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Characterization of glucose
metabolism in breast cancer to
guide clinical therapy
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1Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao
University, Qingdao, China, 2Department of Anesthesiology, The Affiliated Hospital of Qingdao
University, Qingdao, China, 3Core Laboratory, The University of Hong Kong-Shenzhen Hospital,
Shenzhen, China

Background: Breast cancer (BRCA) ranks as a leading cause of cancer death in
women worldwide. Glucose metabolism is a noticeable characteristic of the
occurrence of malignant tumors. In this study, we aimed to construct a novel
glycometabolism-related gene (GRG) signature to predict overall survival (OS),
immune infiltration and therapeutic response in BRCA patients.
Materials andmethods: ThemRNA sequencing and corresponding clinical data of
BRCA patients were obtained from public cohorts. Lasso regression was applied to
establish a GRG signature. The immune infiltration was evaluated with the
ESTIMATE and CIBERSORT algorithms. The drug sensitivity was estimated using
the value of IC50, and further forecasted the therapeutic response of each
patient. The candidate target was selected in Cytoscape. A nomogram was
constructed via the R package of “rms”.
Results: We constructed a six-GRG signature based on CACNA1H, CHPF, IRS2,
NT5E, SDC1 and ATP6AP1, and the high-risk patients were correlated with
poorer OS (P=2.515× 10−7). M2 macrophage infiltration was considerably
superior in high-risk patients, and CD8+ T cell infiltration was significantly
higher in low-risk patients. Additionally, the high-risk group was more sensitive
to Lapatinib. Fortunately, SDC1 was recognized as candidate target and patients
had a better OS in the low-SDC1 group. A nomogram integrating the GRG
signature was developed, and calibration curves were consistent between the
actual and predicted OS.
Conclusions: We identified a novel GRG signature complementing the present
understanding of the targeted therapy and immune biomarker in breast cancer.
The GRGs may provide fresh insights for individualized management of BRCA
patients.
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Introduction

The International Agency for Research on Cancer (IARC) recently released its latest

estimates of the global cancer burden, with breast cancer defined as the number one

cancer in 2020 compared to 2018 (1). Breast cancer is an important reason for

cancer-associated deaths around the world, and is currently the first killer seriously

threatening women’s health. It is located in the first place of incidence and the second
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TABLE 1 Clinicopathological parameters of patients with BRCA in the
study.

Clinical
characteristic

TCGA
cohort

(N = 1,076)
N (%)

ICGC
cohort

(N = 1,039)
N (%)

GSE7390
cohort

(N = 198)
N (%)

Age

≦65 773 (71.84) 739 (71.13) 198 (100)

>65 303 (28.16) 300 (28.87) 0 (0)

Gender

Male 12 (1.12) 12 (1.15) –

Female 1,064 (98.88) 1,027 (98.85) –

Stage

I 183 (17.01) – –

II 608 (56.51) – –

III 242 (22.49) – –

IV 20 (1.86) – –

X 12 (1.12) – –

unknow 11 (1.01) – –

AJCC T

T1 281 (26.12) – –

T2 621 (57.71) – –

T3 133 (12.36) – –

T4 38 (3.53) – –

TX 3 (0.28) – –

AJCC N

N0 504 (46.84) – –

N1 361 (33.55) – –

N2 120 (11.15) – –

N3 74 (6.88) – –

NX 17 (1.58) – –

AJCC M
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place of mortality in female tumors (1, 2). Compared with early

breast cancer, the situation of advanced breast cancer is more

serious (3). The results of clinical studies have shown that 1 in

10 new patients is diagnosed with advanced breast cancer, and

20% to 30% of patients with early breast cancer will deteriorate

to advanced breast cancer (4). Among them, the median OS in

advanced BRCA patients is only 2 to 3 years, 5 years survival

rate is only about 25% (5). Because of its high aggressiveness,

targeted therapy is an interesting area of research to find non-

endocrine therapies for breast cancer. Despite preliminary

advances in targeted therapy, drug resistance is still a vital

clinical challenge in the failure of current therapy in breast

cancer. Therefore, the relatively optimal targeted therapies

require further research in BRCA patients (6).

Energy metabolism reprogramming is designed to accelerate

tumor cell growth and proliferation by regulating the process of

glucose metabolism, which has been considered to be a new sign

of cancer (7, 8). Glucose metabolism is the main pathway for

tumor cells to obtain ATP, including glycolysis and oxidative

phosphorylation (9, 10). Tumor cells generally have the

characteristics of unchecked proliferation, meaning that they need

abundant glucose to provide energy (11). In aerobic conditions,

normal cells obtain energy through mitochondrial oxidative

phosphorylation. While in the absence of oxygen, cells obtain

energy through glycolysis rather than mitochondrial metabolism

of consuming oxygen (12, 13). In the 1920s, Warburg found that

even under aerobic conditions, tumor cells were more energetic

in glycolysis to obtain ATP for metabolic activities (14). This

abnormal phenomenon of glucose metabolism was called aerobic

glycolysis, also known as Warburg effect (14). Hence,

understanding the abnormal energy metabolism of tumor cells is

of great significance in finding new anti-tumor therapies.

With the development of High-Throughput Sequencing

technology, genome databases of various diseases have been

established successively, enabling us to have a deeper

comprehending of genome variations (15, 16). Some clinical trials

have noticed that patients with a similar extent of progression may

show different outcomes and endings (17). Therefore, it is

necessary to search for effective biomarkers to assess and identify

potential breast cancer patients who are in high-risk circumstances.

Researchers have explored the influence of polygenic characteristics

on tumors, prompting that it can be used to assess prognosis and

identify patients at potential high-risk of malignancy (18).

Consistently, polygenic prognostic characteristics of primary

tumors may guide more specific treatment strategies (19).
M0 895 (83.18) – –

M1 22 (2.04) – –

MX 159 (14.78) – –

Vital status

Alive 928 (86.25) 935 (89.99) 142 (71.72)

Dead 148 (13.75) 104 (10.01) 56 (28.28)

Abbreviations: T, Tumor; N, Node (regional lymph node); M, Metastasis.
Materials and methods

Data source

The mRNA sequencing data and corresponding clinical

features of BRCA patients were derived from TCGA (https://
Frontiers in Surgery 02
portal.gdc.cancer.gov/) for training data. The TCGA cohort

consists of 1,109 BRCA samples and 113 adjacent normal

samples, among which 1,076 patients had complete follow-up

data, whose clinical information included Age, Gender, AJCC

TNM, Stage and Vital status. The clinicopathological features

were shown in Table 1. The validation data was obtained

from ICGC (https://dcc.icgc.org/) and GSE7390 cohorts

(https://www.ncbi.nlm.nih.gov/geo/). The TCGA, ICGC and

GEO databases were open access and publicly available, and

the study followed data access policies and published
frontiersin.org
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guidelines (20). Then, the gene sets of main hallmarks of

glycometabolism, including glycolysis and oxidative

phosphorylation, were retrieved from the Molecular Signatures

Database (MsigDB, http://www.gsea-msigdb.org/gsea/msigdb)

to obtain the glycometabolism-related genes (GRGs) (21).
Identification of GRG candidates

The Log2 normalization was performed for each gene in the

genomic expression spectrum. The “Limma” R package was

performed for differential analysis of mRNA expression data

to obtain the differentially expressed genes (DEGs) related to

glucose metabolism between breast cancer tissues and normal

breast tissues (False Discovery Rate (FDR) < 0.05, |Log 2 Fold

Change (Log FC)| > 1) (22). DEGs were related to the

prognosis of BRCA patients via univariable Cox analysis (P <

0.05). The “VennDiagram” package of R software was

performed to obtain the shared GRGs of the DEGs and the

Prognostic genes, and called as GRG candidates. Then, Gene

ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were

performed on candidate genes to identify the major biological

features and cell functional pathways by the R package of

“clusterprofiler” (23).
Construction and validation of a GRG
signature

Firstly, the least absolute shrinkage and selection operator

(LASSO) regression was performed with “Glmnet” package to

further narrow down the number of candidate genes (24).

Then, the R package of “Survival” was used for multivariate

Cox regression analysis to determine the best weighting

coefficient of candidate GRGs. The GRG signature contained

all the prognostic-related GRGs which are differentially

expressed. The expression levels of candidate genes were

linearly combined with the corresponding regression

coefficients of multivariate Cox regression analysis, and the

risk score of each patient was calculated using the following
TABLE 2 Details of candidates for constructing a GRG signature.

Gene Ensemble ID Location

CACNA1H ENSG00000196557.9 chr16: 1,153,241–1,221,771

CHPF ENSG00000123989.12 chr2: 219,538,947–219,543,787

IRS2 ENSG00000185950.8 chr13:109,752,698–109,786,568

NT5E ENSG00000135318.10 chr6: 85,449,584–85,495,791

SDC1 ENSG00000115884.9 chr2: 20,200,797–20,225,433

ATP6AP1 ENSG00000071553.15 chrX: 154,428,632–154,436,516

Abbreviation: HR, Hazard ratio.
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formula:

Risk score ¼
Xn

i¼1

Coef �Exp

(Coef is the regression coefficient of GRG candidates in

multivariate Cox regression, Exp is the expression level of GRG

candidates, and n is the number of GRG candidates, Table 2).

Furthermore, the GRG signature was applied to generate the

risk score for all BRCA patients including TCGA training cohort,

ICGC and GSE7390 validated cohorts, and they were divided

into high-risk and low-risk groups based on the median risk

score as the cut-off value. The principal component analysis

(PCA) was performed via “t-SNE” and “ggplot2” packages in

order to confirm the accuracy of grouping in the risk

prognostic model (25). ROC and Kaplan–Meier curves were

applied to evaluate the performance of the GRG signature.

Then, univariate and multivariate Cox regression analyses were

used to estimate the independent prognostic contribution of

the risk score of GRGs and other clinical characteristics.
Relationship between risk score of GRG
signature and clinical features

Each patient’s risk score was combined with their clinical

features based on their sample ID. We explored the relationship

between risk score and clinical features, including age, gender,

AJCC TNM and stage, with the help of the “limma” R package.
Analysis of tumor microenvironment and
GRG signature

We calculated the infiltration of immune cells and stromal

cells in tissues of BRCA patients who were in GRG signature,

and categorized them as tumor microenvironment (TME)

scores, including immune score and stromal score. The

potential correlation between risk score and TME score was

explored by ESTIMATE algorithm (26). The 22 kinds of tumor-
HR (95% CI) Coefficient P value

1.1735 (1.0517–1.3094) 0.1281 0.0042

1.2508 (1.0012–1.5626) 0.0016 0.0488

0.8202 (0.6860–0.9807) −0.1299 0.0297

1.2326 (1.0082–1.5070) 0.2311 0.0414

1.2257 (1.0528–1.4270) 0.1604 0.0087

1.3678 (1.0445–1.7912) 0.2888 0.0228
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infiltrating immune cells and 13 kinds of immune related function

between high-risk and low-risk groups were computed by

CIBERSORT algorithm and “GSVA” R package to further

explore the immune infiltration associated with our GRG

signature (27). Stemness scores containing DNAss and RNAss

were analyzed to understand the expression of stemness-related

markers in GRG signature by “ggplot” and “ggExtra” package.
Comparison of antineoplastic therapy
between the low-risk and high-risk
groups

The sensitivity of each patient to chemotherapy and targeted

drugs was estimated using the value of IC50 which was quantified

via the R package of “pRRophetic” (28). An important indicator

of drug effectiveness is half-maximal inhibitory concentration

(IC50), where a lower IC50 indicates a high antitumor potential.

Tumor mutational burden (TMB) is an emerging biomarker to

predict the therapeutic response of immune checkpoint inhibitors

(29). We obtained somatic mutation data with BRCA patients

from the TCGA database, and the TMB was calculated. The
FIGURE 1

Flow chart of a GRG signature in BRCA patients.
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correlation and survival analyses between risk score and TMB

were explored to predict effectiveness of immunotherapy.
Construction of PPI network and identify
hub gene

Firstly, we screened for differentially expressed genes between

high and low risk groups via the “limma” R package (FDR < 0.05,

|Log FC| > 1), and which was used to construct the protein-

protein interaction (PPI) network in the STRING database

(https://string-db.org) (30). Secondly, the PPI network was

imported into the Cytoscape (version 3.9.0). Finally, the Hub

gene with the highest Degree value was selected in Cytoscape

using the cytoHubba plugin for subsequent analysis (31).
Establishment and validation of a
predictive nomogram

A nomogram integrating the GRG signature, gender, age and

stage for predicting OS was constructed in TCGA cohort via the R

package of “rms” (32). Additionally, we plotted calibration curves
frontiersin.org
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(33), ROC curves and Cox regression analysis to examine how

accurate the nomogram is at forecasting the future health of the

patients for the OS probability at 1-, 5- and 10- years.
Immunohistochemistry of GRG
candidates

Immunohistochemistry images of these six GRG candidates

were obtained from the Human Protein Atlas (https://www.

proteinatlas.org/).
Statistical analysis

All statistical analyses were performed by R software (version

4.0.3, https://www.r-project.org/) and Perl software (version 5.

30.0–64bit, https://stawberryperl.com/). Survival curves

between groups were drawn by the Kaplan–Meier method and
FIGURE 2

Identification of GRG candidates in TCGA cohort. (A) Venn diagrams of DEGs a
Univariate Cox regression analysis of GRG candidates. (D) GO enrichment of

Frontiers in Surgery 05
the Log-rank test. Lasso and multivariate Cox regression

analyses were used to calculate regression coefficients and

establish a risk prognostic model. A predictive nomogram was

established based on the risk score of GRGs and clinical

features. Spearman’s correlation analysis was used to describe

the correlation between variables. All statistics were two-sided

tests, and P < 0.05 was defined as a statistically significant

difference.
Results

Identification of GRG candidates

We draw the flow chart to demonstrate our research ideas

more clearly (Figure 1). These 73 DEGs related to glucose

metabolism were obtained between 1,109 tumor tissues and

113 normal tissues (FDR < 0.05, |Log FC|> 1). After

univariate Cox regression analysis, 48 prognostic genes were
nd Prognostic genes. (B) The expression pattern of GRG candidates. (C)
GRG candidates. (E) KEGG enrichment of GRG candidates.
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found which were significantly correlated with the OS of

BRCA patients (P < 0.05). Taking the intersection of the

DEGs and the Prognostic genes in the TCGA training

cohort, we discovered the six GRG candidates (CACNA1H,

CHPF, IRS2, NT5E, SDC1 and ATP6AP1) and included in

subsequent analysis, as shown in Figure 2A.
FIGURE 3

Construction of a GRG signature in TCGA cohort. (A) Selection of the optima
optimal GRG candidates. (C) PCA based on risk score of GRGs. (D) Kaplan–Me
curves of 1-, 5- and 10-years OS. (F,G) Survival status of each patient. (H,I) U
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We detected significant downregulation of IRS2 and NT5E

in tumor tissues, whereas CACNA1H, CHPF, SDC1 and

ATP6AP1 were highly expressed in tumor tissues than in

normal tissues (Figure 2B). Candidate GRGs were categorized

into risk genes [Hazard Ratio (HR) > 1] and protective genes

(0 < HR < 1). Only IRS2 had a protective effect (HR = 0.820),
l GRG candidates in the LASSO analysis. (B) LASSO coefficients of the
ier survival curves between high-risk and low-risk groups. (E) The ROC
nivariate and multivariate Cox regression analyses.
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whereas CACNA1H, CHPF, NT5E, SDC1 and ATP6AP1 all

had risk effects (HR > 1) (Figure 2C). Moreover, we

performed GO and KEGG enrichment analyses to verify

whether the candidate genes are involved in glycometabolism.

It was determined that the GO term was related to the

glycosaminoglycan biosynthetic process and the

glycosaminoglycan metabolic process, and that the KEGG

term was related to Glycosaminoglycan biosynthesis-

chondroitin sulfate/dermatan sulfate (Figures 2D,E,

Supplementary Table S1).
Construction and evaluation of a GRG
signature

After LASSO algorithm to minimize the risk of overfitting, 6

GRGs were reserved, a GRG signature based on CACNA1H,

CHPF, IRS2, NT5E, SDC1 and ATP6AP1 was established to

evaluate the prognosis of each patient using multivariate Cox

regression analysis (Figures 3A,B). The formula for calculating

risk score was as follows: Risk score ¼ Pn

i¼1
Coef �Exp =

(0.1281 × Exp CACNA1H) + (0.0016 × Exp CHPF) + (−0.1299 ×
Exp IRS2) + (0.2311 × Exp NT5E) + (0.1604 × Exp SDC1) +

(0.2888 × Exp ATP6AP1).

In accordance with the median risk score, 1,076 BRCA

patients, 6 patients were deleted for missing candidate genes,

were divided into high-risk group (N = 535) and low-risk

group (N = 535) in the risk prognostic model. The PCA

confirmed that the risk score could be grouped significantly

(Figure 3C). The Kaplan–Meier curves showed that patients

in the low-risk group had a better OS than patients in the

high-risk group in TCGA training cohort (P = 2.515 × 10−7;

Figure 3D). The ROC curves were used to evaluate the

prognostic accuracy of the GRG signature, the AUCs of the

training cohort for predicting 1-, 5- and 10-years OS for

breast cancer were 0.625, 0.648, 0.630 (Figure 3E). The

survival status of the patients was shown in Figures 3F,G. As
TABLE 3 Univariate and multivariate Cox regression analyses for each clinic

Clinical feature Univariate analysis

HR 95% CI of HR P v

Age 1.0335 1.0190–1.0482 5.02

Gender 0.8546 0.1192–6.1295 0.

Stage 2.1507 1.7026–2.7166 1.32

T 1.5531 1.2536–1.9241 5.62

M 6.5438 3.6745–11.6537 1.77

N 1.6674 1.3905–1.9995 3.43

Risk Score 2.4876 1.6136–3.8350 3.69

Abbreviations: T, Tumor; N, Node (regional lymph node); M, Metastasis; HR, Hazard
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the risk score of GRG candidates increased, the mortality rate

also increased, and the life expectancy in the high-risk group

was shorter than in the low-risk group. The results of

univariate and multivariate Cox regression analyses

documented that the risk score was significantly associated

with the OS (P < 0.05; Table 3; Figures 3H,I), indicating that

GRG risk score may be more accurate than other clinical

variables and used to analyse prognosis of BRCA patients.
Validation of the GRG signature

After that, we validated the predictive ability of the GRG

signature in the ICGC cohort. The same formula as TCGA

cohort was used to calculate the risk score of each patient and

group them by the median risk score derived from the dataset,

and a separate high-risk group and a low-risk group could be

clearly identified by PCA (Figure 4A). There were better

outcomes for low-risk patients as compared to high-risk

patients in Kaplan–Meier curves (P = 4.305 × 10−2; Figure 4B),

which the AUCs of predicting 1-, 5- and 10-years OS were

0.654, 0.593, 0.604 in the ICGC validated cohort (Figure 4C).

Just as with the training cohort, the number of deaths increased

as patients’ risk scores increased (Figures 4D,E), and the risk

score could be used as an independent prognostic indicator

(Table 4; Figure 4F,G). In addition, we also performed

validation in the GSE7390 cohort and obtained consistent

results with the training cohort (Supplementary Figure S1).
Relationship between risk score and
clinical features

Even though gender and AJCC-M did not significantly

affect risk scores (Figures 5B,E), risk scores were correlated

with age, AJCC-T, AJCC-N and stage. Age-adjusted risk

scores of breast cancer were slightly higher for patients over

65 than for those under 65 (P = 0.048, Figure 5A). We see no
al feature (TCGA cohort).

Multivariate analysis

alue HR 95% CI of HR P value

× 10−6 1.0327 1.0178–1.0478 1.44 × 10−5

8758 – – –

× 10−10 1.6044 0.9680–2.6591 0.0667

× 10−5 0.9835 0.7349–1.3161 0.9107

× 10−10 1.5169 0.6712–3.4280 0.3165

× 10−8 1.1877 0.8886–1.5874 0.2452

× 10−5 1.9201 1.2206–3.0206 0.0048

ratio, 95% CI, 95% confidence interval.
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FIGURE 4

Validation of the GRG signature in ICGC cohort. (A) PCA based on risk score of GRGs. (B) Kaplan–Meier survival curves between high-risk and low-
risk groups. (C) The ROC curves of 1-, 5- and 10-years OS. (D,E) Survival status of each patient. (F,G) Univariate and multivariate Cox regression
analyses.

TABLE 4 Univariate and multivariate Cox regression analyses for each
clinical feature (ICGC cohort).

Clinical
feature

Univariate analysis Multivariate analysis

HR 95% CI
of HR

P
value

HR 95% CI
of HR

P
value

Gender 2.99 × 10−7 0–9.65 0.9944 – – –

Age 1.0246 1.0096–
1.0398

0.0012 1.0233 1.0082–
1.0385

0.0024

Risk score 1.3922 1.0392–
1.8649

0.0266 1.3356 0.9929–
1.7967

0.0558

Mei et al. 10.3389/fsurg.2022.973410
significant change in risk scores from T1 to T3, but T4 is

significantly higher than T3 (P = 0.00052, Figure 5C). The

higher risk scores were correlated with higher AJCC-N
Frontiers in Surgery 08
classification from N0 to N2 (P < 0.05; Figure 5D). The

patients who entered an advanced stage (stage III–IV) had a

higher risk score than those who were in the early stage (stage

I–II) (P = 0.0015; Figure 5F).
Analysis of tumor microenvironment and
GRG signature

This study investigated the association between glucose

metabolism scores and TME properties. The stromal (P < 2.2 ×

10−16; Figure 6A) and immune (P = 0.0019; Figure 6B) scores

of high-risk groups were significantly higher than those of

low-risk groups, defined as the characteristic of “hot tumor”

(34), indicating that tumor immune activity was stronger in
frontiersin.org
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FIGURE 5

Relationship of risk score and clinicopathological features, including (A) age, (B) gender, (C) AJCC-T, (D) AJCC-N, (E) AJCC-M and (F) stage.
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high-risk patients than in low-risk patients. Correlations among

the immune cell types are plotted in Figure 6C. As presented in

Figure 6D, infiltrating proportions of regulatory T cells (Tregs),

M0 Macrophages, M2 Macrophages and resting Mast cells were

apparently higher in high-risk patients, while infiltrating

abundance of naive B cells, Plasma cells, CD8+ T cells, resting

memory CD4+ T cells and resting Dendritic cells were

significantly increased in low-risk patients. Next, we explore

how immune-related functions differ between risk groups,

the enrichment scores of immune-related functions

including APC-co-inhibition, APC-co-stimulation, check-point,

Parainflammation, T-cell-co-inhibition, T-cell-co-stimulation

and Type-1-IFN-Reponse in the high-risk group were

markedly higher than these in the low-risk group (Figure 6E).

Additionally, we found no correlation between risk score and

DNAss (Figure 6F), yet an inverse correlation with RNAss

(Figure 6G).
Comparison of antineoplastic therapy
between the low-risk and high-risk
groups

As the risk score was associated with poor prognosis, we

explored the relationship between the risk score and drug

sensitivity. In chemotherapy drugs, low-risk score samples
Frontiers in Surgery 09
were more sensitive to Doxorubicin, 5-Fluorouracil, Etoposide

and Gemcitabine (Figures 7A–D). In targeted therapies, high-

risk samples were more sensitive to Dasatinib, Lapatinib and

Bortezomib, while low-risk samples were sensitive to Sunitinib

(Figures 7E–H). Tumor mutation burden (TMB) has been

recognized as a marker for identifying malignant patients who

may benefit from immunotherapy. We found that there was a

positive correlation between TMB and risk score, and the

high-risk group had higher levels of TMB (Figures 7I,J),

suggesting a better effect of immunotherapy. The low-TMB

group had a higher survival rate than the high-TMB group

(P = 0.001, Figure 7K). In addition, patients in the high-risk

group with high-TMB were at a disadvantage in survival

(P < 0.001, Figure 7L).
Screening of risk differential and hub
genes

A total of 175 risk differential expression genes (RDEGs) were

identified between high-risk and low-risk groups (FDR < 0.05,

|Log FC| > 1), of which were 55 up-regulated and 120 down-

regulated (Figure 8A). GO and KEGG analysis showed that these

175 RDEGs were significantly abundant in various roles. For Go

analysis, the top eight significantly enriched terms were collagen

fibril organization, peripheral nervous system development,
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FIGURE 6

Analysis of the GRG signature in tumor microenvironment, including (A) stromal cells, (B) immune cells, (C) correlations among the immune cells, (D)
22 kinds of tumor-infiltrating immune cells, (E) 13 kinds of immune related function, (F) DNAss and (G) RNAss.
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extracellular matrix organization, extracellular structure

organization, collagen-containing extracellular matrix, RAGE

receptor binding, glycosaminoglycan binding and long-chain

fatty acid binding (Figure 8B, Supplementary Table S2). The

enriched KEGG items were revealed in Figure 8C, including

IL-17 signaling pathway, Complement and coagulation

cascades, ECM-receptor interaction, Tyrosine metabolism,

Protein digestion and absorption, Tryptophan metabolism and

MAPK signaling pathway. Cytoscape software used Degree

algorithm to identify Hub gene (SDC1) from the PPI network

established by String database (Figure 8D, Supplementary

Table S3). We found a gender difference in the expression of

SDC1 in breast, adrenal_gland and adipose_tissue, which was

slightly higher in females than in males (Figure 8E). In

addition, SDC1 was more strongly expressed in patients under

65 years of age than in patients over 65 years of age in BRCA
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patients (Figure 8F), and the OS of high-SDC1was poorer

than that of low-SDC1 (Figure 8G). We also found that SDC1

expression varies widely among different types of breast

cancer, with Her2-enriched exhibiting among the highest

levels of expression (Figure 8H). There were more CD8+ T

cells in the low-SDC1 group, and more M2 macrophages in

the high-SDC1 group (Figure 8I).
Establishment and validation of a
predictive nomogram

Using the TCGA cohort of 1,076 patients with complete

clinical information, a prognostic nomogram was established to

predict OS of 1-, 5- and 10- years based on GRG signature and

independent prognostic parameters (Figure 9A). The calibration
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FIGURE 7

The GRG signature in the role of antineoplastic therapy, including (A) doxorubicin, (B) 5-fluorouracil, (C) etoposide, (D) gemcitabine, (E) dasatinib, (F)
lapatinib, (G) bortezomib and (H) sunitinib. (I,J) Correlations and difference of TMB between high-risk and low-risk groups. (K) Survival probability for
patients between high-TMB and low-TMB groups. (L) Survival probability for patients combining TMB with risk score.
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curves showed agreement between predicted and observed OS

(Figure 9B). The ROC curves indicated that the risk score was

valid in OS prediction, yet the nomogram showed a greater

advantage (AUCRisk= 0.636; AUCNomogram= 0.745; Figure 9C).

Consistently, Cox regression analysis also showed that the

predictive ability of nomogram is admirable (Figure 9D).
Expression validation of GRG candidates
in protein level

The Human Protein Atlas (HPA) is a well-known database

for detecting protein expression in various solid cancers (35).

We observed the immunohistochemistry of GRG candidates

through the HPA database to confirm the protein expression

of them in normal and breast cancer tissues. We found that

the protein levels of CACNA1H, CHPF, SDC1 and ATP6AP1

were higher in breast cancer tissues compared with normal

tissues, while the expression levels of IRS2 and NT5E were

comparatively lower in breast cancer tissues (Figure 10), and

the expression of them is consistent with mRNA level

(Figure 2B).
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Discussion

Currently, few studies have focused on the expression

patterns of GRGs and their role in predicting breast cancer

survival (36). Recent studies have shown that more and more

mRNAs have been identified as biomarkers of tumor

progression or prognosis, and the clinical significance of these

biomarkers has been confirmed (37–39). In our study, we

examined the relationship between GRGs expression level and

survival in BRCA patients. We developed a novel GRG

signature of six GRGs, including CACNA1H, CHPF, IRS2,

NT5E, SDC1 and ATP6AP1, to predict survival and guide

individual therapy in breast cancer. Univariate and

multivariate Cox regression analyses ensured the prognostic

value of the GRG signature.

Consistent with Prof. Pera (40), we found that CACNA1H

had high expression and high mutation rate in breast cancer.

CACNA1H is a T-type calcium channel gene whose

mutation can lead to hyperpolarization, resulting in channel

activation and massive calcium influx (41). The pathologic

opening of calcium channels leads to the continuous influx

of calcium ions, which affects the division and proliferation
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FIGURE 8

Screening and analysis of RDEGs. (A) Screening of RDEGs. (B) GO enrichment of RDEGs. (C) KEGG enrichment of RDEGs. (D) PPI of RDEGs and
identification of Hub gene. Expression difference of Hub gene, including (E) Gender, (F) Age and (H) different types of breast cancer. (G) OS
analysis of Hub gene. (I) Immune infiltration of Hub gene.
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of normal cells and causes the carcinogenesis of cells. CHPF is

a common glycosyltransferase involved in the production of

Chondroitin Sulfate in organisms (42). CHPF is highly

expressed in lung adenocarcinoma and can promote tumor

cell growth, invasion and metastasis, and inhibit tumor cell

apoptosis (43). More specifically, the role of CHPF in breast

cancer is to promote proliferation, invasion and migration

(44). IRS2 is an insulin-like growth factor-1 receptor (IGF-

1R) and insulin receptor signaling transmitter, which may be

involved in the PI3K-AKT pathway, leading to the

occurrence and progression of malignant tumors and

inhibition of apoptosis (45, 46). It is worth mentioning that

IRS2 is also closely related to the invasion and metastasis of

malignant cells (47). Therefore, IRS2 is expected to be a

potential target for antitumor therapy. CD73, encoded by

NT5E, is a glycosyl phosphatidylinositol-anchored cell

surface protein, also known as ECTO-5’-Nucleotide Enzyme

(NT5E), which regulates immunosuppressive adenosine

production and is an emerging checkpoint in

immunotherapy (48). Many studies have shown an
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association between increased CD73 expression and poor

prognosis in patients (49). Syndecan-1 (SDC1/CD138) is a

key cell surface adhesion molecule that is essential for

maintaining cell morphology and interaction with the

surrounding microenvironment (50). Researchers have found

that high expression of SDC1 was significantly associated

with adverse clinical outcomes of cancer (51). ATP6AP1

represents ATPase H+ transporting accessory protein 1 (52),

and mutations in the protein lead to an abnormal

glycosylation process (53). Wang et al. found that the

expression of ATP6AP1 was negatively correlated with CD8+

T and B cell infiltration, ATP6AP1 could induce

immunosuppression and immune escape, and may worsen

the prognosis of BRCA patients by regulating immune

infiltration (54). These results indicate that glycometabolism-

related genes will be promising targets in breast cancer.

Glucose metabolism may be involved in immune cell

infiltration in the tumor microenvironment, which contributes

to immunotherapy response. Hyperactivation of glucose

metabolism can lead to an acidic microenvironment, which
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FIGURE 9

Establishment of a nomogram based on GRG signature. (A) The nomogram integrating GRG risk score, gender, age and stage. (B) The calibration
curves for the probability of 1-, 5- and 10- years OS. (C) The ROC curves of nomogram, risk score and other clinicopathological characteristics.
(D) Cox regression analysis of nomogram.
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affects the function of immune cells and creates an immune

microenvironment conducive to tumor cell survival (55). As

we found, although BRCA patients in the high-risk group had

higher proportions of immune cells, including Tregs and M2

Macrophages, they had poorer overall survival. The large

amount of lactate produced by excessive glucose metabolism

can promote the differentiation of tumor-associated

macrophages into M2 subtype which against the anti-tumor

immunity in the tumor microenvironment (56, 57), and may

explain the above conclusion. In patients with low-risk group,

a higher infiltrating abundance of CD8+ T cells and resting

memory CD4+ T cells were found, which contributed to the

anti-tumor immunity and were positively correlated with

prognosis (58, 59). Stromal cells as an essential component of

the tumor microenvironment could secrete CCL-2, a

chemokine that promotes tumor cell migration, proliferation

and angiogenesis (60).

Besides, we investigated the sensitivity of chemotherapy and

targeted drugs in risk groups. The low-risk group was more
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sensitive to chemotherapy, while the high-risk group was

more sensitive to targeted therapy, such as Lapatinib.

Lapatinib was first approved by the FDA as a tyrosine kinase

inhibitor (TKI) in 2007 for the treatment of BRCA patients

who were HER2-positive/ER-negative/PR-negative (61, 62).

Previous study had shown that patients with a high level of

TMB had a better response to immunotherapy (29). We

found higher TMB expression in the high-risk patients, which

indicated that high-risk score patients might benefit more

from immunotherapy. Therefore, the GRG signature could

guide clinicians to choose more beneficial treatment options

for BRCA patients.

Since there are significant differences between the low-risk

and high-risk groups, we further examined different genes

between the two groups. SDC1 was found to be the central

gene of RDEGs, and patients in the low-SDC1 group with

more CD8+ T cells had a better OS. Among all patients with

breast cancer, about 20%–30% will show positive Her-2,

which is a warning signal. Positive Her-2 indicates that it is a
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FIGURE 10

The protein expression levels of (A,B) CACNA1H, (C,D) CHPF, (E,F) IRS2, (G,H) NT5E, (I,J) SDC1 and (K,L) ATP6AP1 in HPA database based on
immunohistochemistry.
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highly invasive cancer and more likely to relapse and metastasis

(63). We found higher SDC1 in patients with Her2-enriched.

SDC-1 is a membrane-anchored protein polysaccharide

expressed on the basolateral surface of epithelial cells, which

is abnormally induced in breast cancer stromal fibroblasts and

plays a key role in tumor proliferation (64). In addition, SDC-

1 acts as a receptor on the cell surface to form a complex

with integrin and receptor tyrosine kinase (RTK) to regulate

proliferation and migration (65). Moreover, overexpression of

SDC1 resulted in increased angiogenesis promoters (66),

including FGF2 and VEGF, and the anti-SDC1 antibody

46F2SIP was confirmed to effectively inhibit angiogenesis and

induce vascular normalization (67). It was found that the

reduction of SDC1 arrested cells from S phase to G1 phase,

slowed cell cycle progression and inhibited cell proliferation

(68). Therefore, SDC1 may be a suitable targeted therapeutic

molecule for BRCA patients with various types.

Previous research has shown that these biomarkers are still

not enough to predict the prognosis of patients independently.

In particular, the level of single gene expression may be

affected by multiple factors and they cannot be used as

reliable and independent prognostic indicators (18). Therefore,

a prognostic signature consisting of multiple related genes

combined with the predictive effect of each gene, which is

used to improve the predictive ability (69). The signature is

much more accurate in assessing the prognosis of patients

with breast cancer than using a single biomarker, so it will be

widely used. However, we can only use OS to evaluate the

prognosis of patients due to the lack of metastasis and
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recurrence information of patients in TCGA, ICGC and

GSE7390 cohorts, which is one of the limitations of our

study. In addition, we will further confirm our findings in cell

and tissue experiments, and explore their potential

mechanisms in the development of breast cancer.
Conclusion

In summary, the GRG candidates comprising CACNA1H,

CHPF, IRS2, NT5E, SDC1 and ATP6AP1 were identified and

incorporated into a novel risk model to predict prognosis.

Besides, the risk score of GRG signature can not only

characterize patients’ clinicopathological features, but also

predict sensitivity of chemotherapy, targeted therapy and

immunotherapy. We believe that the novel GRG signature will

promote individualized treatments and improve OS of BRCA

patients.
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