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ABSTRACT
Background Immunotherapies, driven by immune- 
mediated antitumorigenicity, offer the potential for 
significant improvements to the treatment of multiple 
cancer types. Identifying therapeutic strategies that bolster 
antitumor immunity while limiting immune suppression is 
critical to selecting treatment combinations and schedules 
that offer durable therapeutic benefits. Combination 
oncolytic virus (OV) therapy, wherein complementary 
OVs are administered in succession, offer such promise, 
yet their translation from preclinical studies to clinical 
implementation is a major challenge. Overcoming this 
obstacle requires answering fundamental questions about 
how to effectively design and tailor schedules to provide 
the most benefit to patients.
Methods We developed a computational biology model 
of combined oncolytic vaccinia (an enhancer virus) and 
vesicular stomatitis virus (VSV) calibrated to and validated 
against multiple data sources. We then optimized protocols 
in a cohort of heterogeneous virtual individuals by 
leveraging this model and our previously established in 
silico clinical trial platform.
Results Enhancer multiplicity was shown to have 
little to no impact on the average response to therapy. 
However, the duration of the VSV injection lag was found 
to be determinant for survival outcomes. Importantly, 
through treatment individualization, we found that optimal 
combination schedules are closely linked to tumor 
aggressivity. We predicted that patients with aggressively 
growing tumors required a single enhancer followed by 
a VSV injection 1 day later, whereas a small subset of 
patients with the slowest growing tumors needed multiple 
enhancers followed by a longer VSV delay of 15 days, 
suggesting that intrinsic tumor growth rates could inform 
the segregation of patients into clinical trials and ultimately 
determine patient survival. These results were validated in 
entirely new cohorts of virtual individuals with aggressive 
or non- aggressive subtypes.
Conclusions Based on our results, improved therapeutic 
schedules for combinations with enhancer OVs can be 
studied and implemented. Our results further underline 
the impact of interdisciplinary approaches to preclinical 
planning and the importance of computational approaches 
to drug discovery and development.

BACKGROUND
Oncolytic viruses (OVs) are genetically modi-
fied viruses designed to specifically target 
tumor cells.1 The antitumor effects associ-
ated with oncolytic virotherapy are medi-
ated significantly by immune mechanisms, 
which can be either advantageous or disad-
vantageous depending on the type of virus.1 
Although immunosuppression may improve 
viral oncolysis, this gain is achieved at the 
cost of antitumor immunity, a key factor for 
improving cancer therapies. The importance 
of considering immune- virus interactions 
is supported by the mechanism of action of 
the OV talimogene laherparepvec (T- VEC).2 
T- VEC was the first US Food and Drug Admin-
istration (FDA)- approved OV and is a genet-
ically modified form of herpes simplex virus 
that encodes the immunostimulatory cytokine 
granulocyte- monocyte colony- stimulating 
factor (GM- CSF). The OV’s effectiveness is 
amplified by its immunostimulatory counter-
part,3 attesting to the need to find a reason-
able balance between a multitude of immune 
mechanisms (such as viral clearance and the 
antitumor immune response) to achieve ulti-
mate treatment success.

Therapeutic cancer vaccines are admin-
istered to cancer patients with the goal of 
eradicating tumor cells through strength-
ening the patient’s own immune response.4 
Combination OV protocols or vaccination 
schedules use a sequential combination of 
immunologically distinct viruses to induce 
immunity, circumvent or mitigate the anti-
viral immune response, and ultimately 
enhance antitumor efficacy.5–7 Currently, 
there are three clinical trials investigating 
the efficacy of combining adenovirus and 
the OV Maraba as an anticancer vaccination 
treatment,8 9 two of which are in the USA 
(NCT02285816; NCT02879760) and one in 
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Canada (control number 195876, protocol number: AD/
MG1- MAGEA3-001).

The principal idea behind combination OV regimens is 
to stimulate alternate mechanisms of antitumor immunity 
that act cooperatively or synergistically to enhance thera-
peutic effect. In this way, OVs can be used in enhancer 
virus/primary virus regimens whereby the pre- existing 
immune response induced by the enhancer OV will 
improve the efficacy of the second primary heterologous 
OV administration.10 It has been shown that the develop-
ment of an acquired antiviral immune response usually 
takes less than a week in treatment- naïve animals, leaving 
a small window of opportunity for oncolytic vectors to 
function.11 Accepting that the ensuing immune response 
dictates that viral oncolysis will inevitably be transient in 
nature, the anti- OV immune response can be usefully 
reoriented to enhance the therapeutic impact of the 
vector.

Bridle et al7 were among the first to investigate the 
synergy between combination OV therapies. They showed 
that the antitumor response to vesicular stomatitis virus 
(VSV) was weaker than the anti- VSV response. This led 
them to complement the initial injection of VSV with an 
injection of a different virus with the goal of harnessing 
the original anti- VSV response and improving the anti-
tumor immune response. Bridle et al12 therefore, investi-
gated VSV as a boost to adenovirus antigen. They found 
that VSV antigen produced a more tumor- specific CD8+ 
T cell response which was more cytotoxic in combina-
tion with adenovirus- antigen with increased cytokine and 
granzyme production.

The exact immune mechanisms through which OVs 
induce antitumor responses depend on the type of virus 
used and the transgenes encoded. Ilett et al1 showed that 
reovirus induced the priming of a CD8+, Th1- type anti-
tumor response whereas VSV expression promoted a 
potent antitumor CD4 +Th17 response, and that priming 
with reovirus, followed by VSV significantly improved 
survival of B16 melanoma tumor- bearing mice versus 
virus alone. Previous work has also suggested that three 
low doses of adenovirus, followed by three low doses of 
vaccinia virus (VV) resulted in a superior antitumor effi-
cacy versus six doses of either virus.13

Individually, VV and VSV have both been extensively 
investigated as possible oncolytic virotherapy agents.11 13–18 
Morphologically and immunologically, VSV and VV are 
very distinct. VV is a complex double stranded DNA virus 
encoding a large number of genes with immune evading 
properties that allow the virus to establish local pockets of 
infection within an infected host at a tissue level.19 At the 
systemic level, VV is a highly immunogenic virus, eliciting 
strong T- cell- mediated and antibody responses.20 Due to 
the role VV played in the worldwide smallpox eradication 
program, it has long been recognized as an efficient ther-
apeutic vaccine and has the longest and most extensive 
history of human use of any virus, which demonstrates its 
safety.20 In contrast, VSV is a genetically simple RNA virus 
(with only five gene products) that rapidly replicates and 

spreads within tumors. VSV is extremely sensitive to the 
antiviral effects of type I interferons (IFNs),19 which act to 
inhibit viral replication and spread in immunocompetent 
(IC) hosts.21 22

The feasibility of using VV and VSV together in combi-
nation OV treatment was previously demonstrated, with 
the potential to improve therapeutic outcomes in triple 
negative breast cancer (TNBC).19 Le Boeuf et al19 used VV 
naturally expressing the viral gene product B18R, an IFN 
receptor decoy that locally antagonizes the cellular anti-
viral response initiated by type I IFNs, in parallel with a 
recombinant version of VSV expressing fusion- associated 
small- transmembrane protein to further enhance VV’s 
ability to spread through an infected monolayer. The 
combination of these viruses resulted in a ‘ping pong’ 
oncolytic effect wherein VV enhanced the ability of VSV 
to replicate and/or spread in tumor cells. In their work, 
Le Boeuf et al19 only considered a single administration 
of the combined dosage protocol (VV+VSV). A rational 
approach leveraging quantitative, predictive modeling 
and experimental results would help to delineate the 
therapeutic potential of combined enhancer VV with 
VSV, and further preclinical investigations into combined 
oncolytic virotherapy strategies.

The translation of OVs from preclinical studies to 
clinical implementation is a major challenge. Solving 
this obstacle requires answering fundamental questions 
about how to effectively design and tailor schedules to 
provide the most benefit to patients. Here, mathemat-
ical and computational biology help to identify strategies 
that offer durable therapeutic benefits prior to human 
trials.23–32 Interpatient heterogeneity is a defining obstacle 
in cancer therapy, and patient- to- patient variability in 
cancer can cause finely tailored treatment protocols 
to exhibit extreme disparate antitumor responses.33 34 
Quantitative approaches have similarly been leveraged to 
integrate experimental data and identify robust optimal 
treatment protocols,33 with quantitative systems pharma-
cology models contributing to decision making at the 
regulatory level.35

In particular, virtual clinical trials36 37 (or in silico 
‘twins’38 39) have recently been used in preclinical 
research to make ‘go or no go’ decisions.33 40–46 We have 
previously developed a computational biology model 
describing tumor- immune interactions and systemic 
cytokine concentrations over time,47 which we used to 
determine the optimal combination of GM- CSF and 
OV.46 We predicted that appropriately eliciting immune 
responses could significantly improve 5- year patient 
outcomes. Jafarnejad et al48 conducted an in silico clin-
ical trial of anti- PD-1 molecule nivolumab for non- small- 
cell lung cancer calibrated to human patient clinical 
trial data. They predicted that patients with adjuvant 
nivolumab treatment in addition to the clinical trial 
protocol of neoadjuvant nivolumab treatment, followed 
by resection produced a durable response. With a 
focus on cytotoxic T- lymphocyte- associated protein 4 
(CTLA-4), programmed cell death protein 1 (PD-1) and 
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programmed death- ligand 1 (PD- L1) blockade in mela-
noma, Milberg et al49 similarly leveraged a virtual clinical 
trial to predict the performance of therapeutic combina-
tions given heterogeneous patient characteristics. Using 
their model validated to measurements from clinical 
trials, they predicted that response rates were higher for 
anti- PD-1/PD- L1 vs anti- CTLA-4/PD-1 combinations, 
and that anti- PD-1 administered before anti- CTLA-4 
produced a greater response than the converse, consis-
tent with clinical results. Applications of virtual patient 
‘twins’ are not only specific to oncology but have also 
been applied in drug development, for example, to esti-
mate the long- term effects of a treatment from short- term 
placebo- controlled trial measurements.36 39

Here, we expanded our mathematical model to investi-
gate the therapeutic potential of enhancing VSV efficacy 
using VV as an enhancer. Using an in silico trial platform, 
we leveraged our computational biology model to predict 
tumor burden under clinically actionable combination 
OV- therapy administration schedules. Motivated by the 
results of Le Boeuf et al19 where VV was shown to enhance 
the efficacy of VSV, we then interrogated the impact of 
enhancer (VV) multiplicity and the lag in VSV adminis-
tration on tumor growth dynamics to establish an optimal 
enhancer number and VSV lag. Our results suggest that 
intrinsic tumor characteristics, mainly tumor aggressivity, 
are the primary drivers of therapeutic response and ulti-
mate success. Importantly, we show that these attributes 
can be exploited for patient stratification and to tailor 
therapeutic protocols.

METHODS
Mathematical model of combination OV therapy and response
We extended our previous model for tumor growth and 
resistance to treatment with virotherapy and the resulting 
immune response46 to consider the impact of using dual 
VV ‘enhancer’ and VSV OV injection. In this scenario, 
the antitumor immune response is either upregulated or 
downregulated depending on the type of virus injected. 
We considered total vaccinia and vesicular stomatitis 
virions ( VVV

(
t
)
  and  VVSV

(
t
)
 , respectively) and two corre-

sponding infected cell populations  
(
IVV

(
t
)
  and  IVSV

(
t
)
 .  

Parameters from Cassidy and Craig46 relating to viral 
kinetics were taken here to be virus dependent (subscript 
notation for  κ, δ, α  and ω ). Additionally, we included 
an immunomodulation term  ρ ∈

[
0, 1

]
  that modulates 

the production of immunostimulatory cytokines. The 
complete set of model equation is provided in the online 
supplemental technical information. A summary of the 
biological assumptions and model schematic is given in 
figure 1.

Briefly, the following biological interactions were added 
to the model described in Cassidy and Craig46:

 ► VSV and VV are morphologically and cytotoxically 
distinct19 and therefore have the following virus- 
specific characteristics: virion- cell infection rates ( κVSV   
and  κVV  ), virion induced cell lysis rates ( δVSV   and  δVV  ),  

virion burst sizes ( αVSV   and  αVV  ), and virion death 
rates ( αVSV   and  αVV  ).

 ► Viruses modulate the production of cytokines 
through either promoting an inflammatory or anti- 
inflammatory immune response,50 modeled through 
an immune modulation constant ( 0 ≤ ρ ≤ 1 ) that 
controls the rate of cytokine production from the 
immune interaction with cycling tumor cells (infected 
and uninfected). As  ρ → 0 , cytokine production 
is reduced, recapitulating an anti- inflammatory 
immune regulation, and as  ρ → 1 , normal inflamma-
tory immune response is recovered.

 ► VV downregulates the production of antiviral factors, 
which aids the spread of VSV.19 Therefore, we consider 
VV to downregulate cytokine production, instigating 
an anti- inflammatory response (ie,  ρ = 0 ), whereas 
VSV upregulates cytokine production from both 
infected and uninfected tumor cells (ie,  ρ ≈ 1 ).

 ► Limitations on the binding of immune cells to 
cognate growth factors or signals50 due to the simul-
taneous infection of both VV and VSV in the tumor 
were represented by higher production of inflamma-
tory cytokines ( ρ = 1 ) and a lower rate of maximal 
immune cell production ( kcp ) when VSV particles are 
introduced after VV has commenced replication.

All other interactions are as in Cassidy and Craig.46 
For more information on the biological interactions and 
their model implementation see online supplemental 
technical information.

Estimation of vaccinia (VV) and VSV viral and immune related 
parameters
Parameters of the model were estimated via a hierarchical 
fitting algorithm in which subsets of the model were fit to 
different experiments using VV and VSV. Full details are 
provided in the online supplemental technical information. 
Briefly, we sequentially fit model parameters to the experi-
mental measurements from HT29 and 4TI cell lines from 
Le Boeuf et al19 and Rausch et al51 (online supplemental 
figures TS1–TS3). Tumor growth parameters were obtained 
by fitting the rate quiescent cells enter the  G1  phase ( a1 ), the 
rate HT29 (human colorectal adenocarcinoma) and 4T1 
(murine mammary carcinoma) cells leave  G1  to enter the 
active phase ( a2 ), and the rate cells undergo apoptosis in  G1  
phase ( d2 ), in immunodeficient (ID) mice (ie, HT29/ID and 
4T1/ID obtained by Le Boeuf et al19 and Rausch et al,51 respec-
tively). We then fixed these parameter values and estimated 
the viral kinetic parameters  κVSV,κVV, δVSV, δVV,αVSV   and  αVV   
from VSV, VV and VV+VSV treated HT29 tumor growth 
measurements in ID mice (ie, HT29/ID- VSV, HT29/ID- VV 
and HT29/ID- VV+VSV obtained by Le Boeuf et al19). Then, 
using IC mice experiments from Rausch et al,51 we estimated 
the immune cell- tumor cell contact rate  kp , the immune cell 
digestion constant  kq,s , the cytokine production half effect 
 Ψ1/2  and the maximal immune cell production rate  kcp . To 
account for the effects of humoral immune responses the 
viral- kinetic parameters  ωVSV,ωVV, δVSV, δVV   were then reca-
librated to the presence of the immune system using 4T1 
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tumor growth measurements in IC mice under VSV, VV and 
VV+VSV (ie, 4T1/IC- VSV, 4T1/IC- VV and 4T1/IC- VV+VSV 
obtained by Le Boeuf et al.19).

Generation of in silico individuals and patient cohorts
To reflect interindividual variability and the heteroge-
neity in treatment outcomes, we generated a unique set 
of parameters to represent individual virtual patients 
(figure 2A, no human patients were involved in this 
study). For this, we sampled tumor and immune cell- 
related parameters  a1, a2, d2, τ , kp, kq, ks, kcp  (where τ   is 
the expected tumor cell cycle duration) from a normal 
distribution with mean  µ  corresponding to the parameter 
value returned in the hierarchical fitting described above.

To avoid the inclusion of non- realistic virtual individuals, we 
verified that each parameter set resulted in a tumor growth 
within two SD of the experimental measurements and the 
mean prediction at each corresponding data time point 
(figure 2B). Using this approach, we created 200 patients 
with parameter values normally distributed about the mean 
empirical or fitted value (online supplemental figure S1, 

online supplemental information), rejecting 265 parameter 
sets for not meeting the inclusion criteria. Since the maximal 
immune cell production rate ( kcp ) changes when VSV is 
introduced, we assumed each individual patient’s parameter 
varied equivalently. To recapitulate heterogeneity in initial 
tumor size and immune populations, we simulated an initial 
seeding of  105  tumor cells, along with an initial cytokine 
concentration  C0  and immune cell count  P0  (day 0) for each 
in silico patient parameter set and fixed the initial conditions 
for treatment to be the tumor and immune populations on 
day 6 (online supplemental figure S2).

Kaplan- Meier survival curves for each cohort treated 
using the combination protocols were used to compare 
the effectiveness of the different trials. To determine a 
cull threshold for the survival of the virtual patients, we 
extrapolated the Kaplan- Meier curves in Le Boeuf et al19 
by taking populations of 10 randomly sampled individ-
uals and calibrating to their cumulative survival curve, 
giving a volume threshold (online supplemental tech-
nical information, online supplemental figure TS4). A 

Figure 1 Schematic representation of the tumor growth model under combination OV- therapy. (A) Biological assumptions 
for the combination OV- therapy interactions between VV (enhancer) and VSV oncolytic viruses. Infection of cells by either VV 
or VSV results in cell lysis, whereby new virus particles are released along with a cocktail of antigens, antivirals and cytokines. 
For simplicity, we considered each virus to release associated cytokines concentrations that can independently instigate the 
recruitment of immune cells (such as phagocytes). However, in the presence of both VV and VSV infections, we assume the 
cytokine production decreases the recruitment of immune cells, allowing for a more targeted immune response and virus- 
induced cell lysis. Additionally, VSV releases antivirals that block the intracellular replication of the virus and the infection of 
neighboring cells. In comparison, lysis of VV infected cells produces antivirals that downregulate the antivirals produced by VSV, 
allowing for infection and replication to occur. Once activated, these immune cells induce cell apoptosis of uninfected cancer 
cells. (B) In the model, quiescent susceptible cells (light blue) activate and begin division by transitioning into the  G1  phase of 
the cell cycle. Cells exit  G1  to enter the active phase (mitosis) and complete division. Most susceptible cells in the active phase 
re- enter quiescence after mitosis, however, certain dividing cells may mutate into an immune- resistant lineage (red). Immune 
interactions are driven by immune cells who encounter quiescent , G1  and actively dividing susceptible tumor cells. Tumor- 
immune interactions increase proinflammatory cytokine concentrations to recruit additional immune cells to the tumor site. VSV 
and VV infect both normal and immune- resistant tumor cells, creating virus- specific infected cell pools. These infected cells 
undergo lysis releasing new virus progeny. The virus also influences the cytokine production which controls the immune cell 
production and activity. VSV: vesicular stomatitis virus; VV: vaccinia virus.
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Figure 2 In silico trial strategy recapitulates experimentally observed variability. (A) (1) Model parameters are established by 
calibrating experimental results to the model’s predictions. A distribution of responses centered at the mean of the experimental 
data is then used to generate parameter sets representing virtual individuals. (2) To populate the trial, each virtual patient’s 
tumor growth is simulated to determine whether they are candidates for the trial. Patients whose tumor growth is acceptable (ie, 
clinically relevant) are placed into repeated identical cohorts. (3) Alternative treatment schedules are then tested on each cohort 
by simulating individual virtual patient responses with the mathematical model and summarizing cohort level outcomes (such 
as mean and SD of responses). (4) optimal actionable schedules are then inferred by comparing cohort level and individual 
outcomes. (B) Tumor growth (relative to tumor volume on day 6) over time in absence of treatment. Black line: model fit; red 
stars: experimental observations measured by Le Boeuf et al,19 gray shaded region: distribution of growth from full cohort of 
patients. (C) Virtual patients were ordered based on intrinsic tumor growth rates r  (top and bottom 10% denoted by shaded 
regions). OV: oncolytic virus.
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local parameter sensitivity analysis of the mean empirical 
values showed that tumor growth was closely related to 
cell cycling rates and immune stimulation (online supple-
mental figure S3, online supplemental information).

We also quantified the growth rate r  of the control 
tumors by approximating the growth curves with an 
exponential growth function from day 12 to 18, that is, 

 r =
(
ln

(
T
(
18

)
− ln

(
T
(
12

))
/6 , to obtain an estimate of 

later tumor growth. This measurement period was chosen 
to account for the discernable differences between cell 
lines after day 12 and the experimental end point at day 
18.19 The implicit parameter r  describes the aggressivity 
of the tumors, with high r  corresponding to aggres-
sively growing tumors and low r  corresponding to slowly 
growing tumors. Ordering patients by their tumor growth 
rate showed a gradual increase in r  values across the 
cohort (figure 2C). Numerical simulations, the creation 

of the virtual cohort, all statistical analyses and figure 
generation were performed using Matlab R2019b.

RESULTS
Tumor aggressivity dictates the optimal number of enhancer 
injections
The effect of the multiplicity of VV enhancer injections 
on the success of therapy is largely unknown, especially 
for a cohort with varying underlying tumor growth rates. 
To assess the impact of the number of enhancer admin-
istrations, we simulated our virtual cohort after multiple 
daily enhancer infections followed by a VSV injection 
given 7 days after the last enhancer (figure 3A). The total 
number of VV injections ( NE ) ranged from 1 to 7 and the 
dosage sizes were fixed to those used in the Le Boeuf et 
al19 (online supplemental technical information).

Figure 3 Influence of enhancer injection multiplicity on tumor burden. (A) The effects of enhancer multiplicity ( NE ) were 
investigated by simulating 1–7 VV enhancers, with VSV administered 7 days after the final enhancing dose. Tumor growth was 
assessed 15 days after the administration of VSV. (B) Distribution in number of tumor cells 15 days after VSV administration 
with respect to the multiplicity of enhancers. Central mark (red) indicates median, bottom edge denotes the bottom quartile, 
top edge denotes the top quartile. Significance indicators report the non- significant results of a Kolmogorov- Smirnov test for 
significance of difference between distributions  

(
p < 0.05

)
 . (C) Tumor growth dynamics from last enhancer to 15 days after VSV 

administration for protocols with 1 (blue) and 7 (red) enhancers. Mean is denoted by a solid line, SD by shaded regions of same 
color and individual virtual patient values are plotted as circles. (D) Kaplan- Meier survival curves for protocols with 1 (dark blue), 
2 (light blue) and 7 (red) enhancers. No significant difference between protocols from 2 to 7 enhancers was found (measured by 
log- rank test for significance,  p < 0.05 ). VSV: vesicular stomatitis virus; VV: vaccinia virus.
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To assess the performance of different enhancer sched-
ules, we quantified the number of tumor cells 15 days 
after VSV administration (VSV +15 days; figure 3B). In 
particular, we found that the number of VV enhancers 
( NE ) did not significantly impact the average tumor size at 
VSV+15, and that the distribution of tumor sizes between 
sequential enhancer multiplicities, that is, one enhancer 
and two enhancers, two enhancers and three enhancers 
etc., was not significantly different. There was, however, 
a difference in the distribution of tumor sizes between 
one enhancer and all other enhancer multiplicities from 
three enhancers onwards (as confirmed by a Kolmogrov- 
Smirnov test,  p = 0.0475 , see online supplemental 
figure S4A for significant pairings). We also determined 
that the mean number of tumor cells was only signifi-
cantly different between one and six enhancers, and 
one and seven enhancers (pairwise t- test,  p = 0.034  and 
 p = 3.8× 10−4 , respectively; online supplemental figure 
S4B, online supplemental information). This suggests 
that the duration of treatment and tumor aggressivity 
could be the principle drivers of the distribution in tumor 
sizes at 20 days, irrespective of the number of enhancers.

Nonetheless, we were able to distinguish low and high 
responders by their tumor growth at VSV +15 days after 
7 vs 1 enhancer (figure 3C; results for all multiplicities 
of enhancer injections in online supplemental figure 
S5A). Though the mean dynamics of the number of 
tumor cells are qualitatively similar after one or seven 
enhancers, there is a statistically significant difference in 
the mean number of tumor cells at VSV +15 days for one 
enhancer compared with seven enhancers. The differ-
ence in variance of cohort responses can be explained 
by the fact that the last enhancer is administered on day 
1 for the one enhancer protocol vs day 6 under the seven 
enhancer schedule, implying that tumors have ultimately 
been growing for a longer period of time under the seven 
enhancer protocol, supporting the conclusion that ther-
apeutic success is largely driven by intrinsic aggressivity 
(ie, higher growth rates). Log- rank tests of the cohort’s 
Kaplan- Meier survival curves also showed that the one 
enhancer protocol was significantly different from all 

others (figure 3D and online supplemental figure S5B in 
the online supplemental information).

An increase in the variability of responses was observed 
with a corresponding increase in the number of 
enhancers (figure 3B). To investigate whether there was 
a link between a patient’s intrinsic tumor growth rate r  
and the optimal number of enhancers, we established 
each patient’s optimal number of enhancers through 
numerically simulating all possible treatment protocols 
and finding the one that minimized tumor burden at VSV 
+15. We found that the optimal number of enhancers 
grew with decreases in intrinsic tumor growth rates 
(figure 4A). Further, our results show that individuals 
with high growth rates consistently had worse outcomes, 
even during ‘optimal’ treatment with two enhancers. To 
discern patterns of responses in less aggressive tumors 
and higher growth rates, we ordered the number of 
enhancers from best protocol to worst protocol for each 
patient, based on the tumor size 15 days after the VSV 
injection (figure 4B). Patients with low tumor growth 
rates were found to perform best under treatment with 
seven enhancers and worst under treatment with a single 
enhancer, whereas patients with high tumor growth rates 
performed best with two enhancers and worst under 
seven enhancers. These results suggest that there is a 
significant difference in the efficacy of protocols given a 
patient’s intrinsic tumor growth rate.

Shorter VSV lags are necessary to slow aggressive tumors
Thus far, enhancer multiplicity was investigated with VSV 
administered 7 days after the last enhancer. However, 
the number of days between the final enhancer and the 
VSV administration can also influence the priming of the 
immune response and the efficacy of the treatment. To 
measure the impact of the VSV lag ( DB  days), we simu-
lated a single administration of VSV 1–15 days after the 
final enhancer, with dosages fixed as in Le Boeuf et al19 
(figure 5A). The number of enhancers was set to either 1 
or 7, based on the enhancer multiplicity results described 
previously. As before, therapeutic response was assessed 

Figure 4 Individual responses to multiple enhancer injections protocols are stratified by intrinsic tumor growth rates. (A) 
Waterfall plot of the change in tumor size 15 days after VSV administration. Bar color depicts the optimal number of enhancers. 
Corresponding tumor growth rate (r  ) for each patient are plotted in gray. (B) Ordering of protocols from best (bottom row) to 
worst (top row) for each patient based on the tumor size 15 days after VSV administration. Corresponding tumor growth rates 
are plotted above (patient ordering identical based on intrinsic tumor growth rate as in A). VSV: vesicular stomatitis virus; VV: 
vaccinia virus.

https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
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by the number of tumor cells (ie, tumor size) at VSV +15 
days (figure 5B).

Similar to what was observed with the enhancer multi-
plicity, increasing the VSV lag increased the variance of 
the cohort’s response (figure 5B). A VSV lag of 1 day, 
irrespective of the number of enhancers, produced the 
smallest average tumor size, with a very small distribution 
of responses at VSV +15 days. In comparison, we observed 
more dispersion in overall responses for VSV lags of 7 days 
or more, with some individuals achieving lower tumor 
sizes than for shorter VSV lags (see online supplemental 
information, online supplemental figure S6A).

Over longer time, the separation in the tumor size under 
a 1- day vs 15- day VSV lag becomes clearer (figure 5C). On 
average, 15- day VSV injection- lags performed the worst of 
all tested scenarios, especially at longer time points (65 
days past VSV). This further solidifies that, as opposed 
to enhancer multiplicity, the time to VSV administration 
is the key determinant of tumor size. Since the immune 
cell population is essentially stabilized by VSV +15 days 
(figure 5E), and cytokine concentrations are saturated 
(figure 5D), the dynamics that occur immediately after 

the VSV injection must lead to the divergence of long- 
term tumor behavior.

As we hypothesized that interindividual variability 
would significantly impact treatment responses, we next 
investigated the optimal VSV lag for each individual after 
either one or seven enhancers. For the one enhancer 
protocol, the optimal VSV lag was a single day for all but 
three individuals with particularly slow growing tumors, 
for whom a 5- day VSV lag was best (figure 6A). However, 
we expect this response to be not particularly significant, 
as the difference in tumor cell numbers between the 
optimal and the second most optimal protocol for these 
three individuals was negligible compared with the rest of 
the cohort (results not shown).

Tumor responses to treatment were increasingly strat-
ified for optimal schedules after seven enhancer admin-
istrations (figure 6B), likely related to the increased 
interindividual variability observed in this case. We 
found that optimal schedules for virtual patients with the 
slowest intrinsic growth rates required a 15- day VSV lag vs 
1 day for those with slow growing tumors. Indeed, there 
was a clear delineation between aggressively growing 

Figure 5 Longer VSV lags have a detrimental effect on therapeutic success. (A) Inspired by the results for enhancer 
multiplicity, the effects of the length of VSV lags were investigated by simulating either a single enhancer protocol (left) or a 
seven enhancer protocol (right). VSV lags were varied from 1 to 15 days after the final enhancer. Tumor growth was assessed 
15 days after the administration of the last VSV. (B) Distribution in number of tumor cells 15 days after VSV administration with 
respect to the duration of VSV lag after 1 (orange) or 7 (blue) enhancers. Central mark (red) indicates median, bottom edge 
denotes the bottom quartile, top edge denotes the top quartile and individual virtual patient values are plotted as circles. (C) 
Tumor growth as a function of time. Markers indicate significant differences in final tumor size (t- test,  p > 0.05 ). (D) Cytokine 
concentrations as a function of time. (E) Immune cells as a function of time. In C, D, E: 1 enhancer, 1- day VSV lag (solid blue), 
7 enhancers, 1- day VSV lag (dashed blue), 1 enhancer, 15- day VSV lag (solid red), 7 enhancers, 15- day VSV lag (dashed red). 
VSV: vesicular stomatitis virus; VV: vaccinia virus.

https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
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tumors that required as short of a lag as possible for 
maximal therapeutic effect and slower growing tumors 
that responded best with as long of a VSV lag as possible 
(figure 6C and online supplemental figure S7 in the 
online supplemental information). Crucially, individuals 
with the slowest tumor growth were predicted to have 
the most meaningful responses, completely recovering 
in some cases. This again underlines that patient stratifi-
cation and schedule tailoring is crucial for ensuring the 
most meaningful clinical response.

Individualizing enhancer-VSV scheduling
To further delineate vaccination scheduling in distinct 
subcohorts, we tailored VV enhancer multiplicity (between 
1 and 7) and VSV lag (between 1 and 15 days) for each 
virtual individual according to intrinsic tumor character-
istics (figure 7A). The individual optimal protocol was 
determined by simulating all scheduling possibilities and 
minimizing tumor size at VSV +15 days.

As before, we found clear stratification between optimal 
protocols for slowly growing (seven enhancers followed by 
a 14 or 15 days VSV lag) and fast growing (one enhancer 

followed by a 1- day VSV lag) tumors (figure 7A). Interest-
ingly, for a range of low intrinsic growth rates r , optimal 
schedules resulted in near complete tumor removal, 
whereas we found a jump in the number of tumor cells, 
followed by a linear dependence on the intrinsic growth 
rate after a critical value around  r ≈ 0.03  1/day. Clinically, 
an r  value of 0.03 corresponds to a tumor doubling time 
of 23 days, which was above the original cohort average of 
15 days (figure 2C). Overall, these results underline that 
tumor aggressivity is the determining factor for combina-
tion OV scheduling and the outcome of enhancer- VSV 
therapy.

Cross-validating tailored strategies
To confirm that outcomes are improved by employing 
therapeutic strategies based on tumor aggressivity and 
investigate the robustness of our stratification strategy, we 
generated two new cohorts comprised of 50 virtual individ-
uals with slow growing tumors ( 0.0196 < r < 0.0260 ) and 
50 with aggressively growing tumors ( 0.0629 < r < 0.0657 ). 
These ranges for r  where chosen to correspond to the top 
and bottom  10%  of the initial cohort’s r  value (figures 2C 

Figure 6 Optimal VSV lag is stratified by intrinsic tumor growth rates. (A) Waterfall plot of the change in tumor size 15 days 
after the last VSV administration for the one enhancer protocol. Bar color depicts the optimal VSV lag. Corresponding tumor 
growth rate (r ) for each patient are plotted in gray. (B) Waterfall plot of the change in tumor size 15 days after the last VSV 
administration for the seven enhancer protocol. Bar color depicts the optimal VSV lag. Corresponding tumor growth rate (r ) 
for each patient are plotted in gray. (C) Ordering of protocols from best (bottom row) to worst (top row) for each patient based 
on the tumor size 15 days after the last VSV administration for seven enhancer protocol. Corresponding tumor growth rates 
are plotted above (patient ordering identical based on intrinsic tumor growth rate as in B. The ordering of the optimal VSV lag 
for the one enhancer protocol is provided in online supplemental figure S6 in online supplemental information). VSV: vesicular 
stomatitis virus.

https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
https://dx.doi.org/10.1136/jitc-2020-001387
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and 7B). We next simulated the tumor growth of these 
cohorts under the previously determined optimal proto-
cols, that is, 7 enhancers and a 15- day VSV lag for slow 
growing tumors, and one enhancer and a 1- day VSV lag 
for aggressive tumors (figure 7C). Additionally, we simu-
lated each cohort under the alternate optimal protocol, 
that is, aggressively growing tumors with the slow tumor 
growth protocol and vice versa.

Overall, in terms of survival and irrespective of 
protocol, the aggressive tumor growth cohort performed 
markedly worse than the slow tumor growth cohort 
(figure 7D). As these represent the 10% most aggressive 
tumors of the original cohort, it is not surprising that 
the efficacy of therapy is minimal. In contrast, survival 
in the slow growing cohort was markedly different under 
the two protocols: when treated with their optimized 
protocol, all individuals survived, and while survival 
declined when treated with the aggressive tumor growth 

protocol, it remained overall stronger than in the aggres-
sive tumor cohort treated with its matched optimal treat-
ment strategy. Nonetheless, both strategies perform 
better than the no treatment case (results not shown). 
To further confirm the optimality of the aggressive and 
slow tumor growth protocols, we also determined each 
virtual patient’s optimized combination schedule for the 
new cohorts (figure 7E). Unsurprisingly, the optimal 
protocols were the same as in the larger original cohort, 
implying there is a robust link between tumor aggres-
sivity and the optimal combination OV- therapy protocol. 
Interestingly, for patients with extremely slow growing 
tumors (r  close to 0.0196, doubling time of roughly 35 
days) the optimal VSV lag was slightly shorter ( DB = 13  
days) than the rest of the slow growing tumor cohort. 
Thus, we posit that a combined OV therapeutic vaccina-
tion approach with VV +VSV will be most effective for 
slow growing tumors.

Figure 7 Individualized schedules are determined by tumor aggressivity and risk stratification according to tumor aggressivity 
is necessary for optimal outcomes. (A) Optimal number of enhancers (yellow), optimal VSV lag (fuchsia) and relative tumor 
size 15 days after last VSV versus untreated control (purple) as a function of intrinsic tumor growth rate. For all but a subset 
of the least aggressive tumors, individualized protocols called for a VSV lag of 1 day, with fewer than seven enhancers. (B) 
Two new cohorts of patients were generated with either aggressive tumor growth ( 0.0629 < r < 0.0657 , purple) or slow tumor 
growth ( 0.0196 < r < 0.0260 , green). Original Le Boeuf et al data (red stars) and model fit to the original data (black curve) as 
in figure 2C. (C) Each cohort was simulated according to the previously determined optimal aggressive protocol (one enhancer 
followed by a VSV 1 day later) and optimal slow protocol (seven enhancers followed by a VSV 15 days later). To assess 
the effect specificity of each protocol, a cross- over trial wherein virtual patients with fast growth were treated with the slow 
protocol and vice versa was performed. (D) Kaplan- Meier survival curves for the two cohorts under the two different protocols. 
(E) To confirm the robustness of the aggressive and slow protocols, the optimal number of enhancers and VSV lag was then 
determined for patients in the new cohorts. The results of the newly generated cohort were then compared with the original 
cohort in A. Tumor size 15 days after the VSV was assessed. Original cohort individualized therapy compared with the new slow 
growth (top left) and new aggressive growth (top right) individualized schedules. Overlays of the corresponding optimal number 
of enhancers and VSV lag for each patient from old protocol versus the new slow growth (bottom left) and aggressive growth 
(bottom right). VSV: vesicular stomatitis virus; VV: vaccinia virus.
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DISCUSSION
In 2015, the US FDA approved T- VEC for the treatment 
of non- resectable late- stage melanoma, making it the 
first OV to reach the Western market. However, despite 
much promise, the efficacy of OV monotherapy has been 
limited.52 53 In response, combined OV schedules hold 
much promise as an effective cancer therapy capable of 
eradicating tumor cells through virus infection, immune 
recruitment, and by providing a long- lasting durable 
response. Results from combined OV strategies are 
encouraging, with three clinical trials underway for an 
adenovirus and OV Maraba anticancer combination OV 
treatment.8 9

A major obstacle to the clinical implementation of 
combination OV- therapy protocols is designing promising 
and optimal therapeutic schedules. Further, the repro-
ducibility of protocol efficacy must be demonstrated in 
heterogeneous patient cohorts. For this preclinical plan-
ning, mathematical and computational biology have a 
large role to play in predicting therapeutic responses and 
designing effective strategies. Leveraging our previous 
computational model,46 we developed an in silico model 
of combination OV- based therapeutic vaccination with 
vaccinia (VV) and VSV OVs to test the heterogeneous 
response to and optimality of an enhancer virus and VSV 
protocols. Each generated virtual patient was created 
based on a realistic distribution of model parameters, 
with growth following the trend of experimental results.

We found that the number of enhancers does not signifi-
cant impact the average response of our generated virtual 
cohort. Though perhaps unintuitive, this is likely due to 
a saturation in the initial immune response. Investigating 
this further, our results show that while the variance of 
tumor sizes increased with the number of enhancers, the 
overall survival of the cohort did not vary significantly. 
Ultimately, no single optimal protocol was found for most 
of the cohort. However, at the individual level, there was 
a significant difference in outcomes found when opti-
mizing the number of enhancers: for tumors with low 
intrinsic growth rates, a larger number of enhancers is 
necessary to be effective, whereas aggressive tumors 
required fewer enhancers. The latter finding supports 
the idea of ‘hitting hard, hitting early’ for fast growing 
tumors. This clear stratification based on tumor aggres-
sivity suggests that the effectiveness of the enhancer- VSV 
protocol is largely a function of the relationship between 
viral replication and tumor growth. For a given initial 
tumor size, faster growing tumors will have more cells 
for the virus to infect and subsequently lyse, so there is a 
trade- off between the number of enhancers and the delay 
in administering the VSV to ensure that cells are suffi-
ciently infected and subsequently recruiting immune cell 
subsets. On the other hand, for slowly growing tumors, 
more enhancers are needed to load the tumor microen-
vironment with virus and sufficiently activate the immune 
system. An advantage of OVs compared with other immu-
nostimulatory compounds is that the concentration of 
OVs in the tumor microenvironment will initially increase 

due to viral replication, whereas other drugs will experi-
ence rapid clearance.

Conceptually, longer VSV lags should increase the 
mean tumor size, given that tumors are not eradicated 
by the priming protocol and are thus continuing to grow 
prior to administration of VSV. Indeed, we predicted that 
the optimal VSV lag should overall be between 1 and 4 
days, or shorter than the currently used 7 days. Similar 
to what was observed for enhancer multiplicity, we found 
that increasing the VSV lag increased the dispersion in 
outcomes, irrespective of the number of enhancers. 
Thus, it is not necessarily the number of enhancers or 
VSV lag driving the variation in treatment response, but 
rather the duration of the treatment.

While there are currently no clinical trials combining 
VV and VSV for the treatment of TNBC, there are other 
clinical and experimental results that support the find-
ings of our virtual clinical trial. A handful of clinical trials 
have been conducted with VV or VSV individually,9 54–56 
and there is currently a phase I trial in stage III- IV mela-
noma using VSV- IFNbetaTYRP1 (NCT03865212). The 
randomized phase 2 dose- finding trial of Pexa- Vec (an 
oncolytic VV with a gene encoded to increase expression 
of GM- CSF) for the treatment of on advanced hepatocel-
lular carcinoma found a clear distinction in survival based 
on dosage, with the high- dose cohort having an increase 
in overall survival compared with the low- dose cohort.54 
Further, the high- dose protocols performed equivalently 
on patients with or without metastases, whereas, the 
low dose protocol was only optimal for patients without 
metastases. As the presence of metastases is an indicator 
of disease aggressivity, these findings align with our 
conclusion that the stage and overall aggressiveness of a 
patient’s disease is a determinant for oncolytic VV treat-
ment efficacy, and underlines the importance of patient 
stratification into appropriate schedules for oncolytic VV 
therapeutic success.

Further, high levels of Ki-67 expression in TNBC have 
been found to correlate strongly with more aggressive 
proliferation and poor prognoses.57 By evaluating a total 
of 1800 patients with early invasive TNBC, Zhu et al57 
determined that adjuvant chemotherapy was associated 
with better overall survival in patients with higher Ki-67 
expression than patients with low Ki-67 expression, with 
adjuvant chemotherapy having no effect on disease- free 
survival in the latter group. Given that Ki-67 is a marker 
of proliferation, these data corroborate our finding that 
tumor aggressivity can be a predictor of treatment success 
in TNBC, and that using Ki-67 expression as a threshold 
for therapeutic planning and prognostic factor may 
improve survival.

There are certain limitations to our model formalism. 
Specifically, the stimulated immune response only 
impacts the growth of the tumor and only has a secondary 
effect on the virus: reducing the number of cells available 
for the virus to infect and lyse. Despite this shortcoming, 
our model was able to replicate the observed dynamics 
of VV and VSV in IC mice and accommodate for the 
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anti- inflammatory and proinflammatory responses to 
these viruses. Future iterations of the model could 
build on this and develop a more complex model of 
the immune response to combination OV- based vaccine 
therapy. In doing so, our virtual clinical trial platform 
could be used to optimize combined OV- immunotherapy 
(such an anti- PD-1 immune checkpoint inhibitor1) and 
investigate whether we see a similar segregation of the 
optimized protocol based on tumor aggressivity. In addi-
tion, future experiments investigating combined VV and 
VSV treatment in other tumor lines or humans will allow 
for further model validation.

Through rational considerations, we developed a quan-
titative approach to therapeutic cancer vaccination that 
provides actionable and clinically relevant scheduling 
recommendations that can be easily translated from 
bench to bedside using complementary methodologies. 
Current experimental work in therapeutic vaccinations 
could provide effective novel cancer therapeutics1 58 and 
there is a growing push towards personalized tumor- 
specific vaccination therapies.59 Unfortunately, the pace 
of immunotherapy innovation is limited by clinical trial 
requirements. Here, we put forward a strategy to fill that 
gap, helping to define the next phase of combined OV 
regimens.
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