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Background: The disease pathology for diabetes mellitus patients with chronic kidney
disease (CKD) may be diabetic nephropathy (DN), non-diabetic renal disease (NDRD), or
DN combined with NDRD. Considering that the prognosis and treatment of DN and NDRD
differ, their differential diagnosis is of significance. Renal pathological biopsy is the gold
standard for diagnosing DN and NDRD. However, it is invasive and cannot be
implemented in many patients due to contraindications. This article constructed a new
noninvasive evaluation model for differentiating DN and NDRD.

Methods: We retrospectively screened 1,030 patients with type 2 diabetes who has
undergone kidney biopsy from January 2005 to March 2017 in a single center. Variables
were ranked according to importance, and the machine learning methods (random forest,
RF, and support vector machine, SVM) were then used to construct the model. The final
model was validated with an external group (338 patients, April 2017–April 2019).

Results: In total, 929 patients were assigned. Ten variables were selected for model
development. The areas under the receiver operating characteristic curves (AUCROCs) for
the RF and SVM methods were 0.953 and 0.947, respectively. Additionally, 329 patients
were analyzed for external validation. The AUCROCs for the external validation of the RF
and SVM methods were 0.920 and 0.911, respectively.

Conclusion: We successfully constructed a predictive model for DN and NDRD using
machine learning methods, which were better than our regression methods.

Clinical Trial Registration: ClinicalTrial.gov, NCT03865914.

Keywords: non-diabetic renal disease, diabetic nephropathies, diagnosis model, machine learning, renal biopsy
1 INTRODUCTION

As lifestyle changes, the number of diabetes mellitus (DM) patients increases globally, particularly in
those with type 2 DM (T2DM) (1). The latest edition (10th edition) of the International Diabetes
Federation Diabetes Atlas shows that 537 million adults are currently living with diabetes globally,
and there are 140.9 million DM patients in China, which is the country with the largest number of
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DM patients (2). Diabetic nephropathy (DN) is one of the most
important microvascular complications caused by DM, and
approximately 30–40% of DM patients develop DN (3), while
one-third of DN eventually develop into end-stage renal disease
(ESRD) (4, 5). DM has become the major cause of ESRD
worldwide (4). In 2018, ESRD was attributed to diabetes in
Singapore (66.4%), Malaysia (66.2%), Qatar (63.9%), Hong Kong
(52.0), and China (13.30%) (6, 7).

The disease pathology for DM patients with CKDmay be DN,
non-diabetic renal disease (NDRD), or DN combined with
NDRD. Considering that the prognosis and treatment of DN
and NDRD differ, their differential diagnosis is significant (8).
Compared to DN, NDRD would have a better renal prognosis
and longer survival in most cases. The 2007 Kidney Disease
Outcomes Quality Initiative (KDOQI) guidelines are widely used
for the clinical distinguish between DN and NDRD, but our
previous study found that the specificity (40.63%) of the KDOQI
guidelines was insufficient (9).

Some indicators, such as diabetic retinopathy (DR), DM
course, and Hb could help in identifying DN and NDRD (10–
12). However, the efficiency and accuracy of a single indicator
may be insufficient. Currently, renal pathological biopsy is the
gold standard for diagnosing DN and NDRD. However, its
implementation in patients with diabetes-related CKD is
subject to various contraindications, and the patient refused.
Moreover, it is invasive and may cause complications.

In our previous study, we used the regression method to
establish the distinguishing model (13, 14). Currently, machine
learning methods have many advantages compared to traditional
regression methods (15). In this study, we used support vector
machine (SVM) and random forest (RF) methods to build new
models (16, 17).

Using renal pathological biopsy as the gold standard, we
established a noninvasive differential diagnostic model based on
SMM and RF to distinguish DN and NDRD patients.
2 MATERIALS AND METHODS

2.1 Patient Selection
This retrospective study included 1,030 consecutive patients with
type 2 diabetes who required kidney biopsy at our institution
from January 2005 to March 2017 for model development.
Additionally, we screened 338 patients from April 2017 to
April 2019 at our center for external validation. The variables
used for external validation were the same as the variables in the
development set. This study was attached to a registered clinical
trial [ClinicalTrial.gov. Registry (NCT03865914)].
Abbreviations: AUCROC, Area under the receiver operating characteristic curve;
BP, Blood pressure; BMI, Body mass index; CKD, Chronic kidney disease; DM,
Diabetes mellitus; DN, Diabetic nephropathy; DR, Diabetic retinopathy; Hb,
Hemoglobin; KDOQI, Kidney Disease Outcomes Quality Initiative; NDRD,
Nondiabetic renal disease; RF, Random forest; ALB, Serum albumin; sCr, Serum
creatinine; SVM, Support vector machine.
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The study protocol was approved by the Medicine Ethics
Committee of the Chinese People’s Liberation Army General
Hospital (Approval No. S2014-012-01). Each patient provided
written informed consent before their participation in the study.
All patients were screened according to the protocol shown in
Figure 1. Patients were classified as having DN, NDRD, or DN
combined with NDRD based on the results of the kidney biopsy.
Patients with both DN and NDRD were excluded from the
modeling population (13).

All patients underwent kidney biopsy after signing the
informed consent form. The indications for kidney biopsy
were consistent with our previous standards (14). The kidney
biopsy indications for the suspected diagnosis of NDRD at our
center were in accordance with those listed in the 2007 KDOQI
guidelines (18).

Type 2 diabetes was defined according to the World Health
Organization criteria (19). DN was diagnosed on the basis of
histological characteristics, such as glomerular hypertrophy,
thickened capillary basement membranes, diffuse mesangial
expansion, nodular mesangial sclerosis, exudative lesions such
as capsular drop or fibrin cap, mesangiolysis, capillary
microaneurysm, or hyalinosis of afferent and efferent arterioles
(20). NDRD was diagnosed on the basis of the classical criteria
(21). The results were obtained independently from two
pathologists. Discordant results were solved through
a discussion.
2.2 Data Collection
Baseline characteristics and clinical parameters were collected
from all patients before kidney biopsy. Baseline characteristics
included age, sex, body mass index (BMI), blood pressure (BP),
and medical history of DM and/or hypertension. Laboratory data
obtained included measurements of HbA1c, hemoglobin (Hb),
serum creatinine (sCr), serum albumin (ALB), estimated
glomerular filtration rate (eGFR), and serum lipid levels.
Variable definitions have been provided in previous studies (9).
2.3 Variable Selection and Treatment of
Missing Data
The variable importance of all 49 candidate variables (listed in
Supplementary Table 1) was ranked using the RF classification
method. Missing values were imputed by predictive mean
matching. The Gini index was used for decisions related to
variable ranking or node splitting. The importance and clinical
significance of all variables were evaluated to rank the variables.

2.4 Model Building
All processes are shown in Figure 2. For new model
development, SVM and RF methods were used.

Model construction steps: the entire modeling used RF and
SVM models. RF modeling used the ranger module in the R
language (parameter: importance = “impurity”), and SVM
modeling used the kernellab module in the R language
(parameters: kernel = “rbfdot”; C = 2, cross = 5). The detailed
modeling steps are described as follows:
June 2022 | Volume 13 | Article 913021
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FIGURE 2 | Analysis flow for the development and evaluation of the models.
A B

FIGURE 1 | Patient screening process. (A) Screening process for the modeling group. (B) Screening process for the external validation group. Mixed: the biopsy
result is DN combined with other kind of kidney disease.
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(1) Random forest and support vector machine modeling were
performed for 929 samples in the training set (including 49
variables in total) (note: the steps were performed on the RF
and SVM models respectively).

(2) The RF model was used to screen 49 variables, and finally, 10
features were determined as variables in the final modeling.

(3) The 929 samples of the training set and the 10 final selected
variables were used to perform five-fold cross modeling (80%
of the randomly divided data is used as the training set, and
20% as the verification set), and the modeling results were
evaluated.

(4) Modeling was performed with all 929 samples.

(5) The final model was constructed using all the samples, and
the 329 externally reserved samples were used as the test data
set; model evaluation was performed, and the receiver
operating characteristic (ROC) curve was drawn.
2.4.1 Random Forest
The RF machine learning algorithm is an ensemble tree method
that can generate many regression trees to detect interactions. At
each split, a candidate variable that maximizes the difference in
cumulative hazard between the daughter nodes was chosen, and
the splitting stopped at the terminal nodes when the data at hand
can be split such that each terminal node has at least one unique
outcome (22).

2.4.2 Support Vector Machine
The SVM algorithm was originally proposed by Vapnik and
colleagues in 1963 (23). It creates a decision boundary, known as
the hyperplane, between two classes (24). The input variables
entered were either continuous or categorical data in the SVM,
whereas the output variables entered were binary data. The
dataset was further divided into training and validation
subsets. The variables were entered into the classifier to yield
the final model.

2.4.3 Logistic Regression
Logistic regression was performed using SPSS version 20.0 (IBM
Corp., Armonk, NY). Accuracy and effectiveness were calculated
using the formulas previously established by Zhou Jianhui (2008)
and Liu Moyan (2014) at our center (9, 10), which were
abbreviated as model-2008 and model-2014. The two formulas
are listed in Supplementary Table 2.

2.4.4 Other Statistical Analyses
The remaining statistical analyses were performed using SPSS
version 20.0 (IBM Corp., Armonk, NY) and R version 3.5.1 (R
Foundation for Statistical Computing, Vienna, Austria) (25).
Clinical and laboratory features were compared between the
groups through analysis of variance. This information is
presented as means and standard deviations. Kruskal–Wallis
tests were performed to compare medians and interquartile
ranges. Pearson’s chi-square test was used for numbers and
proportions; the test was used to compare performances
Frontiers in Endocrinology | www.frontiersin.org 4
among models. A two-tailed P-value of <0.05 was considered
statistically significant.
3 RESULTS

3.1 Trial Population
In total, 929 patients were included in the development set and
assigned to one of the two groups (DN and NDRD), based on the
outcomes of the kidney biopsy. Patient characteristics are shown
in Supplementary Table 3. The mean age (at the time of kidney
biopsy) was 51.34 ± 10.02 (range, 19–85) years. Patients in the
DN group had higher BP than those in the NDRD group
(p <0.05). Patients with DN were more likely to experience DR
and cardiovascular and cerebrovascular diseases (CCVD) than
those with NDRD. Compared with patients with DN, patients
with NDRD were more likely to have higher levels of Hb, BMI,
ALB level, eGFR, Ucr, serum lipid, total cholesterol, and lower
levels of SBP, DBP, MAP, pulse pressure, FBG, 24-hour
proteinuria, and BUA.

3.2 Pathological Results of the
NDRD Group
The results of the kidney biopsy indicated that 329 (35.41%) and
600 (64.59%) patients had DN and NDRD, respectively.
Numerous pathological subtypes were observed in the NDRD
group; membranous nephropathy was frequently observed
(32.33%), followed by IgA nephropathy (30.83%), and then
mesangial proli ferat ive glomerulonephrit is (6 .00%)
(Supplementary Table 4).

3.3 Importance Ranking
Various predictors were ranked based on their order of
importance, using the RF method. DR was found to be the
most important, followed by the duration of DM and then Hb,
pulse pressure (PP), sCr, and ALB levels (Supplementary
Table 5 lists the top 21).

3.4 Traversal Modeling and
Selected Markers
We exhausted all combinations of variables (variables ranged
from 6 to 12) for RF and SVM, and the best combinations are
listed in Supplementary Table 6. Moreover, we observed that the
increase in performance with ≥10 markers was marginal
(Supplementary Figure 1). We then obtained the best
combination of the variables, which consisted of the following:
DR, DM course, Hb, PP, sCr, ALB, total cholesterol (TC) levels,
sudden onset of heavy proteinuria, hematuria, and family history
of DM.

3.5 Model Building
The performances of RF and SVM are shown in Tables 1, 2. The
AUCROC for RF reached 0.953 (0.939–0.967), and that for the
SVM method reached 0.947 (0.931–0.963).
June 2022 | Volume 13 | Article 913021
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3.6 External Validation
In total, 329 patients were enrolled for external validation, and
their characteristics are presented in Supplementary Table 7.
Validations were performed using the same variables as in the
development set. We validated the four models under two
conditions. First, the calculations were performed under ideal
conditions (isolated DN vs. isolated NDRD). Second, the
calculations were performed under actual conditions (DN
patients vs. non-DN patients [NDRD with and without DN])
(9, 26). Regarding DN vs. NDRD, the AUCROC for the RF
reached 0.920, and the SVM reached 0.911; model-2008 reached
0.886, and model-2014 reached 0.917. For DN vs. non-DN
patients, the AUCROC for RF also reached 0.855, and SVM
reached 0.846; model-2008 reached 0.821, and model-2014
reached 0.841 (Table 3; Supplementary Figure 2).

The comparison among the four models showed that RF and
SVM do have better diagnostic performance than logistic
regression models (Supplementary Table 8). The chi-square test
also showed that there was no significant difference for eachmodel
between the two conditions (isolated DN vs. isolated NDRD; DN
vs. non-DN), which means that these models also have good
performances in the real world (Supplementary Table 9).
4 DISCUSSION

Although some CKD patients have a clear history of diabetes and
other complications (such as DR), which are clinically suspected
to be diabetic nephropathy, there are still some kidney biopsy
results of NDRD or DN combined with NDRD. The incidence of
DN and NDRD varies greatly in different studies. The prevalence
of DN ranges from 6.5 to 94% with an average of 41.3% (27–29);
Frontiers in Endocrinology | www.frontiersin.org 5
NDRD ranges from 3 to 93.5% with an average of 40.6% (29–31);
and DN with NDKD ranges from 0 to 45.5%, with an average of
18.1% (29) in the CKD patients with T2DM history. Our study
showed that 64.58% of biopsied type 2 diabetic patients were
diagnosed with NDRD.

In our study, membranous nephropathy (MN) was the most
common type, accounting for 32.33% of all NDRD cases,
followed by IgA nephropathy, which accounted for 30.83%. In
previous studies, MN (7 to 35%) was the most common cause of
NDRD (32, 33), ranging from 7 to 35% (34–37). Some studies
have also shown IgA nephropathy was the most common type of
NDRD, which ranged from 3 to 59% (31, 38–40). Some
researchers found that the prevalence of membranous
nephropathy increased from 12 to 24% during the last decades
(41), which might be due to the impact of air pollution and other
factors (42).

DR, DM course, Hb levels, PP, and hematuria were among
the most important indicators of diagnosis through importance
ranking in our study. Same with the previous studies, which
reported that the absence of DR (43), hematuria (44), and shorter
course of DM (45) are risk factors for NDRD, while lower
hemoglobin (32) and high BP (44) levels are risk factors for
DN. We recently listed the published models for differential
diagnosis of DN and NDRD (Supplementary Table 10) (13, 14,
46–48), which are most based on logistic regression analyses.
Compared with the previous studies, we made use of larger
samples and new methods to build our modes, and we compared
two of them with our models in external groups.

DR ranked first in all indicators; DR was a co-occurrence in
79.3% of DN patients in this study. Previous studies ranged from
37 to 84% (49–51). In most cases, the kidney and eye were
damaged at the same time for DM patients. It used to be
emphasized that the absence of DR indicates a high likelihood
TABLE 2 | Five-fold cross-validation for the support vector machine method with 10 variables.

SVM Accuracy Sensitivity Specificity PPV NPV Balanced accuracy ROC AUC

1 0.892 0.877 0.900 0.826 0.931 0.889 0.948
2 0.870 0.723 0.950 0.887 0.864 0.837 0.928
3 0.908 0.868 0.932 0.881 0.924 0.900 0.972
4 0.865 0.867 0.864 0.754 0.931 0.865 0.940
5 0.881 0.875 0.884 0.8 0.93 0.880 0.947
Average 0.883 0.842 0.906 0.829 0.916 0.874 0.947
SD 0.017 0.067 0.035 0.056 0.029 0.024 0.016
June 2022 | Volume 13 | Art
AUC ROC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value; SVM, support vector machine.
TABLE 1 | Five-fold cross validation for the random forest method with 10 variables.

RF Accuracy Sensitivity Specificity PPV NPV Balanced accuracy AUCROC

1 0.908 0.894 0.916 0.855 0.940 0.905 0.946
2 0.881 0.746 0.951 0.887 0.879 0.848 0.946
3 0.903 0.889 0.91 0.836 0.941 0.899 0.974
4 0.849 0.848 0.849 0.725 0.922 0.848 0.938
5 0.860 0.844 0.868 0.771 0.913 0.856 0.960
Average 0.880 0.844 0.899 0.815 0.919 0.871 0.953
SD 0.026 0.059 0.040 0.066 0.025 0.028 0.014
i

AUCROC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value; RF, random forest.
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of NDRD but not always, for organ heterogeneity, and they
might have different protective factors. Some patients did not
always have DR and DN at the same time. Studies showed that
10–70% of biopsied DN patients did not have DR, and 6–57.4%
of biopsied NDRD patients had DR (48, 52–55). Thus, the single
DR index may make mistakes in verifying DN and NDRD.

The presence of microhematuria in diabetic patients with
proteinuria may range from 11 to 76–78% (11, 56, 57), while that
in DN patients ranges from 5 to 75%. In our study, the
prevalence of hematuria in the NDRD group was significantly
higher than that in the DN group (5.8% versus 24.2%). It was
believed that hematuria was of great significance in
distinguishing between DN and NDRD. But recently, a meta-
analysis concluded that type 2 diabetes patients presenting with
hematuria may be slightly more likely to develop NDRD (58).

In our study, the DN group tended to have more severe
hypertension than the NDRD group. The systolic and diastolic
blood pressures (SBP and DBP) of the DN group were higher than
those of the NDRD group, and this result is consistent with that in
our previous study, which reported that lower BP was a good
predictor of NDRD (10, 13, 59). In our study, lower PP was a better
predictor of NDRD than both SBP and DBP in our study. DN, as
the microvascular disease of DM, has many typical vascular lesions,
such as arteriolar hyalinosis, arteriosclerosis, and the presence of
large vessels (60), which might lead to a higher PP in DN patients.

Kidney biopsy is the gold standard method for diagnosis, but
it cannot be performed on all patients because of
contraindications (anticoagulation, active bleeding, and
unilateral nephrectomy) and reluctance to undergo biopsy. As
it is an invasive technique with certain risks, such as hematuria
and perirenal hematoma, arterial embolization might be required
(61, 62). Moreover, there is no consensus on the indications for
biopsy in DM patients (63, 64). It is believed that the main
purpose of biopsy is to detect cases of NDRD (63, 64).
Nephrotomy was implemented to clarify its pathological type
and implement earlier intervention (62). The rates of renal
biopsies performed in patients with DN are variable, ranging
from 12 to 80% (65–68). Thus, the limited accuracy of a single
indicator and the implementation of kidney biopsy make it of
great significance to establish a non-invasive differential
diagnosis model for the diagnosis of DN and NDRD.

The previous non-invasive identification guidelines widely
used internationally are the 2007 KDOQI guidelines (18), which
Frontiers in Endocrinology | www.frontiersin.org 6
were evaluated in Chinese patients and found that many of the
predictors were binary categorical variables. The low specificity
of the guidelines renders them not suitable for diagnostic criteria
(9). So we built the models using the logistic regression method
in 2008 and 2014 (13, 14). Recently, Jiang et al. [(47), n = 302)],
Yang et al. [(46), n = 213)], and Garcıá-Martıń [(48), n = 207)]
also used the logistic regression method to build the diagnostic
models, and all the models found the index like DR and DM
course are important. In this study, we developed new models
with machine learning and compared them with our previous
models established in 2008 and 2014. The results showed that RF
and SVM were superior to the traditional method.

Machine learning has been used in many diabetes-related
CKD studies, such as genotype–phenotype risk patterns (69) and
ensemble feature selection for clinical markers (70). It is also
used to select the risk factors for diabetes-related CKD
development (70, 71) or to construct a model to detect the
progression of diabetes-related CKD (72). In this study, we used
it to distinguish between DN and NDRD.

This study had several limitations. First, the time span of
patients included is quite large (2005–2017); thus, the disease
patterns for DM patients combined with CKD may change over
this long period. Therefore, we built a new model using a new
population (2015–2017), and it was verified externally. The
2015–2017 model did not show better performance
(Supplementary Table 10) than the previous model (2005–
2017), which indicates that the large time span of enrollment
has little influence. Second, the model mainly included clinical
predictors rather than some new predictors, which may limit the
further improvement of the model accuracy. Finally, this is a
retrospective and single-center study in a developing country like
China. It may not be suitable for other countries.

Despite the above limitations, this model has provided a new
method for the clinical differentiation between DN and NDRD.
Our research has many advantages: 1. a large sample size avoids
bias considerably; 2. all parameters were routine clinical variables
that can be easily obtained and used by clinicians; 3. external
verification shows that the models have low learning and test
errors; 4. to enhance the effect of its practical application, we also
verified patients with DN combined with NDRD, which
indicated that the model has good feasibility in the real world;
and 5. kidney biopsy results are the gold standard for verifying
the accuracy of the models.
TABLE 3 | Performance for SVM and other models in external validation.

Models Sensitivity Specificity PPV NPV AUCROC

Isolated DN vs. isolated NDRD SVM 0.867 0.889 0.926 0.807 0.911
RF 0.905 0.864 0.899 0.872 0.920
Model-2008 0.893 0.706 0.730 0.881 0.886
Model-2014 0.858 0.853 0.899 0.798 0.917

Isolated DN vs. non-DN SVM 0.717 0.890 0.892 0.713 0.846
RF 0.735 0.899 0.899 0.735 0.855
Model-2008 0.732 0.765 0.703 0.790 0.821
Model-2014 0.688 0.883 0.892 0.669 0.841
June 2022
 | Volume 13 | Arti
AUCROC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value; SVM, support vector machine; RF, random forest; DN,
diabetic nephropathy; NDRD, non-diabetic nephropathy.
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In conclusion, the main purpose of this study was to establish
a noninvasive method to differentially diagnose DN and NDRD.
As a result, fewer kidney biopsies can be performed, reducing the
suffering and costs for patients.
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