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Abstract

Alzheimer’s disease (AD), the most common form of dementia, shares many aspects of abnormal brain aging. We present a
novel magnetic resonance imaging (MRI)-based biomarker that predicts the individual progression of mild cognitive
impairment (MCI) to AD on the basis of pathological brain aging patterns. By employing kernel regression methods, the
expression of normal brain-aging patterns forms the basis to estimate the brain age of a given new subject. If the estimated
age is higher than the chronological age, a positive brain age gap estimation (BrainAGE) score indicates accelerated atrophy
and is considered a risk factor for conversion to AD. Here, the BrainAGE framework was applied to predict the individual
brain ages of 195 subjects with MCI at baseline, of which a total of 133 developed AD during 36 months of follow-up
(corresponding to a pre-test probability of 68%). The ability of the BrainAGE framework to correctly identify MCI-converters
was compared with the performance of commonly used cognitive scales, hippocampus volume, and state-of-the-art
biomarkers derived from cerebrospinal fluid (CSF). With accuracy rates of up to 81%, BrainAGE outperformed all cognitive
scales and CSF biomarkers in predicting conversion of MCI to AD within 3 years of follow-up. Each additional year in the
BrainAGE score was associated with a 10% greater risk of developing AD (hazard rate: 1.10 [CI: 1.07–1.13]). Furthermore, the
post-test probability was increased to 90% when using baseline BrainAGE scores to predict conversion to AD. The presented
framework allows an accurate prediction even with multicenter data. Its fast and fully automated nature facilitates the
integration into the clinical workflow. It can be exploited as a tool for screening as well as for monitoring treatment options.
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Background

The global prevalence of dementia is projected to rise sharply

over the coming decades. By 2050, 1 in 85 persons worldwide will

be affected by Alzheimer’s disease (AD), the most common form of

dementia [1]. Manifold pathological changes begin to develop

years or decades before the onset of cognitive decline [2],

including premature changes in gene expression [3,4], accelerated

age-associated changes of the default mode network [5], and most

obviously, abnormal changes in brain structures already at the

mild cognitive impairment (MCI) stage [6,7]. Additionally,

atrophic regions detected in AD patients were recently found to

largely overlap with those regions showing a normal age-related

decline in healthy control subjects [8].

Early detection and quantification of abnormal brain changes is

important for the prospective identification and subsequent

treatment of individuals at risk for cognitive decline and dementia.

The best validated biomarkers for an early detection include

markers of brain b-amyloid-plaque (Ab) deposition, i.e. decreased

CSF Ab42 and positive Pittsburgh compound B (PiB) amyloid

imaging, as well as markers of neurodegeneration, i.e. increased

CSF tau, decreased fluorodeoxyglucose uptake on PET (FDG-

PET), and structural magnetic resonance imaging (MRI) measures
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of cerebral atrophy [2]. More specifically, low concentrations of

CSF Ab42, associated with the formation of Ab plaques in the

brain, were found to correlate with the clinical diagnosis of AD

[9,10], but not with rates of brain atrophy [11]. The process of Ab-

plaque accumulation begins at least 5–10 years [12] or even up to

two decades before probable manifestation of clinical symptoms

and conversion to AD [13], but on its own is not sufficient to cause

dementia [2,14–18]. At some point in the AD disease course

accelerated neurodegeneration takes place, preceding accelerated

cognitive decline [2]. Although CSF tau was found to positively

correlate with severity of cognitive impairment [12,19], increased

CSF tau is not specific for AD but seems to indicate neuronal

injury and neurodegeneration in general [2,20,21]. Although

brain atrophy in general is not specific for AD, MRI-detected

atrophy was found to retain the closest relationship with cognitive

decline [2,22,23] suggesting a crucial role for structural MRI in

predicting future conversion to AD [2,24].

Our recently introduced BrainAGE approach [25,26] takes into

account the widespread but sequential age-related brain tissue loss.

Based on single time-point structural MRI the complex, multidi-

mensional aging patterns across the whole brain are aggregated to

one single value, i.e. the estimated brain age (Figure 1A).

Consequently, although using only a standard MRI scan, the

deviation in brain atrophy from normal brain aging can be directly

quantified (Fig. 1B). We already demonstrated that the BrainAGE

approach is capable of identifying pathological brain aging in

subjects with MCI and AD, and observed profound relationships

between BrainAGE, disease severity and prospective worsening of

cognitive functions [27].

In order to explore the potential of applying the BrainAGE

approach in early detection of abnormal brain changes, this study

implemented this novel MRI-based biomarker to predict the

conversion from MCI to AD within a time span of 36 months. We

hypothesized that those individuals with greater BrainAGE scores

would convert to AD with worse outcomes related to cognition

and disease severity. Furthermore, a subsample of subjects with

MCI, for whom CSF data are available, will be used to compare

the performance of the BrainAGE framework in predicting

conversion from MCI to AD to commonly used MRI and CSF

biomarkers, which are widely used as state-of-the-art benchmark.

Methods

Subjects
We utilized data obtained from the ADNI database (www.loni.

ucla.edu/ADNI), including all MCI subjects for whom baseline

MRI data (1.5T), at least moderately confident diagnoses (i.e.

confidence .2), hippocampus volumes (i.e. volumes of left and

right hippocampus, calculated by FreeSurfer Version 4.3.), and

test scores in certain cognitive scales (i.e. ADAS: Alzheimer’s

Disease Assessment Scale, range 0–85; CDR-SB: Clinical

Dementia Rating ‘sum of boxes’, range 0–18; MMSE: Mini-

Mental State Examination, range 0–30) were available (data

downloaded in May 2010). For the exact procedures of data

collection and up-to-date information, see www.adni-info.org.

Adopting the diagnostic classification at baseline and follow-up,

195 subjects were grouped as (i) sMCI (stable MCI), if diagnosis

was MCI at all available time points, but at least for 36 months

(n = 62); (ii) pMCI_early (progressive MCI), if diagnosis was MCI at

baseline but converted to AD within the first 12 months, without

reversion to MCI or cognitive normal (NO) at any available

follow-up (n = 58); (iii) pMCI_late, if diagnosis was MCI at baseline

and conversion to AD was reported after the first 12 months (i.e. at

18, 24, or 36 months follow-up), without reversion to MCI or NO

at any available follow-up (n = 75). Details of the characteristics of

the ADNI test sample are presented in Table 1.

To compare the performance of the BrainAGE framework in

predicting conversion from MCI to AD to the commonly used

CSF biomarkers Ab42, total and phosphorylated tau (T-Tau and

P-Tau), a subsample of subjects with MCI, for whom those CSF

data are available, is utilized (Table 1). Adopting the same criteria

as described above, this subsample is grouped as sMCICSF (n = 33),

pMCICSF_early (n = 32), and pMCICSF_late (n = 34). In terms of the

main baseline characteristics (i.e., age, gender, education, cogni-

tion, hippocampus volumes), the CSF subsample was representa-

tive of the whole MCI sample used in this study (see Table 1).

To train and test the age estimation framework with respect to

prediction accuracy and reliability, we used MRI data of healthy

subjects from the publicly accessible IXI cohort (http://www.

brain-development.org; data downloaded in February 2009) aged

50 years and older. To evaluate the accuracy of the age

estimations, the subjects were divided into training and evaluation

samples, i.e. after sorting the subjects by age every fourth subject

Figure 1. Depiction of the BrainAGE concept. (A) The model of healthy brain aging is trained with the chronological age and preprocessed
structural MRI data of a training sample (left; with an exemplary illustration of the most important voxel locations that were used by the age
regression model). Subsequently, the individual brain ages of previously unseen test subjects are estimated, based on their MRI data (blue; picture
modified from Schölkopf & Smola, 2002 [35]). (B) The difference between the estimated and chronological age results in the BrainAGE score,
indicating abnormal brain aging. [Image reproduced from Franke & Gaser, 2012 [27], with permission from Hogrefe Publishing, Bern].
doi:10.1371/journal.pone.0067346.g001
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entered the evaluation sample. Since the number of training

samples was found to have the strongest influence on the accuracy

of age prediction, MRI data of healthy subjects from the publicly

accessible database OASIS (http://www.oasis-brains.org; data

downloaded in June 2009) aged 50 years and older were also

included in the training sample. In sum the training sample

includes 320 cognitive normal elderly subjects. Details of the

characteristics of the training sample are presented in Table 2.

Preprocessing of MRI Data and Data Reduction
Preprocessing of the T1-weighted images was done using the

SPM8 package (http://www.fil.ion.ucl.ac.uk/spm) and the VBM8

toolbox (http://dbm.neuro.uni-jena.de), running under MATLAB.

All T1-weighted images were corrected for bias-field inhomoge-

neities, then spatially normalized and segmented into grey matter,

white matter, and CSF within the same generative model [28].

The segmentation procedure was further extended by accounting

for partial volume effects [29], by applying adaptive maximum a

posteriori estimations [30], and by using a hidden Markov random

field model [31] as described previously [32]. Only grey matter

images were used. Following the pipeline proposed by Franke

et al. [25], the images were processed with affine registration and

smoothed with 8-mm full-width-at-half-maximum smoothing

kernels. After smoothing, spatial resolution was set to 8 mm.

Then, data reduction was performed by applying principal

component analysis (PCA), utilizing the ‘MATLAB Toolbox for

Dimensionality Reduction’ (http://ict.ewi.tudelft.nl/

l̃vandermaaten/Home.html). PCA was only performed on the

training sample and the estimated transformation parameters were

subsequently applied to the test sample. No further data reduction

or region pre-selection was accomplished.

Relevance Vector Regression (RVR)
Relevance vector machines (RVM) were introduced by Tipping

[33] as a Bayesian alternative to support vector machines (SVM)

for obtaining sparse solutions to pattern recognition tasks. The

main idea behind SVMs is the transformation of training data

from input space into high-dimensional space – the feature space –

via a mapping function W [34,35]. For the purpose of classifica-

tion, the hyperplane that best separates the groups is computed

within this feature space, resulting in a nonlinear decision

boundary within the input space. The best separating hyperplane

is found by maximizing the margin between the two groups. The

data points lying on the margin boundaries are called support vectors

since only these are used to specify the optimal separating

hyperplane. For the case of real-valued output functions (rather

than just binary outputs as used in classification), the SV algorithm

was generalized to regression estimation [34,35]. In support vector

regression (SVR), a function has to be found that fits as many data

points as possible. Analogous to the margin in classification, the

regression line is surrounded by a tube. Data points lying within

that tube do not influence the course of the regression line. Data

points lying on the edge or outside that tube are called support

vectors.

In contrast to the support vectors in SVM, the relevance vectors in

RVM represent the prototypical examples within the specified

classification or regression task, instead of solely representing

separating attributes. Furthermore, severe overfitting associated

with the maximum likelihood estimation of the model parameters

was avoided by imposing an explicit zero-mean Gaussian prior

[36,37]. This prior is a characteristic feature of the RVM, and its

use results in a vector of independent hyperparameters that

reduces the data set [33,38,39]. Therefore, in most cases the

number of relevance vectors is much smaller than the number of

support vectors. Furthermore, in SVR additional parameters have

to be determined or statistically optimized (e.g. with cross-

validation loops) in order to control for model complexity and

model fit. To control the behavior of the RVR, only the type of

kernel has to be chosen, whereas all other parameters are

automatically estimated by the learning procedure itself. More

details can be found in [33,35,40].

Age Estimation Framework
The BrainAGE framework utilizes RVR [41] and was recently

developed to estimate individual brain ages based on T1-weighted

images [25]. As suggested by Franke et al. [25], the kernel was

chosen to be a polynomial of degree 1, since age estimation

accuracy was shown to not improve when choosing non-linear

kernels. Thus, parameter optimization during the training

procedure was not necessary.

In general, the model is trained with preprocessed whole brain

structural MRI data (as described above) of the training sample.

Subsequently, the brain age of a test subject can be estimated using

the individual tissue-classified MRI data (as described above),

aggregating the complex, multidimensional aging pattern across

the whole brain into one single value. The difference between

estimated and true chronological age will reveal the individual

brain age gap estimation (BrainAGE) score. Consequently, the

BrainAGE score directly quantifies the amount of acceleration or

deceleration of brain aging. For example, if a 70 years old

individual has a BrainAGE score of +5 years, this means that this

individual shows the typical atrophy pattern of a 75 years old

individual. For training the model as well as for predicting

individual brain ages, we used ‘‘The Spider’’ (http://www.kyb.

mpg.de/bs/people/spider/main.html), a freely available toolbox

running under MATLAB. More detailed information as well as

the most important features data that were used by the RVR for

estimating the brain age can be found in Franke et al. [25].

Within this study, the framework was separately trained on male

and female subjects in the training sample. With a mean absolute

error of 3.8 years in the evaluation sample of healthy subjects the

framework showed accurate performance in brain age estimation.

Subsequently, the brain ages of the test subjects were estimated

based on their baseline MRI data. The difference between the

estimated and the true age resulted in the BrainAGE score,

indicating accelerated (positive values) or decelerated (negative

values) brain aging. PCA was performed on the training sample

and the estimated transformation parameters were subsequently

applied to the test subjects.

Statistical Analysis
The baseline BrainAGE scores as well as the cognitive scores (i.e.

MMSE, CDR-SB, ADAS), the hippocampus volumes, and the

Table 2. Characteristics of the samples used to model normal
brain aging.

Training sample (n = 320)
Evaluation sample
(IXI)

IXI OASIS

No. subjects 194 126 64

Males/Females 72/122 35/91 24/40

Age mean (SD) 63.5 (7.6) 71.3 (11.8) 63.5 (7.5)

Age range 51–86 51–94 51–83

doi:10.1371/journal.pone.0067346.t002
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CSF biomarker levels at baseline were compared between the

diagnostic groups in both MCI test samples using an analysis of

variance (ANOVA). To assess the relationship between BrainAGE

and cognitive measures at baseline and follow-up, Pearson’s

pairwise correlation was computed.

Receiver operating characteristics (ROC) for discriminating

MCI subjects who converted to AD from those who remained

stable during follow-up were computed in both MCI samples,

resulting in the area under the ROC curve (AUC), which is also

known as C-statistics or c-index. The AUC shows the quality of

the classification, with 1.0 indicating a perfect discrimination and

0.5 indicating a result obtained by chance only. In order to test

whether the resulting AUC derived from BrainAGE ROC analysis

is statistically greater than the AUCs of cognitive scores,

hippocampus volumes, and CSF biomarkers, one-tailed z-tests

are performed. Additionally, the McNemar test for paired data

was performed in order to statistically test whether predictions of

conversion based on baseline BrainAGE scores are significantly

better than predictions based on cognitive scores, hippocampus

volumes, and CSF biomarkers.

Likelihood ratios were computed to determine the likelihood

that a BrainAGE score or biomarker value above a determined

threshold would be expected in pMCI relative to sMCI subjects.

These ratios determined whether the use of a clinical biomarker

substantially changes the post-test probability that a subject will

convert to AD.

Within both MCI samples, univariate Cox regression was used

to estimate the hazard rate for conversion to AD, adjusting for age,

education years, and gender. The time-to-event variable was time

from baseline visit to first visit with AD diagnosis for pMCI

subjects. For sMCI subjects, the duration of follow-up was

truncated at 3 years. The main predictor was the baseline

BrainAGE score as a continuous variable initially and in quartiles

subsequently. For comparison, Cox regression was also performed

with baseline cognitive scores, hippocampus volumes, and CSF

biomarkers as main predictors. As checked by log-minus-log-plots

of survival, the assumption of proportional hazards was met for all

Cox proportional hazard models. Cox regression was performed

using SPSS. All other statistical testing was performed using

MATLAB.

Results

Whole MCI Sample
The diagnostic groups (i.e. pMCI_early, pMCI_late, sMCI) did

not differ in terms age and education years (Table 1). As expected,

at baseline examination all cognitive scores as well as the

hippocampus volumes differed between groups (Figure 2B–F).

The baseline BrainAGE scores significantly differed between the

diagnostic groups (F = 26.04; p,0.001), resulting in the following

means: pMCI_early = 8.73 years, pMCI_late = 5.62 years, and

sMCI = 0.75 years. As mentioned above, positive values indicate a

higher estimated than chronological age. Post hoc t-tests showed

significant differences (p,0.05) between all three diagnostic groups

(Figure 2A).

As expected, cognitive abilities substantially declined during the

follow-up intervals in both pMCI groups but remained stable in

those who did not convert to AD (Figure 3A-C). Statistically

significant correlations at baseline were only found between

BrainAGE scores and CDR-SB as well as ADAS, but not for

MMSE (Table 3). During follow-up, the correlations between

baseline BrainAGE scores and clinical disease severity as well as

cognitive functioning even increased, denoting a close relationship

between pathological brain aging and prospective worsening of

cognitive functioning.

Our test sample included 195 subjects diagnosed with MCI at

baseline. During 36 months of follow-up, a total of 133 of them

developed AD, corresponding to a pre-test probability of 68%.

More specifically, 30% of the MCI subjects converted to AD

within the first 12 months after baseline examination (mean time

to conversion: 312696 days), whereas 38% of all MCI subjects

converted to AD after the first year of follow-up (mean time to

conversion: 7056228 days). By varying the threshold applied to

the BrainAGE score, we constructed ROC curves for a binary

discrimination between MCI subjects who remained stable during

3 years follow-up from those who converted to AD. With AUC’s

(or c-index) of 0.83 and 0.78, and accuracy rates of 81% and 75%

for the discrimination of sMCI vs. pMCI_early (Figure 4A) and all

pMCI subjects (Figure 4B), respectively, the baseline BrainAGE

score proved its encouraging potential to predict conversion to AD

in MCI subjects. Furthermore, predicting future conversion to AD

based on baseline BrainAGE scores was significantly more accurate

than predictions based on chronological age, hippocampus

volumes, and cognitive scores at baseline (Table 4).

For the whole MCI sample the post-test probability was

increased to 90% when using baseline BrainAGE scores to predict

conversion to AD within 36 months of follow-up (Figure 5A). This

gain in certainty by 22% was highest for the baseline BrainAGE

score as compared to baseline hippocampus volumes (right

hippocampus: 16%; left hippocampus: 17%) or cognitive scores

(MMSE: 11%; CDR-SB: 0%; ADAS: 18%).

Cox regression analysis showed an association of higher

BrainAGE scores with a higher risk of developing AD (x2 = 58.86,

p,0.001; Table 5). Each additional year in the BrainAGE score

was associated with a 10% greater risk of developing AD (hazard

rate: 1.10, p,0.001; Table 5). Compared with subjects in the

lowest BrainAGE quartile (29.55 – 20.12 years), subjects in the 2nd

quartile (20.12–4.45 years) had about the same risk of developing

AD (hazard ratio [HR]: 1.13; CI: 0.62–2.06; p = 0.68), those in the

3rd quartile (4.46–9.26 years) had a three times greater risk (HR:

3.12; CI: 1.80–5.40; p,0.001), and those in the 4th quartile (9.26–

29.20 years) had a four times greater risk (HR: 4.66; CI: 2.61–

8.29; p,0.001) of developing AD (Figure 6). Thus, MCI subjects

showing abnormal atrophy patterns as marked by higher BrainAGE

scores had a significantly increased risk and a cumulative

probability of 88% in the 3rd quartile and 92% in the 4th quartile

for conversion to AD. Furthermore, when performing Cox

regression with all other baseline scores, BrainAGE again showed

the best results (Table 5; Figure S1).

MCI Subsample with CSF Data
When comparing BrainAGE to state-of-the-art CSF biomarkers

within this multi-center study, only the baseline BrainAGE scores

significantly differed between the diagnostic groups in the CSF

subsample (sMCICSF: 0.71 years; pMCICSF_late: 5.04; pMCICSF

_early: 8.20; F = 10.82, p,0.001; Figure 7), but none of the

baseline CSF biomarker levels (Table 1). BrainAGE scores in the

CSF subsample did not differ between from those in the whole

MCI sample (F = 0.15, p = 0.86).

ROC analyses with baseline BrainAGE scores resulted in AUC’s

(or c-index) of 0.84 and 0.75, and accuracy rates accuracy rates of

80% and 72% for the discrimination of sMCICSF vs. pMCICSF in

early converters (Figure 8A) and in the whole CSF subsample

(Figure 8B), respectively. Thus, baseline BrainAGE scores showed

significantly better predictions than baseline T-Tau, P-Tau, and

Ab42 levels (Table 6).
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Furthermore, when looking at the post-test probability in the

CSF subsample, the pre-test probability of 67% for converting to

AD within three years was increased by 21% using baseline

BrainAGE scores (Figure 5B), but only slightly by using CSF

biomarkers (T-Tau: 4%, P-Tau: 0%, Ab42:0%, Ab42/P-Tau: 8%).

Also in the CSF subsample, Cox regression analysis showed a

significant association of higher BrainAGE scores with a higher risk

of developing AD (x2 = 22.11, p,0.001; Table 5). In contrast, Cox

regression with CSF biomarkers did not yield significant results for

any of them (Table 7, Figure S2).

Discussion

The scope of this study was the implementation of a novel MRI-

based biomarker based on the recently presented BrainAGE

framework [25] to predict prospective cognitive decline and

conversion to AD on an individual subject level. Using structural

MRI data, our fully automated age estimation model aggregates

the complex, multidimensional aging patterns across the whole

brain to one single value (i.e. the BrainAGE score) and finally

identifies pathological brain aging in MCI subjects who finally

converted to AD within three years of follow-up, with increasing

BrainAGE scores at baseline indicating an increased risk of

developing AD.

This method already showed the advantage of accurately and

reliably estimating the age of the brain with minimal preprocessing

and parameter optimization [25,26], using a single anatomical

scan. Regarding the relevance within the clinical context, higher

BrainAGE scores were recently demonstrated to be closely related

to measures of clinical disease severity in AD patients, as well as

prospective worsening of cognitive functioning in MCI subjects

who converted to AD within three years [27]. Furthermore,

already possessing higher BrainAGE scores at baseline, brain

atrophy was shown to even accelerate during follow-up, with the

speed of one additional year per follow-up year in pMCI subjects

and 1.5 additional years per follow-up year in AD patients.

Considering unequal follow-up durations in the pMCI and AD

groups, this finally accumulated to mean BrainAGE scores of about

9 years at the last scan in both groups. Compared to that, sMCI

and healthy control subjects did not show any irregularity in brain

atrophy at baseline and follow-up [27].

In the study presented here, the BrainAGE approach was

implemented to predict subsequent conversion to AD on a single

subject level based on structural MRI at baseline. Focusing on

subjects with mild memory impairment but preserved activities of

daily life, we found accuracy rates of up to 81% for prediction of

progression to AD. Even more interestingly, a high BrainAGE score

increased the prognostic certainty of a subsequent conversion to

AD from 68% in our clinically defined MCI sample to 90%. This

gain in certainty may provide solid diagnostic grounds for early

intervention strategies aimed at delaying or preventing the onset of

full-scale AD in subjects at highest risk for the disease.

Furthermore, our BrainAGE framework was more precise in

predicting conversion of MCI to AD when compared to

chronological age, cognitive scores, hippocampus volume, or

state-of-the-art CSF biomarkers.

Cognitive decline was recently found to progressively accelerate

years before being diagnosed as AD [42], and to be correlated with

Figure 2. Baseline scores in all MCI groups. Shown are box plots for baseline (A) BrainAGE scores (in years), (B) MMSE scores, (C) CDR-SB scores,
(D) ADAS scores, (E) left and (F) right hippocampus volumes (in mm3) of all diagnostic groups. Post-hoc t-tests resulting in significant differences
between diagnostic groups are indicated (p,0.05; red lines). The boxes contain the values between the 25th and 75th percentiles, including the
median (dashed line). Lines extending above and below each box symbolize data within 1.5 times the interquartile range (outliers are displayed with
a +). Width of the boxes indicates the group size.
doi:10.1371/journal.pone.0067346.g002

Figure 3. Cognitive scores during follow-up. Mean (A) MMSE, (B)
CDR-SB, (C) ADAS scores in pMCI_early, pMCI_late, and sMCI subjects at
baseline examination as well as all follow-up assessments. Error bars
depict the standard error of the mean (SEM).
doi:10.1371/journal.pone.0067346.g003
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the atrophy rates in specified brain regions [43]. In addition, some

studies focusing on regression methods to identify pathological

brain structures specific for AD reported moderate performance

measures when predicting one-year decline of cognitive functions

in MCI [44–46]. Although not specifically trained to predict

changes in cognitive scales, the BrainAGE scores estimated at

baseline showed moderate correlations with measures of clinical

disease severity and cognitive functioning up to three years in

advance. These results as well as our recent results from a

longitudinal BrainAGE study [26] support the suggested relation-

ship between progressive acceleration in brain atrophy and

worsening of cognitive functioning in progressive MCI.

Using high-dimensional pattern recognition with imaging data

was recently suggested to provide a viable biomarker to detect

subtle, but predictive, imaging phenotypes that precede cognitive

decline while there is still opportunity for preventive or therapeutic

interventions [47]. Current classification approaches attempt to

identify disease-specific patterns that allow a separation of subjects

with MCI or AD from healthy samples. Whilst most approaches

are able to accurately differentiate between healthy controls and

AD patients [48–50], it is the conversion from MCI to AD that is

of greater clinical interest and clinical consequence. Attempting

this issue, most approaches showed a substantial drop in accuracy

when predicting MCI-to-AD conversion on an individual level,

especially when relying on baseline data only [23,51–55].

Nevertheless, individuals showing the first subtle signs of abnormal

atrophy will benefit most from an early therapy, provided to

reliably identify those individuals at risk of progressing to AD in

future. For example, a recent study based on cortical thickness

reported the accurate detection of 81% of those MCI subjects who

were to be clinically diagnosed as AD patients 24 months later

[52]. But this was only true when looking at those MCI subjects

who were converting to AD, while ignoring those MCI subjects

who did not convert. Consequently, the overall accuracy of sMCI

vs. pMCI classification ranged from 48% at 6 months to 73% at

24 months. Furthermore, although a very recent study reported

that combining MRI and CSF measures in a multivariate model

resulted in better accuracy for predicting future conversion from

MCI to AD, than using either MRI or CSF separately [56], the

overall prediction accuracies for converters and non-converters

ranged only from 58.6% to 66.4% at different time points. With

sensitivity of 67% and specificity of 69%, another recent study [57]

Table 3. Results for correlation analyses of baseline BrainAGE scores with cognitive scores at baseline and follow-up (whole
sample).

baseline 6 months follow-up
12 months follow-
up

18 months follow-
up

24 months follow-
up

36 months follow-
up

MMSE 20.09 20.17* 20.25*** 20.24** 20.39*** 20.41***

CDR-SB 0.20** 0.26*** 0.28*** 0.32*** 0.42*** 0.46***

ADAS 0.23** 0.24** 0.35*** 0.38*** 0.44*** 0.48***

***p,0.001;
**p,0.01;
*p,0.05.
doi:10.1371/journal.pone.0067346.t003

Figure 4. ROC curves of individual subject classification to sMCI or pMCI. ROC curves of individual subject classification to sMCI or pMCI
based on baseline BrainAGE scores, cognitive scores, and hippocampus volumes for (A) early converters and (B) the whole sample. The areas under
the ROC curves (AUCs) of cognitive scores and hippocampus volumes were tested against the AUC of BrainAGE: ***p,0.001; **p,0.01; *p,0.05.
doi:10.1371/journal.pone.0067346.g004
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Table 4. Results for predicting conversion to AD in MCI subjects with baseline scores (whole sample).

pMCI_early pMCI (all)

Accuracy
[CI]

Sensitivity
[CI]

Specificity
[CI] McNemar test

Accuracy
[CI]

Sensitivity
[CI]

Specificity
[CI] McNemar test

Error rate
[CI] x2

Error rate
[CI] x2

BrainAGE score 0.81 0.78 0.84 0.19 – 0.75 0.71 0.84 0.25 –

[0.74–0.88] [0.70–0.85] [0.77–0.90] [0.12–0.26] [0.69–0.81] [0.65–0.78] [0.79–0.89] [0.19–0.31]

Chronological age 0.41 0.29 0.89 0.59 28.69 0.52 0.31 0.85 0.48 15.87

[0.32–0.50] [0.21–0.37] [0.83–0.94] [0.50–0.68] [p,0.001] [0.45–0.59] [0.24–0.37] [0.80–0.90] [0.41–0.55] [p,0.001]

MMSE score 0.57 0.71 0.61 0.43 13.07 0.37 0.71 0.61 0.63 50.75

[0.48–0.66] [0.63–0.79] [0.53–0.70] [0.34–0.52] [p,0.001] [0.31–0.44] [0.64–0.77] [0.54–0.68] [0.56–0.69] [p,0.001]

CDR-SB score 0.59 0.64 0.77 0.41 15.87 0.38 0.52 0.77 0.62 56.47

[0.50–0.68] [0.55–0.72] [0.70–0.85] [0.32–0.50] [p,0.001] [0.31–0.45] [0.45–0.59] [0.72–0.83] [0.55–0.69] [p,0.001]

ADAS score 0.66 0.65 0.81 0.34 5.90 0.48 0.89 0.48 0.52 31.02

[0.57–0.74] [0.56–0.73] [0.74–0.88] [0.26–0.43] [p,0.05] [0.41–0.55] [0.84–0.93] [0.41–0.55] [0.45–0.59] [p,0.001]

Left hippocampus
volume

0.66 0.52 0.81 0.34 6.42 0.61 0.53 0.81 0.39 8.19

[0.57–0.74] [0.43–0.61] [0.74–0.88] [0.26–0.43] [p,0.05] [0.54–0.68] [0.46–0.60] [0.75–0.86] [0.32–0.46] [p,0.01]

Right hippocampus
volume

0.61 0.84 0.42 0.39 9.62 0.54 0.43 0.84 0.46 16.00

[0.52–0.70] [0.78–0.91] [0.33–0.51] [0.30–0.48] [p,0.01] [0.47–0.61] [0.36–0.50] [0.79–0.89] [0.39–0.53] [p,0.001]

doi:10.1371/journal.pone.0067346.t004

Figure 5. Pre-test and post-test probability for predicting conversion to AD. Pre-test probability (blue) and post-test probability (blue+red),
indicating the gain in prognostic certainty (red) for predicting conversion to AD within 36 months, based on (A) baseline BrainAGE scores,
hippocampus volume, and cognitive measures within the whole MCI sample, as well as (B) baseline BrainAGE scores and CSF biomarkers in the CSF
subsample.
doi:10.1371/journal.pone.0067346.g005
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Table 5. Model statistics of Cox regression for all baseline scores (adjusted for age, gender, and education).

Continuous predictors Categorical predictors (median split)

Overall model Continuous values Overall model Values below vs. above median

x2 p
Hazard rate
[CI]

Wald
statistics p x2 p

Hazard ratio
[CI]

Wald
statistics p

BrainAGE score (+) 58.86 *** 1.10 45.05 *** 52.23 *** 3.41 37.03 ***

[1.07–1.13] [2.30–5.07]

MMSE score (-) 28.99 *** 0.81 16.01 *** 25.04 *** 2.02 12.55 ***

[0.73–0.90] [1.37–2.99]

CDR-SB score (+) 30.46 *** 1.15 19.41 *** 26.74 *** 1.97 13.89 ***

[1.26–1.82] [1.38–2.82]

ADAS score (+) 56.02 *** 1.11 40.48 *** 29.78 *** 2.12 16.84 ***

[1.07–1.14] [1.48–3.03]

Left hippocampus volume (-) 34.54 *** 1.00 21.82 *** 23.84 *** 1.91 11.34 **

[1.00–1.00] [1.31–2.78]

Right hippocampus volume (-) 31.65 *** 1.00 18.90 *** 18.56 ** 1.59 6.32 *

[1–00–1.00] [1.11–2.28]

(+) = higher values mean higher risk for AD; (-) = lower values mean higher risk for AD.
***p,0.001;
**p,0.01;
*p,0.05; n.s. = not significant.
Bold type = best performance of all markers.
doi:10.1371/journal.pone.0067346.t005

Figure 6. Cumulative probability of remaining AD-free in the quartiles of baseline BrainAGE score. Kaplan-Meier survival curves based on
Cox regression comparing cumulative AD incidence in subjects with MCI at baseline by BrainAGE score quartiles (p for trend ,0.001). Duration of
follow-up is truncated at 1250 days.
doi:10.1371/journal.pone.0067346.g006
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also achieved the most stable and reliable classification results

when combining all available structural MRI features (i.e.

hippocampus volume, tensor-based morphometry, cortical thick-

ness). Thus, with accuracy rates up to 81% in predicting

conversion to AD within the whole MCI sample up to three

years in advance, BrainAGE is comparable or even outperforms

recent classification studies that predicted decline of cognitive

scores in MCI subjects or short-term conversion to AD (e.g.,

[51,52–55,58]).

Besides and in contrast to CSF biomarkers, MRI is non-invasive

and can be performed more rapidly than a detailed neuropsy-

chological testing. Furthermore, brain imaging is part of the

diagnostic work-up [49], with MRI becoming the imaging

modality of choice in many centers. Additionally, MRI was shown

to retain the closest relationship with memory loss as well as

worsening of clinical functions [2]. Consequently, current models

of the dynamics of well established biomarkers of the Alzheimer’s

pathological cascade suggest a crucial role for structural MRI in

predicting future cognitive decline and conversion to AD

[2,24,47]. Even though hippocampus volume has been shown to

represent an independent risk factor for AD and robustly

predicting conversion to AD in MCI subjects, the BrainAGE

approach outperformed prediction utilizing baseline hippocampus

Figure 7. Baseline BrainAGE scores and baseline CSF biomarker concentrations in the MCI-subsample. Shown are box plots for (A)
BrainAGE scores, (B) T-Tau, (C) P-Tau, and (D) Ab42 concentration at baseline of all diagnostic groups in the subsample that also provides CSF data. The
boxes contain the values between the 25th and 75th percentiles, including the median (grey line). Lines extending above and below each box
symbolize data within 1.5 times the interquartile range (outliers are displayed with a +). Width of the boxes indicates the group size. Post-hoc t-tests
resulted in significant differences between diagnostic groups only for baseline BrainAGE scores (p,0.05; red lines).
doi:10.1371/journal.pone.0067346.g007
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volumes in the present study as well as in recently published

classification studies [59–61].

One limitation of our approach might be that white matter

lesions that occur primarily due to cerebro-vascular diseases are

not detected in the segmentation approach. Those lesions are

segmented as gray matter and might therefore influence the

relevance vector regression. However, because such lesions only

occur in a limited number of subjects it is very unlikely that they

contribute to the relevance vectors because of their high local

variance. In future, the segmentation should be extended by

methods that allow an automated detection of white matter lesions

even without any additional FLAIR sequence [62].

As stated before, the BrainAGE method builds on the assumption

of AD being preceded by an acceleration in brain atrophy that

resembles advanced aging (e.g., [3,4–8]), although there are other

studies rejecting that assumption (e.g., [63,64]). However, the

acceleration of spatiotemporal brain atrophy might only be seen in

subjects in a preclinical stage, while in AD patients additional

disease-specific pathological changes are occurring. Further,

subjects with a high BrainAGE score but no AD-specific clinical

profile may suffer from other neurodegenerative diseases. This

issue should be explored by applying our framework to other

neurodegenerative diseases. Furthermore, cognitive reserve, ge-

netic status, education level, socioeconomic status, lifestyle, or

Table 6. Results in the CSF subsample for predicting conversion to AD in MCI subjects with baseline scores.

pMCICSF_early pMCICSF (all)

Accuracy
[CI]

Sensitivity
[CI]

Specificity
[CI] McNemar test

Accuracy
[CI]

Sensitivity
[CI]

Specificity
[CI] McNemar test

Error rate
[CI] x2

Error rate
[CI] x2

BrainAGE score 0.80 0.91 0.70 0.20 – 0.72 0.67 0.82 0.28 –

[0.70–0.90] [0.83–0.98] [0.58–0.81] [0.10–0.30] [0.63–0.81] [0.57–0.76] [0.74–0.89] [0.19–0.37]

T-Tau 0.60 0.84 0.39 0.40 4.80 0.58 0.88 0.39 0.42 3.93

[0.48–0.72] [0.76–0.93] [0.27–0.51] [0.28–0.52] [p,0.05] [0.48–0.76] [0.81–0.94] [0.30–0.49] [0.33–0.52] [p,0.05]

P-Tau 0.57 0.78 0.58 0.43 7.54 0.43 0.68 0.58 0.57 16.20

[0.45–0.69] [0.68–0.88] [0.46–0.70] [0.31–0.55] [p,0.01] [0.34–0.53] [0.59–0.77] [0.48–0.67] [0.47–0.66] [p,0.001]

Ab42 0.57 0.91 0.36 0.43 7.26 0.49 0.89 0.36 0.51 7.08

[0.45–0.69] [0.83–0.98] [0.25–0.48] [0.31–0.55] [p,0.01] [0.40–0.59] [0.83–0.95] [0.27–0.46] [0.41–0.60] [p,0.01]

Ab42/P-Tau 0.69 0.97 0.42 0.31 1.69 0.73 0.92 0.42 0.27 0.03

[0.58–0.80] [0.93–1.00] [0.30–0.54] [0.20–0.42] [n.s.] [0.64–0.81] [0.87–0.98] [0.33–0.52] [0.18–0.36] [n.s.]

n.s. = not significant.
doi:10.1371/journal.pone.0067346.t006

Figure 8. ROC curves of individual subject classification to sMCI or pMCI in the CSF subsample. ROC curves of individual subject
classification to sMCICSF or pMCICSF based on baseline BrainAGE scores and CSF biomarkers for (A) early converters and (B) the whole CSF subsample.
The areas under the ROC curves (AUCs) of the CSF biomarkers were tested against the AUC of BrainAGE: **p,0.01; *p,0.05.
doi:10.1371/journal.pone.0067346.g008
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vitamin supply may protect subjects from pathological brain aging

or accelerated cognitive decline despite high BrainAGE scores

[52,65–68]. Thus, in future research we aim to disentangle age-

and unrelated disease-based processes of brain tissue loss in AD.

Additionally, we will elucidate the effects of the genetic status (e.g.

Apolipoprotein E (APOE)) on the longitudinal changes in

BrainAGE as well as on prediction of AD conversion, since

especially the APOE e4 allele is associated with modification of

cognitive functioning [69–71] and GM reduction in AD patients

[72] as well as healthy subjects [73].

In conclusion, BrainAGE has shown promising results on an

individual level, contributing to an early indication of pathological

brain aging in advance of severe clinical symptoms, or even

predicting future cognitive decline. Compared to a wide range of

existing classification approaches that require disease-specific data

for training, the BrainAGE framework uses an independent

database of healthy, non-demented subjects to model the normal

brain-aging pattern and consequently recognizing subtle devia-

tions from age-related brain atrophy in new test samples. As the

BrainAGE approach utilizes only a single T1-weighted image per

subject and already has proven to work fast and fully automated

with multi-centre data, it can be easily implemented in clinical

routine to encourage the identification of subtly abnormal atrophy

patterns.
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