We use simulation to demonstrate how sample sizes by different methods are influenced by the
strength of the correlation.

1. Background

Sample size calculations for a parallel two-arm trial with a con-
tinuous outcome measure can be undertaken based on (i) a pre-speci-
fied difference between arms at the post-intervention endpoint and (ii)
an estimate of the standard deviation (SD) of the outcome measure. If
the outcome variable is also measured at baseline, an alternative out-
come measure is change from baseline instead of the post-intervention
measure. Use of this alternative outcome measure would result in a
different power calculation from that obtained using the post-inter-
vention as the outcome measure. It is possible to carry out a power
calculation based on analysis of covariance (ANCOVA) where the
baseline measure is included as a covariate in the analysis.

Sample size calculations typically use published results from trials
similar to those under consideration. We use results from a published
paper for the MOSAIC trial [1] to compare different methods for sample
size calculation. We examine the assumptions made by each method for
calculating sample size, and discuss the implications of these

assumptions when calculating the required sample size for a new RCT.
We aim to provide insight into sample size calculations at the design
stage of an RCT.

We introduce the notion of change scores, and show how to derive
variances of these change scores along with related correlation coeffi-
cients in Section 3, using published results. We then calculate and
compare sample sizes using different methods in Section 4. A descrip-
tion of the simulation of different strengths of the correlation is pre-
sented in Section 5, with the aim of investigating its influence on the
calculation of sample sizes using different methods. Section 6 discusses
simplified sample size equations when certain assumptions are met.
Finally, we consider implications in sample size calculation when
planning an RCT in Section 7.
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2. Method

2.1. Published results of the MOSAIC trial

The MOSAIC trial is an RCT using continuous positive airway
pressure (CPAP) for symptomatic obstructive sleep apnoea. The trial
randomised 391 patients between two treatment arms (CPAP vs. stan-
dard care). It has two primary outcomes at 6 months: change in
Epworth Sleepiness Score (ESS), and change in predicted 5-year mor-
tality using a cardiovascular risk score. The authors also reported the
energy/vitality score (referred to as the “energy score” hereafter) of the
36-item short-form questionnaire (SF-36). The change in SF-36 energy
score at 6 months is a secondary outcome of the MOSAIC trial, and an
investigator might conduct another RCT using it as the primary out-
come. The online supplement of the MOSAIC paper [1] states that all
data were analysed using multiple variable regression models adjusting
for the minimisation variables and baseline value of the variable being
analysed.

Table 1 shows data concerning the SF-36 energy score, taken from
Table 4 in the MOSAIC paper [1]. The outcome measure is energy score
in the SF-36 questionnaire, measured at baseline and at 6 months post-
intervention. An increase in the energy score indicates an improvement
in health status. The table shows that the adjusted treatment effect (6.6)
is the same as the unadjusted treatment effect (10.8–4.2=6.6). The
baseline mean scores are similar in both arms, being 49.7 and 49.8,
respectively.

In the following sections, we show how to derive the variances of
the change scores and correlation coefficients between baseline and 6
month measurements for both arms, using the results reported in
Table 1 including “Mean change (SE)“.

2.2. Deriving the sample variance of the change score −Y Y( )1 0

We use generic notation in this paper, noting that the proposed
method is applicable to arbitrary continuous outcome measures.
Suppose the primary continuous outcome measure is Y , with Y0 and Y1

denoting Y at baseline and post-intervention, respectively. For simpli-
city, we will call Y0 the “baseline score”, Y1 the “post score”, and

−Y Y( )1 0 the “change score”.
Let sY

2
0 denote the sample variance of baseline score Y0, sY

2
1 denote

the sample variance of post score Y1, −s Y Y( )
2

1 0 denote the sample variance
of the change score −Y Y( )1 0 . Let sY0, sY1, and −s Y Y( )1 0 denote their cor-
responding standard deviations (SD). We show how to derive −s Y Y( )

2
1 0 in

each arm, for the purpose of calculating sample size.
Let −se Y Y( )1 0 denote the standard error (SE) of −Y Y( )1 0 , and N denote

the number of participants; −se Y Y( )1 0 can then be expressed

=− −se s N/Y Y Y Y( ) ( )
2

1 0 1 0

∴ = ⋅− −s se NY Y Y Y( )
2

( )
2

1 0 1 0

The SEs reported in Table 1 (which are 1.4 and 1.3 in the control

and intervention arms, respectively) are those results that allow us to
derive −s Y Y( )

2
1 0 using the relationship above.

For the control arm, using the formulation above, we have
= ⋅ = ⋅ =− −s se N 1. 4 168Y Y Y Y( )

2
( )
2 2

1 0 1 0 18.152. For the intervention arm, we
have = ⋅ = ⋅ =− −s se N 1. 3 171 17.00Y Y Y Y( )

2
( )
2 2 2

1 0 1 0 . These derived values

−s Y Y( )
2

1 0 of 18.152 and 17.002 are different in the two treatment arms;
therefore, we will need to use their pooled variance for the calculation
of sample size. Using the equation shown in the Appendix, the pooled
sample variance of −Y Y( )1 0 is

= − + −
+ −

= =−s
(168 1)18.15 (171 1)17.00

168 171 2
309.03 17.58p Y Y,( )

2
2 2

2
1 0

The calculation of −s Y Y( )
2

1 0 above requires the knowledge of “mean
change (SE)” reported in Table 1. The presence of r is implicitly ac-
knowledged, and we will use −s Y Y( )

2
1 0 to derive the value of r in the next

section.

2.3. Deriving correlation coefficient r between Y0 and Y1

This section shows how to use the variance sum law to derive the
correlation coefficient r between Y0 and Y1. The variance sum law states

= + −−s s s r s s2Y Y Y Y Y Y( )
2 2 2

1 0 0 1 0 1 (1)

Let rc and rt denote r in the control and intervention arms, respec-
tively. Substituting sY

2
0 , sY

2
1 , and our derived −s Y Y( )

2
1 0 into the variance

sum law above, we have =r 0.6925c and =r 0.6937t . Table 2 summarise
the sample variances and correlation coefficients for the exemplar
study. Here we have explicitly calculated the value of r using −s Y Y( )

2
1 0

derived in the previous section.
The derived rc and rt are very similar, being approximately equal to

0.7; therefore, we will use = = =r r r 0.7c t for the sample size calcula-
tion in the following sections. We note that if ≠r rc t , the sample size
method via ANCOVA in this paper will not be valid; in this example, the
values of rc and rt are very close, granting the validity of using ANCOVA
for sample size calculation. We will discuss the implication of different
values for rc and rt in later Sections.

3. Comparing different sample size calculations

The calculation of sample size will depend on whether the outcome
measure is to be the post score or the change score, without and with
baseline included as a covariate.

3.1. Sample size: t-test on post score Y1

Using Y1 as the outcome measure in our example, the pooled var-
iance of Y1 is (see Appendix)

= − + −
+ −

= =s
(168 1)22. 5 (171 1)20. 9

168 171 2
471.22 21. 7p Y,

2
2 2

2
1

For a two-sided significance level α at power − β1 , with pooled
variance of sp

2, the required number of patients per arm is approxi-
mately [2].

Table 1
SF-36 energy score at baseline and 6-month post-intervention, reproduced
using results from the MOSAIC trial.

Energy Control arm (N=168) CPAP arm (N=171)

Baseline mean score (SD) 49.7 (23.7) 49.8 (22.4)
6-month mean score (SD) 53.9 (22.5) 60.6 (20.9)
Mean change (SE) +4.2 (1.4) +10.8 (1.3)
Adjusted treatment effect (95%

CI)
+6.6 (+3.1 to +10.1)

p value p < 0.0001

CPAP, continuous positive airway pressure; SF-36, 36-item Short-Form health
survey; SD, standard deviation; SE, standard error; CI, confidence interval; N,
number of participants.

Table 2
Summary of sample variances.

Energy score Control arm
(N=168)

CPAP arm
(N=171)

Pooled

Variance of baseline score, sY0
2 23. 72 22. 42 23. 12

Variance of post score, sY1
2 22. 52 20. 92 21. 72

Variance of change score,

−s Y Y( 1 0)
2

18.152 17.002 17.582

Correlation between baseline
and post scores

0.6925 0.6937 –
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=
+− −

N
z z s

δ
2 ( )α β p1 /2 1

2 2

2 (2)

where = −δ μ μ2 1 is the target mean difference between the two
treatment arms, and where −z α1 /2 and −z β1 are the ordinates for the
standard normal distribution, ∼z N (0,1). If assuming equal variance
σ2, simply substitute sp

2 for σ2 in Equation (2).
In the exemplar considered by this paper, we use two-sided sig-

nificance level =α 0.05, and power − =β1 0.8, corresponding to
= =−z z 1.96α1 /2 0.975 , and = =−z z 0.842β1 0.8 , respectively.

In our example, the target mean difference is set to be the reported
treatment effect in Table 1, =δ 6.6. The variances of the two arms are
different, and we have calculated the pooled variance =sp

2 21. 72. The
required number of patients per arm is approximately

= + = ≈N
2 (1.96 0.842) 21. 7

6. 6
169.7 170

2 2

2

In the trial design stage, the characteristics of the planned RCT will
inevitably differ from those of a previously-published trial, and it is
therefore desirable to calculate sample sizes over a range of variances.
For example, assuming equal variance using = =σ s 22. 5X

2 2 2 and
= =σ s 20. 9Y

2 2 2 in Equation (2), the resulting sample sizes are =N 183
and =N 158, respectively. The pooled variance produces a modest
sample size =N 170. In practice, one may choose to calculate N using
the most conservative (i.e., the greatest) value of variances when de-
signing a new RCT.

3.2. Sample size: t-test on change score −Y Y( )1 0

When using change score −Y Y( 1 0) as the outcome measure, we can
still use Equation (2) to calculate N , using the pooled variance of

−Y Y( 1 0), −sp Y Y,( )
2

1 0 . We have derived =−s 17.58p Y Y,( )
2 2

1 0 in the previous
section; substituting the latter into Equation (2) gives

= + = ≈N
2 (1.96 0.842) 17.58

6. 6
111.4 112

2 2

2

For comparison, if we assume equal variance using = =σ s 18.15X
2 2 2

and = =σ s 17.00Y
2 2 2 in Equation (2), the resulting sample sizes are

=N 119 and =N 105, respectively. The pooled variance produces a
modest sample size =N 112. We have used this pooled variance

=−s 17.58p Y Y,( )
2 2

1 0 in the sample size calculation shown in Table 3.
We strongly recommend publishing resulting “mean change (SE)” in

a study paper, because it allows the calculation of −s Y Y( )
2

1 0 in each arm,
and to pool the variances from both arms. We note here that deriving

−s Y Y( )
2

1 0 does not required the knowledge of the correlation coefficient r
between Y0 and Y1, as long as the SE of −Y Y( )1 0 is reported. As shown in
previous sections, the derived −s Y Y( )

2
1 0 enables us to calculate r in each

arm. This subsequently allows us to calculate sample size using the
change score −Y Y( 1 0) as the outcome measure. We will use the derived
r to calculate N via ANCOVA in the next section.

3.3. Sample size: assumptions of ANCOVA on Y1 adjusting for Y0

When using Y1 as the outcome while adjusting for Y0, the sample size
N can be calculated via ANCOVA. Let τ2 and σ2 be the variances of Y0

and Y1, respectively. Let Y Y( , )i j i j0, , 1, , be the paired data of Y0 and Y1,
where =i 1, 2 represents the two treatment arms, and where

= …j N1, , represents each of the N patients.
If we assume Y Y( , )i j i j0, , 1, , follow a bivariate normal distribution,

then the distribution of Y Y( | )1 0 , which is Y i j1, , conditioned on Y i j0, , , is a
univariate normal distribution with a variance of −σ r(1 )2 2 , as shown
in the Appendix. We note that τ2, the variance of the baseline score Y0,
does not appear in the conditional variance of Y Y( | )1 0 . This relationship
indicates a variance deflation factor − r(1 )2 that can be used for sample
size calculation.

However, this variance deflation factor is only true under the as-
sumption of a bivariate normal distribution of Y Y( , )i j i j0, , 1, , . As stated
above, this means that the marginal distribution of Y0 is normal, and
that the marginal distribution of Y1 is also normal, hence the usual as-
sumed normality for a t-test is met. However, the marginal normal
distributions of Y1 and Y0 do not guarantee the bivariate normal dis-
tribution of Y Y( , )i j i j0, , 1, , . Therefore, the assumption of a bivariate
normal distribution of Y Y( , )i j i j0, , 1, , is a stronger assumption than the
assumption in a t-test for sample size, and can be violated in practice. It
is necessary to examine assumption of a bivariate normal distribution of
Y Y( , )i j i j0, , 1, , before applying the variance deflation factor in the sample
size calculation.

It is straightforward to visualise Y Y( , )i j i j0, , 1, , by plotting the data in a
two-dimensional space, with treatment arm on the horizontal axis, and
Y Y( , )i j i j0, , 1, , on the vertical axis. This visualisation will immediately
reveal whether the assumption of a bivariate normal distribution is
violated. It is possible that data will form two clusters corresponding to
the control and intervention arms, respectively, which therefore vio-
lates the assumption. Borm, Fransen et al. [3], used this relationship for
sample size calculation via ANCOVA, but the authors did not explicitly
discuss its assumption.

There are several other assumptions one must make before applying
the variance deflation factor − r(1 )2 . In this paper, we give mathe-
matical details in the Appendix and explicitly examine all the as-
sumptions, summarised below:

1. All pairs Y Y( , )0 1 , including all patients in both arms, follow a bi-
variate normal distribution. We recommend visualising the data to
examine whether this assumption is violated, as discussed above.

2. The values of the correlation coefficient r between Y0 and Y1 are the
same in both arms. This means that there exists no interaction be-
tween baseline score and the treatment arm. This assumption is
adequately met in our example, where ≈r 0.7 in both arms of the
trial.

3. The variances of Y1 , denoted σ2, are the same in both arms. We note
that the variance of Y0, denoted τ2, does not affect the variance
deflation factor, hence it does not have to take the same value in
both arms. This assumption is mildly violated in our example, be-
cause Table 2 shows that the pooled sY

2
0 and sY

2
1 are quite similar,

being 23. 12 and 21. 72, respectively. The resulting sample size by
ANCOVA shown in Table 3 should still be a reasonable estimate, due
to these similar values of the pooled sY

2
0 and sY

2
1 .

If all of the above assumptions hold, then the conditional variance of
Y Y( | )1 0 is −σ r(1 )2 2 , indicating a variance deflation factor of − r(1 )2 .
Let N be the sample size (i.e., the number of patients in each arm) by a
t-test on Y1, then the sample size by an ANCOVA on Y1 adjusting for Y0 is

= −N r N(1 )A
2 (3)

while achieving the same power as a t-test on Y1. Since − ≤r N N(1 )2 ,
ANCOVA always produces a smaller sample size than a t-test, illustrated
in the first row of Table 3.

In our example, the variance of Y1 in the control and intervention
arms is different (22. 52 and 20. 92, respectively), hence it does not meet
the assumption of equal variance above (#3).

Table 3
Comparing sample sizes using different outcome measures and statistical
methods.

Outcome N in each arm

ANCOVA t-test

Y1 87 (85) 170 (171)
( −Y Y1 0) – 112 (113)

N , number of patients in each arm. N calculated by equation are shown to-
gether with N produced by PASS software: N by equation (N by PASS).
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3.4. Comparing sample sizes using different methods

This section summarises and compares different methods for sample
size calculation. We discuss the following two factors:

1. The choice of the primary outcome measure: post score Y1 vs. change
score −Y Y( 1 0).

2. The choice of statistical methods: t-test without using r vs. ANCOVA.

In all sample size calculations in this paper (including those for
which the results are shown in Table 3), we have used the target mean
difference =δ 6.6, two-sided =α 0.05, allocation ratio= 1, achieving
80% power. All sample sizes are produced using the corresponding
pooled variance derived in this paper. We used the PASS 15 system
(NCSS, LLC) to validate our sample size calculation by equations, shown
as “(N by PASS)” in Table 3, and where “N by equation” refers to our
derived N in previous sections. The algorithm implemented by the
PASS software uses Borm, Fransen et al. [3], in its reference for sample
size via ANCOVA, and its results (“N by PASS”) are similar to the “N by
equation”.

The efficiency (i.e. smaller N while maintaining the same statistical
power) gained in ANCOVA by using r comes from making strong as-
sumptions. We have used Equation (3) from Section 4.3 (i.e., sample
size via ANCOVA) in Table 3, but we note that its assumptions are not
fully met in individual arms, and therefore one should not directly use
the variance of individual arms for the sample size calculation in AN-
COVA. In this instance, our approach is to use the pooled variance of
both arms in the sample size equation via ANCOVA. Acknowledging its
limitation in practice, one can produce sample sizes using a range of
variances to gain a better sense of the required sample size.

In Table 3, we have used =r 0.7 for sample size via ANCOVA, as
stated previously. In both the “t-test” and “ANCOVA” methods, we have
used the pooled variance =sp

2 21. 72 for the t-test on Y1, and
=−s 17.58p Y Y,( )

2 2
1 0 for the t-test on ( −Y Y1 0).
In the example corresponding to the results shown in Table 3, AN-

COVA produces the smallest sample size, while use of a t-test on Y1

produces the largest. Calculating sample size via a t-test for outcome Y1

does not consider the correlation r between Y0 and Y1, hence will always
yield a sample size larger than that obtained when using an ANCOVA
(which involves the use of the value of r). However, N via a t-test for
outcome ( −Y Y1 0) is not always larger than N via ANCOVA, depending
on the strength of the correlation r and meeting the assumptions pre-
sented earlier.

4. Simulated sample sizes at different values of r

We here simulate different values of r , and then compare the sample
sizes calculated using different methods. The pooled variances sY

2
0 , sY

2
1 ,

and −s Y Y( )
2

1 0 are used in all simulations in this section. The variance sum
law shown in Equation (1) indicates that we have the following two
options for simulation when varying the value of r :

Option 1: Keeping the variance of the change score (i.e., −s Y Y( )
2

1 0 )
fixed at the derived value of 17.582. The implication is that sY

2
0 and sY

2
1

are allowed to vary according to r .
Option 2: Allowing the variance of the change score to vary with r ,
while keeping sY

2
0 and sY

2
1 fixed at the derived values, 23. 12 and

21. 72, respectively.

We show the simulated sample sizes of these two options above in
the following sections. The simulated results using both options are
shown in Table 4 below, and are plotted in Fig. 1 and Fig. 2. The same
parameter values as presented in Table 3 are used for simulation
throughout this section.

4.1. Option 1: keeping the variance of the change score fixed

Fig. 1 compares sample sizes obtained using option 1 above using
different methods at different values of r . Sample size N via a t-test for
outcome Y1 is shown in long-dashed line, calculated using the equation
in Section 4.1. Sample size N via a t-test for outcome ( −Y Y1 0) is shown
in short-dashed line, calculated using the equation in Section 4.2. The
value of N produced by both above options is not influenced by the
correlation r , hence remains the same at different values of r . In con-
trast, the values of N for outcome Y1 via ANCOVA, produced by
Equation (3) in Section 4.3, heavily depend on the value of r ; the larger
the value of the correlation r , the smaller the resulting value of N .

The results shown in Table 3 correspond to values of N at =r 0.7,
where the value of N obtained via ANCOVA is smaller than the value of
N obtained via a t-test on the outcome ( −Y Y1 0). However, N by AN-
COVA becomes larger than N by a t-test ( −Y Y1 0) once r decreases to
values below 0.6, as shown in Fig. 1. The value of N obtained via a t-test
on the outcome Y1 remains the largest among the three methods at all
values of r .

4.2. Option 2: varying the variance of the change score according to r

Alternatively, we can allow the values of −s Y Y( )
2

1 0 to vary according to
r , while keeping the values of sY

2
0 and sY

2
1 fixed in Equation (1). Fig. 2

shows the resulting sample sizes obtained by the three different
methods, to be compared with Fig. 1. In Fig. 2, the resulting N via
ANCOVA remain the same as those shown in Fig. 1, but N via a t-test for
outcome ( −Y Y1 0) are different from those in Fig. 1 due to varying

−s Y Y( )
2

1 0 by the values of r .
Fig. 2 also provides a convenient way of assessing the assumption of

equal variance required in Equation (4). If the assumption that Y0 and Y1

have the same variance is met, the long-dashed line in Fig. 2 (re-
presenting the value of N obtained via a t-test on Y1) and the short-
dashed line (representing the value of N obtained via a t-test on −Y Y1 0)
will cross at =r 0.5. These two lines cross at =r 0.53 in Fig. 2, in-
dicating this assumption is only mildly violated.

5. Simplified sample size equations under assumptions

5.1. The variance sum law when assuming equal variance

Assuming Y0 and Y1 have the same variance σ2, the variance sum law
(Equation (1)) can be simplified to

= + − = −−s σ σ r σ r σ2 2 (1 )Y Y( )
2 2 2 2 2

1 0 (4)

This means that when −Y Y( 1 0) is the outcome measure, its variance
deflation factor is − r2(1 ), assuming that Y0 and Y1 have an equal
variance σ2. This variance deflation factor gives us a simplified
Equation (4) for sample size. Let N be the sample size (i.e., the number
of patients in each arm) obtained by a t-test on Y1; then a t-test on

−Y Y( 1 0) will require − r N2(1 ) patients to achieve the same power,
assuming equal variance of Y0 and Y1.

Since − >r N N2(1 ) , if >r 0.5, and vice versa if <r 0.5, then
Equation (4) also shows that calculating sample size using a t-test on

−Y Y( 1 0) will require fewer patients than would be obtained were a t-
test on Y1 used, if >r 0.5 and vice versa if <r 0.5. The two methods yield
the same number of patients if =r 0.5. We emphasise that this re-
lationship only strictly applies when Y0 and Y1 have equal variance σ2.
In practice, if sY

2
0 and sY

2
1 are sufficiently similar in value, Equation (4)

can still give a reasonable estimate of −s Y Y( )
2

1 0 , and hence give a rea-
sonable estimate of sample size. This is further illustrated by Fig. 2,
where the long-dashed and short-dashed lines cross at =r 0.53, a close
value to 0.5, indicating a mild violation of the assumption on equal
variance.

In our example, Table 2 shows that Y0 and Y1 do not have equal
variance, hence the above formula is not directly applicable. However,
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Table 2 also shows that the values of pooled sY
2
0 and sY

2
1 are quite similar,

being 23. 12 and 21. 72, respectively. In practice, one can use Equation
(4) to calculate −s Y Y( )

2
1 0 assuming sY

2
0 and sY

2
1 are the same, to be com-

pared with the derived =−s 17.58Y Y( )
2 2

1 0 using actual results. It turns out
that if = =s s 22. 0Y Y

2 2 2
0 1 , Equation (4) will yield =−s 17.04Y Y( )

2 2
1 0 , which

is quite similar to our derived =−s 17.58Y Y( )
2 2

1 0 .

5.2. Sample sizes when all assumptions are met

Let N be the sample size by a t-test on Y1. If all assumptions dis-
cussed in Section 4.3 and Section 5.1 are met, calculating sample size
via ANCOVA on Y1 while adjusting for Y0 will require − r N(1 )2 patients
in total, whereas using a t-test on −Y Y( 1 0) will require − r N2(1 ) pa-
tients.

Using − ≥r( 1) 02 , we have

− ≤ −r N r N(1 ) 2(1 )2 (5)

where equality occurs at =r 1. The left hand and right hand sides of
Equation (5) correspond to the sample size obtained via ANCOVA on Y1

while adjusting for Y0 and via a t-test on −Y Y( 1 0), respectively. In
practice, we always have <r 1; therefore ANCOVA on Y1 adjusting for Y0
always yields a smaller sample size than would be obtained using a t-
test on −Y Y( 1 0), if all assumptions hold. Fig. 2 in Section 5.2 also il-
lustrates Equation (5), where the short-dashed line showing N by t-test
on −Y Y( 1 0) is always above the solid line showing N by ANCOVA on Y1

adjusting for Y0, except at =r 1.

6. Discussion

6.1. The implications of correlation coefficient r

When designing a new RCT, one needs to consider whether the
duration of the planned trial will differ from that of previous trials. The
correlation between Y0 and Y1 is likely to decrease (i.e., a smaller r) for
an increased trial period, and vice versa.

In the example used in this paper, the derived correlation coefficient
r is similar in both treatment arms, being approximately 0.7. If the
correlation between Y0 and Y1 in the two treatment arms is different, one
will need to consider the interaction between the treatment arm and
baseline measure.

6.2. If “mean change (SE)” is not reported

If “mean change (SE)” is not reported for a study, we can calculate a
range of potential variances of −Y Y( 1 0) by setting a plausible range of
values of r , using the variance sum law, as shown in Section 3.3. The
simulation method shown in Section 5 can be used to compare sample
sizes obtained using different methods at different values of r , providing
a sense of the required sample size in the trial design stage.

6.3. Future work

In this paper we have used change score −Y Y( 1 0) as a choice of

Table 4
Simulated sample sizes at different values of r . “N by ANCOVA” produced by option 1 (plotted in Fig. 1) are the same as those produced by option 2 (plotted in
Fig. 2). “N by t-test on post score” remains at a constant value of 170 throughout. In contrast, “N by t-test on change score” by option 1 and 2 are different, and are
plotted in Figs. 1 and 2, respectively.

Correlation r 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N by ANCOVA 170 169 164 155 143 128 109 87 62 33 0
N by t-test on post score 170 170 170 170 170 170 170 170 170 170 170
N by t-test on change score (Fig. 1) 112 112 112 112 112 112 112 112 112 112 112
N by t-test on change score (Fig. 2) 363 326 290 254 218 182 146 110 73 37 0

Fig. 1. Comparing values of sample size N produced using different methods at different values of r , using the same parameter values as are shown in Table 3. The
values of −s Y Y( 1 0)

2 remain fixed for all values of r , resulting in a constant value of =N 112 via a t-test for outcome ( −Y Y1 0), shown by the short-dashed line. Fig. 1 is
intended to be compared with Fig. 2, where the values of −s Y Y( 1 0)

2 are allowed to vary according to the values of r .

L. Clifton et al. Contemporary Clinical Trials Communications 13 (2019) 100309

5



outcome measure without questioning its validity. In fact, one should
be cautious of using change score as the outcome measure, due to the
well-known statistical phenomenon of “regression to the mean”. This
will be investigated in a future paper.
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Appendix

Pooled sample variance

Let sX
2 and sY

2 denote the sample variance of the control and intervention arms, respectively. Let n and m denote the number of patients in the
control and intervention arms, respectively. The pooled sample variance is [4] p.349

=
− + −

+ −
s

n s m s
m n

( 1) ( 1)
2p

X Y2
2 2

The value of sp is between sX and sY . In the special case of equal variance = =s s σX Y
2 2 2, the pooled variance sp

2 is simplified to the shared variance
σ2.

Bivariate normal distribution

Here we use the more general symbols Y to denote the post-score, and X to denote the baseline score. Let r be the correlation coefficient between

Fig. 2. Similar to Fig. 1 above, except that the values of −s Y Y( 1 0)
2 are allowed to vary according to the values of r . Note that the range of the y-axis here is different from

that in Fig. 1.
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X and Y . The bivariate normal density is given by the expression [4] p.75

⎜ ⎟=
−

⎛

⎝
−

−
⎡
⎣⎢

−
+

−
−

− − ⎤
⎦⎥

⎞

⎠
f x y

πσ σ r r
x μ

σ
y μ

σ
r x μ y μ

σ σ
( , ) 1

2 (1 )
exp 1

2(1 )
( ) ( ) 2 ( )( )

X Y

X

X

Y

Y

X Y

X Y2 2

2

2

2

2

The marginal distribution of X and Y are N μ σ( , )X X
2 and N μ σ( , )Y Y

2 , respectively.

Conditional distribution of a bivariate normal distribution

The conditional density of Y given X is the ratio of the bivariate normal density to a univariate normal density [4] p.83. This ratio simplifies to

=
−

⎛

⎝

⎜
⎜

−
⎡⎣

− − − ⎤⎦
−

⎞

⎠

⎟
⎟

f y x
σ π r

y μ r x μ

σ r
( | ) 1

2 (1 )
exp 1

2

( )

(1 )Y X
Y

Y
σ
σ X

Y
| 2

2

2 2

Y
X

This is a normal density with mean + −μ r x μ σ σ( ) /Y X Y X and variance −σ r(1 )Y
2 2 . The former is the conditional mean, and the latter is the

conditional variance of Y given X . The conditional mean is a linear function of X . The conditional variance does not concern the baseline variance
σX

2 , and it decreases as r increases.
We note that if the joint distribution of X Y( , ) is bivariate normal, then the marginal distribution of X is normal, and the marginal distribution of

Y is also normal. However, the opposite is not true. That is, even if both X and Y are both normal, the joint distribution of X Y( , ) may not be
bivariate normal.

In practice, this means that if we observe either X or Y as being not normally distributed, then the joint distribution of X Y( , ) is not bivariate
normal, and therefore the conditional variance −σ r(1 )Y

2 2 does not apply. Even if we observe that both X and Y are normal, we still cannot ascertain
that the joint distribution of X Y( , ) is bivariate normal, hence the conditional variance −σ r(1 )Y

2 2 still may not apply.
In the above, we have implicitly assumed no interaction between baseline score and treatment group. In practice, this is another assumption to be

verified. If there is such an interaction, r will be different in both arms.
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