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ABSTRACT

The tRNAHis guanylyltransferase (Thg1) family
comprises a set of unique 30–50 nucleotide addition
enzymes found ubiquitously in Eukaryotes, where
they function in the critical G�1 addition reaction
required for tRNAHis maturation. However, in most
Bacteria and Archaea, G�1 is genomically encoded;
thus post-transcriptional addition of G�1 to tRNAHis

is not necessarily required. The presence of highly
conserved Thg1-like proteins (TLPs) in more than
40 bacteria and archaea therefore suggests
unappreciated roles for TLP-catalyzed 30–50 nucleo-
tide addition. Here, we report that TLPs from
Bacillus thuringiensis (BtTLP) and Methanosarcina
acetivorans (MaTLP) display biochemical properties
consistent with a prominent role in tRNA 50-end
repair. Unlike yeast Thg1, BtTLP strongly prefers
addition of missing N+1 nucleotides to 50-truncated
tRNAs over analogous additions to full-length tRNA
(kcat/KM enhanced 5–160-fold). Moreover, unlike for
�1 addition, BtTLP-catalyzed additions to truncated
tRNAs are not biased toward addition of G, and
occur with tRNAs other than tRNAHis. Based on
these distinct biochemical properties, we propose
that rather than functioning solely in tRNAHis matur-
ation, bacterial and archaeal TLPs are well-suited to
participate in tRNA quality control pathways. These
data support more widespread roles for 30–50

nucleotide addition reactions in biology than previ-
ously expected.

INTRODUCTION

The tRNAHis guanylyltransferase (Thg1), originally
identified in yeast, adds a single essential G residue (G�1)
to the 50-end of tRNAHis in eukaryotes (1). The presence of

G�1 is a nearly universal feature of tRNAHis in all three
domains of life, since G�1 is an important recognition
element for aminoacylation of tRNAHis by its cognate
histidyl-tRNA synthetase (HisRS) (2–5). In Escherichia
coli and chloroplast, G�1 is incorporated into tRNAHis

by an alternative pathway; the G�1 residue is genomically
encoded, incorporated into the precursor tRNA during
transcription, and retained in the mature tRNAHis follow-
ing processing by ribonuclease P (RNase P) (6,7). A G�1
residue is similarly encoded in the genome of some archaea,
and all bacteria, with the exception of 20 a-proteobacteria
that are the only species known to lack a requirement for
G�1 on tRNAHis (8). Thus G�1 could be incorporated
during transcription in these species, as in E. coli (5). In
other archaea and in metazoan mitochondria, a G residue
is not present at the�1 position of tRNAHis genes, andG�1
is presumably added post-transcriptionally by Thg1 family
members present in these species, consistent with the recent
demonstration that archaeal Thg1 enzymes catalyze a G�1
addition reaction similar to yeast Thg1 (9,10). Recent
results suggest that, even in organisms that contain a
genomically encoded G�1, the post-transcriptional
pathway for incorporation of G�1 into tRNAHis may be
used, since RNase P-catalyzed removal of a genomically
encoded G�1 from tRNAHis in plant mitochondria has
been reported (11).
Yeast Thg1 adds G�1 to tRNAHis using an unusual 30–50

nucleotide (nt) addition reaction, employing a three-step
chemical mechanism for nucleotidyltransfer (1) that
proceeds via formation of a 50-adenylylated tRNA inter-
mediate (Figure 1A). The first crystal structure of a Thg1
family enzyme revealed unexpected structural similarity
between Thg1 and DNA polymerases, suggesting that
Thg1 uses a two-metal ion active site for catalysis, albeit
to add nucleotides in the opposite (30–50) direction to ca-
nonical 50–30 nt polymerases (12). In eukaryotes, G�1
addition to cytoplasmic tRNAHis occurs opposite a univer-
sally conserved A73 residue, however yeast Thg1 also cata-
lyzes Watson–Crick template-dependent 30–50
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polymerization of nucleotides in vitro and in vivo (13,14).
While archaeal Thg1 family members share the ability to
catalyze 30–50 nt addition, they do not efficiently catalyze
the non-templated addition reaction observed in yeast
(addition of G�1 to A73-containing tRNAHis), but prefer-
entially add Watson–Crick base paired nucleotides to
tRNAHis substrates (9). Thus, the template-dependent
reaction is a shared property of eukaryal and archaeal
enzymes, and is likely to represent an ancestral activity of
the earliest Thg1 family enzymes. In contrast, addition of
non-templated G�1 appears to be a specialized evolution of
Thg1 activity that is so far unique to Eukarya.
The Thg1 enzyme family is comprised of related protein

sequences (Pfam PF04446/InterPro IPR007537) whose
members, as expected due to the requirement for
post-transcriptional G�1 addition, are widely distributed
throughout eukarya, and are also present in archaeal
species that lack a genomically encoded G�1 residue (1).
However, Thg1 family members are also found in bacteria
and archaea that contain G�1 in their tRNAHis genes, and
thus a role for these proteins in tRNAHis maturation is
not necessarily required. The overall similarity between
diverse Thg1 family members is relatively high
(�40–45% pairwise sequence similarity between yeast
Thg1 and archaeal/bacterial family members), including
many highly conserved residues that are required for
yeast Thg1-catalyzed 30–50 addition activity (15).
Nonetheless, phylogenetic analysis indicates a distinct
lineage for the archaeal/bacterial genes in the Thg1

enzyme family (16), and this, combined with the uncer-
tainty regarding physiological function of at least some
of the prokaryotic enzymes has led us to employ the
designation Thg1-like proteins (TLPs) to distinguish the
archaeal and bacterial enzymes from the eukaryal Thg1
enzymes that were the founding members of the Thg1/
TLP superfamily.

The occurrence of highly conserved TLPs in bacterial
and archaeal species that do not inherently require Thg1
activity for tRNAHis maturation suggests the possibility of
alternative roles for 30–50 addition. To uncover such func-
tions for Thg1/TLP family members, we have investigated
the biochemical activities of a bacterial TLP from the
Gram-positive soil bacterium Bacillus thuringiensis
(BtTLP). Like archaeal TLPs investigated previously,
BtTLP preferentially catalyzes template-dependent 30–50

addition of nucleotides at the �1 position of various
tRNAHis substrates. Surprisingly, we also find that
BtTLP exhibits substantial activity with truncated tRNA
substrates lacking their mature 50-end. In each case, the
kcat/KM for templated N+1 addition is dramatically greater
than for the analogous addition at the �1 position of
tRNAHis. Since BtTLP catalyzes the same reaction
with 50-truncated tRNAPhe, the ability to add nucleotides
to restore a complete aminoacyl-acceptor stem and thus
repair the 50-end of the tRNA is not restricted to tRNAHis.
In addition, we find that archaeal TLPs catalyze similar
reactions. Taken together, our data suggest an alternative
role for bacterial and archaeal TLPs in tRNA 50-end
repair. This activity bears striking similarities to the
50-tRNA repair component of a mitochondrial 50-tRNA
editing activity that occurs in several lower eukaryotes
(17–23), although the enzyme(s) that catalyze the
50-tRNA editing reaction remain unknown.

MATERIALS AND METHODS

TLP and tRNA plasmid constructs

The B. thuringiensis TLP was cloned following PCR from
B. thuringiensis serovar israelensis genomic DNA (kindly
provided by Dr Don Dean, Ohio State University) into a
pET15-derived vector for the expression of an N-terminal
His6-tagged protein in E. coli. tRNA constructs were
derived from previously described yeast tRNAHis and
yeast tRNAPhe plasmids for T7 RNA polymerase-
dependent in vitro transcription (24); alterations to N73

or N72 and/or removal of the G+1 residue were accom-
plished by Quik-Change Mutagenesis (Stratagene) accord-
ing to the manufacturer’s instructions. All NTPs and
dNTPs for cloning, substrate preparation and assays
were obtained from Roche.

Protein expression and purification

Plasmids encoding yeast Thg1 (1), BtTLP (this work) or
MaTLP (9) were transformed into E. coli strain
BL21(DE3) pLysS and cultures were grown and proteins
were purified using immobilized metal-ion affinity chro-
matography (IMAC), as previously described (9). All
proteins were >95% pure as judged by SDS-PAGE and

G - C
C - G
C - G

p*

GUG

N73
C
C
A

G - C
C - G
C - G

p*

GUG

N73
C
C
A

Np

[G or A]

G - C
C - G
C - G

p*

GUG

N73
C
C
A

G-1

RNase A

P*i

CIP
App*GpC, 
Gpp*GpC

G-1p*GpC

ATP,GTP GTP

1 2

A

B

Enzyme: - -
Yeast Thg1 BtTLP

p*tRNAHis
A73 p*tRNAHis

C73

G-1p*GpC

App*GpC

P*i

BtTLP

Gpp*GpC

A73 C73tRNA: 

Figure 1. BtTLP catalyzes templated, but not non-templated addition
of G-1 to tRNAHis. (A) Schematic of p*tRNAHis G�1 addition assay
(24); products expected from RNase A/CIP treatment are indicated
below each tRNA. The site of RNase A cleavage is indicated on
each tRNA. (B) G�1 addition to A73- or C73-containing
50-32P-tRNAHis substrates was tested using the phosphatase protection
assay with serial dilutions of enzymes, as indicated, in the presence of
0.1mM ATP and 1.0mM GTP.
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stored at �20�C. Purified protein concentrations were
determined by BioRad protein assay.

30–50 nt addition assays

Nucleotide addition assays were performed using tRNA
substrates prepared by in vitro transcription followed by
50-end labeling with 32P using T4 polynucleotide kinase
and [g-32P]-ATP (24). Activity assays contained �10–
30 nM 50-32P-tRNA (specific activity 6000Ci/mmol) in
Thg1 assay buffer [25mM HEPES pH 7.5, 10mM
MgCl2, 3mM DTT, 125mM NaCl, 0.2mg/ml bovine
serum albumin (BSA)]. Reactions to test G, U or C
addition contained 0.1mM ATP in addition to 1mM
NTP; A addition reactions contained only 1mM ATP.
For GTP competition assays, 1mM GTP was added
along with 1mM NTP, as indicated.

Reactions (5 ml each) were initiated using 1 ml enzyme
(undiluted or serial dilutions, �0.01-15 mg of each
purified protein) and were incubated at room temperature
for 2-3 h. ATP and GTP addition reactions were quenched
by adding 1mg/ml RNase A (Ambion) and 50mM EDTA
and incubating at 50�C for 10–20min, whereas UTP and
CTP addition reactions were quenched with 1U RNase T1
(Ambion) in 20mM NaOAc pH 5.2, 1mM EDTA, 2 mg
Yeast RNA (Ambion), followed by incubation at 37�C for
30min. RNase digested samples were treated with 0.5U
calf intestinal alkaline phosphatase (CIP) (Invitrogen) and
incubated at 37�C for 30min; reactions were resolved
using silica thin-layer chromatography (TLC) in an
1-propanol:NH4OH:H2O (55:35:10) solvent system.
TLC plates were visualized using a Typhoon Trio and
results quantified using ImageQuant software (GE
Healthcare).

Steady-state kinetic parameters for N�1 and N+1

addition were measured as described previously, using
triphosphorylated tRNA transcripts (24). To improve
resolution of the labeled pyrophosphate product (which
is released from the 50-end of the tRNA following 30–50

nt addition) from unreacted labeled substrate tRNA,
samples taken at each time point were first treated with
1mg/ml RNase A and 50mM EDTA for 10min at 50�C,
and precipitated with 10% (v/v) trichloro-acetic acid
(TCA) for 10min on ice prior to spotting on the
PEI-cellulose TLC plates.

Primer extension analysis

tRNAPhe substrates lacking G+1 only, or lacking both G+1

and G+2, were generated by in vitro transcription, and
used as the substrate for TLP-catalyzed 30-50 nt addition,
followed by 50-end analysis using primer extension,
according to (13). Addition reactions contained 2–4 mM
unlabeled tRNA, 0.1mM ATP, 1mM GTP and 48 mM
BtTLP or 25 mM MaTLP in Thg1 assay buffer, and
were carried out at room temperature for 2–3 h. The
resulting tRNAs (3–4 pmol) were purified by phenol
extraction followed by ethanol precipitation and used
as the template for primer extension with �1 pmol
50-32P-labeled tRNAPhe-specific DNA primer (50-GCTCT
CCCAACTGAGCTAAA-30).

Bulk tRNA was isolated from yeast to test the presence
of a �1 nt on tRNAHis using hot phenol extraction and
ethanol precipitation (1). 50-32P-labeled tRNAHis-specific
DNA primer (50- ACTAACCACTATACTAAGA-30) was
used for the primer extension assays.

In vivo genetic complementation of Thg1 function
by BtTLP

In vivo complementation was tested using the previously
described yeast strain (JJY20: relevant genotype, Mat�
thg1D::kanMX his3-1 leu2D met15D ura3 [CEN URA3
PTHG1-THG1]) (9). Drop tests were performed with
strains transformed with plasmids for galactose-inducible
expression of yeast THG1 or BtTLP [CEN LEU2 PGAL-
THG1/TLP], or with empty vector. To test the effect of
tRNAs on complementation, drop tests were also per-
formed with strains containing a second plasmid [CEN
HIS3] expressing either yeast wild-type A73-tRNAHis,
C73-tRNAHis, or empty vector (14).

RESULTS

BtTLP catalyzes template dependent N-1 addition
to tRNAHis

The recombinantly expressed and purified TLP from the
bacterium B. thuringiensis serovar israelensis (BtTLP) was
tested for its ability to catalyze the prototypical Thg1
reaction, G-1 addition to yeast tRNAHis (24). Addition
to the 50-end of 50-32P labeled monophosphorylated yeast
tRNAHis (p*A73-tRNAHis) results in protection of the
labeled phosphate from removal by phosphatase, and
reaction products, such as G�1p*GpC (Figure 1A), can
be resolved from 32Pi generated from unreacted substrate
using TLC. BtTLP only weakly catalyzes addition of a
non-templated G�1 to A73-tRNAHis, as evidenced by the
relatively small amount of G-1p*GpC product (the G�1
product spot migrates only slightly higher than the
major product, described below, and is apparent only in
the reactions with the highest concentration of BtTLP)
(Figure 1B). However, BtTLP efficiently adds a Watson–
Crick base paired G�1 residue to C73-tRNAHis

(Figure 1B). The preferential addition of the Watson–
Crick paired G�1 over non-templated G�1 to yeast
tRNAHis is the same pattern of reactivity previously
observed with archaeal TLPs (9).
In assays with A73-tRNAHis substrate in the presence of

ATP and GTP, BtTLP accumulates two different lower
migrating products, both of which correspond to activated
tRNAHis intermediates (Figure 1). The first of these two
products (App*GpC) migrates slightly below the G-1

addition product and corresponds to 50-adenylylated
tRNAHis, which is also produced by yeast Thg1 when
GTP is omitted from the reaction (9). The second, more
slowly migrating product corresponds to 50-guanylylated
tRNAHis (Gpp*GpC) resulting from activation of the
50-monophosphorylated tRNA with GTP instead of
ATP, as evidenced by resistance of this isolated product
to RNase T2 digestion and sensitivity to snake venom
pyrophosphatase treatment (data not shown). The obser-
vation of roughly equivalent amounts of these two
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activated tRNAHis species suggests that BtTLP exhibits
greater flexibility than yeast Thg1 with respect to the
identity of the nucleotide (ATP or GTP) used for the ac-
tivation step at the 50 end of the tRNA substrate. The
direct observation of activated 50-tRNA intermediates in
these assays indicates that BtTLP, like archaeal TLPs (9),
uses the same basic mechanism for catalysis of 30–50 nt
addition as yeast Thg1 (1).
To further probe the preference of BtTLP for templated

versus non-templated nucleotide addition, we constructed
tRNAHis variant substrates with each of the four
possible nucleotides at position 73 (N73-tRNAHis). Using
50-32P-labeled tRNAs, we developed assays to test addition
of each of the four possible NTPs that formWatson–Crick
base pairs with the indicated N73 residue (Figure 2). For
these assays, the identity of the nuclease used to treat the
reactions was altered; to detect purine addition, RNase A
was used to generate R�1p*GpC products (where R=Aor
G) and to detect pyrimidine addition, RNase T1 was used
to generate Y�1p*G products (where Y=U or C). In each
case, the identities of products were further confirmed
by RNase T2 digestion to yield the expected N�1p* nt
(data not shown).
BtTLP, like yeast Thg1, can add any of the 4 nts at

the �1 position of tRNAHis (Figure 2). However, BtTLP
is distinct from yeast Thg1 in its selective preference
for Watson–Crick templated N�1 addition, as demon-
strated using a competition experiment. For the competi-
tion assay, equimolar amounts of GTP and a competing
Watson–Crick pairing nucleotide were provided simultan-
eously, and then nuclease digestions were performed
separately in parallel, to compare the relative amounts
of G�1 addition products (RNase A) versus U�1 or C�1
addition products (RNase T1) from the same assay
(Figure 3). While yeast Thg1 added �5-fold higher
amounts of G�1 than U�1 to A73-tRNAHis in the
presence of equimolar GTP and UTP, the nucleotide
preference for BtTLP was reversed, with �40-fold higher

amounts of U�1 added over G�1. A similarly enhanced
preference of BtTLP for templated C�1 addition was
observed (Figure 3).

To quantify these biochemical differences, steady-state
kinetic parameters were determined. In agreement
with the competition assay results, the catalytic efficiency
of BtTLP-catalyzed G�1 addition to C73-tRNAHis was
�50-fold greater than for addition of G�1 to the
A73-tRNAHis substrate, whereas the kcat/KM values
exhibited by yeast Thg1 for G�1 addition these two
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so that the ratio of templated addition to non-templated addition could
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substrates are nearly identical (Table 1). While kcat/KM

values measured for templated G�1 and C�1 addition
were similar, rates of U�1 and A�1 addition were signifi-
cantly lower. The competition assays and kinetic data
demonstrate that BtTLP preferentially catalyzes
templated, but not non-templated, N�1 addition reactions.
Template-dependent 30–50 nt addition, previously shown
to be a property of archaeal and eukaryal Thg1/TLP
enzymes (9), is therefore an enzymatic activity common
to family members from all three domains of life.

BtTLP catalyzes template dependent N+1 addition to
50-truncated tRNAHis

Although BtTLP adds N�1 nucleotides to tRNAHis, albeit
with varying catalytic efficiencies (Table 1), a role for the
enzyme in tRNAHis maturation in B. thuringiensis is not
necessarily required. Thus, we hypothesized that the
biochemical characteristics of BtTLP could be exploited
for an alternate function in vivo.

Based on a previously described mitochondrial tRNA
editing activity catalyzed by unknown enzymes (17–23,25),
we tested whether BtTLP could add nucleotides to
50-truncated tRNA substrates, thus restoring a completely
base paired aminoacyl acceptor stem. We used a tRNAHis

substrate previously constructed to test 50-end repair
activity (13); the G+1 nucleotide has been removed from
this tRNA leaving an unpaired C72 residue in the
aminoacyl acceptor stem (C72tRNAHis

�G+1, Figure 4).
Yeast Thg1 has little detectable ability to add the
missing G+1 nucleotide to the monophosphorylated
50-truncated tRNA substrate.

Using the phosphatase protection assay with 50-32P
labeled monophosphorylated C72tRNAHis

�G+1, BtTLP,
unlike yeast Thg1, displayed robust G+1 addition even at
the lowest concentration of enzyme in the assay (Figure 4).
Since addition of the missing G+1 restores a full-length
tRNAHis, which is essentially the same molecule as the
A73-tRNAHis tested previously (Figure 1), we observed

additional reaction products at high concentrations of
BtTLP (Figure 4). The identity of the lower migrating
products can not be unambiguously assigned due to the
position of the labeled phosphate between G+1 and G+2,
outside of the bond linking the additional nucleotides to
the tRNA. Nonetheless, digestions with RNase T2 and
snake venom pyrophosphatase (data not shown) suggest
that these lower migrating products include a mixture of
species derived from the G+1-containing tRNA. These
products likely include both activated (NppG+1p*GpC)
and G�1-containing (G�1pG+1p*GpC) species, consistent
with products seen previously (Figure 1B).
We constructed a set of truncated tRNAHis variants with

various N72 residues (N72-tRNAHis
�N+1), similar to the set

of N73-tRNAHis variants, to examine each of the four
possible templated N+1 addition reactions. Using 50-end
labeled tRNA substrates and varied nuclease digestions
to detect each of the four N+1 addition products, we
observed addition of each of the four N+1 nucleotides
(Figure 5A), as evidenced by further digestion of the reac-
tions with RNase T2 to generate each Np*, as expected
(Figure 5B). As with N�1-addition, BtTLP prefers to add
the correct Watson–Crick base pairing N+1 nucleotide over
adding a non-templated G+1 (Supplementary Figure S1).
In the competition assay (Supplementary Figure S1), only
RNase T1-dependent C+1 and U+1 addition products were
detected, and little, if any, G+1 addition was detected in the
parallel RNase A digestions.
As seen with G+1 addition above, restoration of the

+1–72 base pair allowed formation of additional
products with each substrate (starred products, Figure
5A). Although the exact identity of these lower migrating
products cannot be unequivocally assigned due to the
absence of an appropriately labeled phosphate, RNase
T2 digestion of the same reactions shown in Figure 5A
revealed that these are a mixture of activation and/or
addition products, depending on the substrate used in
each assay (Figure 5B).

30–50 addition of nucleotides to truncated tRNA substrates
is kinetically preferred

To determine the efficiency with which BtTLP adds
missing nucleotides to 50-truncated tRNAs, we measured
steady-state kinetic parameters for N+1 addition to each of
the tRNAHis

�N+1 substrates. These assays revealed signifi-
cant (from 5- to 160- fold) enhancements of kcat/KM for
addition of each missing N+1 nucleotide over the analo-
gous N�1 addition reactions measured with full-length
tRNAHis (Supplementary Table S1, Figure 6). Moreover,
kcat/KM values measured for each of the four templated
N+1 additions are quite similar, particularly for G+1, C+1

and U+1, with only 5-fold lower efficiency observed for
A+1 (Supplementary Table S1), as compared with the
more than 50-fold variation observed in kcat/KM for the
corresponding �1 additions (Table 1). These results
suggest that 50-truncated tRNAs are more optimal sub-
strates than full-length tRNAs for 30–50 nt addition
catalyzed by BtTLP, and suggest that BtTLP is well-suited
to function in 50-end repair of tRNA.

Table 1. Steady-state kinetic parameters for N�1 addition to tRNAHis

Enzyme tRNAHis N�1 kcat (h
�1) KM (mM) kcat/KM

(M�1s�1)

yThg1 A73 G 8.4±0.9a 0.42±0.13a 5500±1200a

yThg1 C73 G 20.4±2.4a 0.99±0.29a 5670±1200a

BtTLP A73 G �3.9b �10b 108b

BtTLP C73 G 23±2 1.2±0.3 5500±1260
BtTLP G73 C 2.9±0.3 0.6±0.2 1400±400
BtTLP U73 A 4.2±0.7 12±4 94±13
BtTLP A73 U 1–2c �1c 230c

aValues reproduced from ref. (9).
bkcat/KM was obtained from the linear slope of the initial rate versus
[tRNA] plot, which did not reach saturation even at the highest
concentration of tRNA achievable in the assays (10 mM). The lower
limit for kcat and KM were extrapolated from this value.
cDue to slow rates of U�1 addition observed in the assays, estimates for
kcat and KM were made based on the apparent saturation of the initial
rate of the reaction at >1 mM A73-tRNAHis and average observed rates
of reactions performed at 2, 5 and 10 mM tRNA (ranging from 1 to
2 h�1). The estimate for kcat/KM was subsequently calculated using
these values.
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50-end repair of truncated tRNAHis is also catalyzed by
archaeal TLPs

Members of the Thg1/TLP enzyme family are found in
some Archaea that, as with B. thuringiensis, do not neces-
sarily require post-transcriptional addition of G�1 to
tRNAHis. We tested the TLP from Methanosarcina
acetivorans, a methanogenic archaeon in which G�1 is
genomically encoded, for its ability to add nucleotides to
truncated tRNAHis

�N+1 variants, using the same assays
described above. The M. acetivorans TLP (MaTLP)
catalyzed robust addition of G+1 to C72-tRNAHis

�G+1

(Figure 4), exhibited the same pattern of all four N+1

additions to the various N72-containing truncated tRNA
substrates that we observed previously with BtTLP
(Supplementary Figure S2), and is similarly selective for

addition of the Watson–Crick base pairing nucleo-
tide over non-templated G-addition (Supplementary
Figure S3). Finally, as with BtTLP, addition of G+1 to
C72-tRNAHis

�G+1 occurs more efficiently than the corres-
ponding G�1 addition reaction (Supplementary Table S1).
Thus, the tRNA 50-end repair reaction is also catalyzed
with high efficiency by archaeal members of the Thg1/TLP
enzyme family.

TLP-catalyzed N+1 addition is not limited to tRNAHis

Although eukaryal Thg1 enzymes that function in G�1
addition exhibit rigorous specificity for tRNAHis (24),
50-tRNA repair could be a more generalized process. We
tested whether BtTLP could add nucleotides to the 50-ends
of other truncated tRNA substrates. To this end, we
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Figure 5. BtTLP adds all four possible templated N+1 nucleotides to 50-truncated tRNAHis variants (N72-tRNAHis
�N+1). (A) N+1 addition assays

were performed using the same assay described in Figure 2, but with 50-32P labeled tRNAHis variants missing a+1 nt and containing each of the four
possible N72 nucleotides to serve as the template for+1 nt addition (see tRNA diagram). The single N+1 addition products produced by the relevant
nuclease treatment are indicated by arrows. The full-length tRNAs generated following N+1 addition are each substrates for further activation and/or
N�1 addition reactions; products of these reactions are indicated by asterisks to the right of the image, but these products are not further identified
since the remote position of the labeled phosphate (between N+1 and G+2 nucleotides) does not readily permit identification by RNase T2 digestion.
(B) RNase T2 digestion of reactions from (A) confirms each of the four N+1 nucleotides added to 50-truncated tRNAHis

�N+1 substrates. RNase T2
products were resolved by PEI-cellulose TLC in 0.5M formate, pH 3.5; positions of each 30-32P labeled mononucleotide products (Cp*, Up*, Ap*
and Gp*) were identified based on the migration of cold NMP standards. 50-activated N+1 addition products generated from G+1 and A+1 addition
reactions are indicated by NppGp* and NppAp*, respectively.
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Figure 4. BtTLP catalyzes robust G+1 addition to 50-truncated C72-tRNAHis
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described for G�1 addition assay above, using serial dilutions of yeast Thg1 (yThg1), BtTLP or MaTLP, as indicated, in the presence of 0.1mM ATP
and 1.0mM GTP. The identity of the G+1p*GpC product was verified by migration with standards and RNase T2 digestion to release 30-GMP (data
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phosphate from the added nucleotide, but further digestions and comparison to known standards suggests that these are a mixture of further
activation and addition products following G+1 addition.
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generated a 50-truncated variant of yeast tRNAPhe lacking
G+1, and tested G+1 addition using a 50-32P monophosp-
horylated substrate. Both BtTLP and MaTLP produce a
prominent phosphatase resistant product indicative of
addition of the missing G+1 to this substrate, whereas
yeast Thg1 exhibits little or no detectable formation of
this product (Figure 7). In the absence of a bona fide
hexanucleotide standard for G+1 addition to this sub-
strate, we used a primer extension assay (13) to confirm
the addition of missing nucleotides to the 50-end of
tRNAPhe

�G+1, and to a second tRNAPhe substrate
missing both G+1 and G+2 residues (tRNAPhe

�G+2)
(Supplementary Figure S4). Reactions with either of the
50-truncated tRNAPhe substrates yielded longer primer
extension products than for control untreated tRNAs by
1 or 2 nt, indicating that missing 50-nt were added to restore
a fully base paired aminoacyl acceptor stem
(Supplementary Figure S4). A similar kinetic preference
was observed for the 50-end repair reaction over the analo-
gous G�1 addition reaction to full-length C73-tRNAPhe

(Supplementary Table S2). Notably, in contrast to assays
with 50-truncated tRNAHis (Figure 5A), we did not observe
evidence for further activation/addition reactions beyond
the+1 position of full-length tRNAPhe.

BtTLP weakly complements wild type Yeast Thg1
function in vivo

In yeast, THG1 is essential for optimal growth and the
requirement for THG1 can only be bypassed by providing
additional copies of both tRNAHis and HisRS to the cells
(14). Therefore, the ability of Thg1 homologs to add G�1
to tRNAHis in vivo in yeast can be assessed using a plasmid
shuffle assay (9). A yeast thg1D strain, made viable by the

presence of a wild-type yeast THG1 URA3 plasmid, is
transformed with a CEN LEU2 plasmid containing any
Thg1/TLP gene of interest, expressed under the control of
a galactose inducible promoter. If the Thg1/TLP comple-
ments the essential function of yeast THG1 in vivo, the
resulting strains are able to grow on media containing
5-fluoroorotic acid (FOA), which causes loss of the
URA3 THG1 covering plasmid. Using this assay, we pre-
viously showed that four different archaeal TLPs indi-
vidually supported growth of the yeast thg1D strain, but
did so only in the presence C73-tRNAHis (9), mirroring the
ability of these archaeal Thg1/TLP family members to add
only templated, but not non-templated, G�1 to tRNAHis.
However, BtTLP supports growth of the yeast thg1D

strain even in the presence of only A73-tRNAHis and
addition of a plasmid expressing C73-tRNAHis confers no
additional growth advantage to the BtTLP-complemented
strain (Figure 8). This result was surprising, given the rela-
tively weak levels of G�1 addition activity exhibited by
BtTLP in the in vitro assays with A73-tRNAHis (Table 1).
A primer extension assay was used to assess the 50-end
status of tRNA isolated from the complemented strains,
confirming the presence of a �1 nt on tRNAHis

(Supplementary Figure S5).
The relatively similar kcat/KM values observed for G�1

and U�1 addition to wild-type (A73) yeast tRNAHis

catalyzed by BtTLP (Table 1) suggest that either of
these nucleotides may be present at the �1 position of
the mature tRNA. The effect of U�1 on histidylation by
HisRS in yeast has not been specifically investigated, but
A�1- or C�1-containing tRNAHis variants are substrates
for HisRS, albeit with decreased catalytic efficiencies, con-
sistent with a predominant role for the 50-terminal
monophosphate in recognition by HisRS (3,26).

DISCUSSION

We have revealed distinct biochemical features of bacterial
and archaeal TLPs consistent with a novel physiological
function for these enzymes in tRNA 50-end repair. Initial

Figure 6. BtTLP catalyzes N+1 nucleotide addition to 50-truncated
tRNAHis with enhanced catalytic efficiency over N-1 addition reactions.
kcat/KM values are shown for BtTLP-catalyzed addition of each of the
four possible Watson–Crick templated N�1 (solid bars) or N+1 (hatched
bars) nucleotides to full-length tRNAHis or 50-truncated tRNAHis

�N+1

substrates, respectively. For each of the four nucleotides (G, C, A or U,
as indicated below the figure), kinetic parameters were measured using
a tRNA substrate with the appropriate N73 or N72 residue to allow
Watson–Crick base paired 30–50 addition, as in Table 1 and
Supplementary Table S1. For comparison, the kcat/KM value
measured previously for yeast Thg1-catalyzed G�1 addition to C73-
tRNAHis is also shown (9).

Enzyme: -
yThg1BtTLP MaTLP

G+1p*GpGpGpApU

P*i

C72
G+2 - C

G - C
G - C
A - U
U - A

p*

GAA

C72tRNAPhe
DG+1

A73

C
C
A

RNase A

Figure 7. BtTLP catalyzes robust repair of 50-truncated tRNAPhe sub-
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�G+1 (see tRNA diagram) with
serial dilutions of BtTLP, MaTLP or yeast Thg1 (yThg1). All reactions
contained 1.0mM GTP and 0.1mM ATP for activation. The migration
of the phosphatase-protected species is consistent with the predicted
6-nt reaction product (see diagram), also confirmed by the addition
of a single nucleotide to the 50-truncated tRNAPhe

�G+1 substrate
observed using primer extension (see Supplementary Figure S4).
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characterization of the TLP from the bacterium B.
thuringiensis (BtTLP) demonstrated a biochemical prefer-
ence for Watson–Crick template-dependent 30–50 nt
addition (Figures 1 and 2, Table 1), similar to that
observed previously with TLPs from several archaea (9).
Upon further investigation, we identified four distinct
features of bacterial TLP activity that could be exploited
for an alternative function. First, unlike for yeast Thg1,
GTP does not effectively compete with other Watson–
Crick base pair-forming NTPs for addition by BtTLP
(Figure 3 and Supplementary Figure S1). Second, BtTLP
adds any of the 4 nts to 50-truncated tRNAHis substrates
with significantly enhanced catalytic efficiency over that
observed for nucleotide addition to full-length tRNAHis

(Figures 4–6, Supplementary Table S1). Third, while
BtTLP adds N�1 nucleotides to tRNAHis with widely
varied catalytic efficiencies, with 50-truncated tRNAHis

all four +1 nts are added with similarly high kcat/KM

values (Table 1 and Supplementary Table S1, Figure 6).
Fourth, BtTLP adds missing nucleotides to a tRNA
species other than tRNAHis (Figure 7 and
Supplementary Figure S4, Supplementary Table S2). We
propose that these distinct biochemical features are
well-suited for a physiological role for BtTLP in tRNA
50-end repair. Similar properties of the archaeal TLP
from M. acetivorans (Figures 4 and 7, Supplementary
Figures S2 and S3, Supplementary Table S1) suggest a
parallel biological function in Archaea, thus greatly ex-
panding the potential scope of 30–50 nt addition reactions
beyond a simple role for Thg1/TLP family members in
tRNAHis maturation.
Identification of bona fide physiological substrates for

the 50-end repair activity is an important future goal that
can not be addressed by in vitro characterization alone. In
recent years, an increasing number of tRNA quality
control mechanisms have been identified, allowing cells
to maintain a high-quality cellular pool of tRNAs and
thus ensuring optimal fidelity and efficiency of translation

(27–34). The TLP-catalyzed tRNA 50-end repair activity
we have identified is well-suited to participating in tRNA
quality control. tRNA 50-end repair mechanisms have not
yet been demonstrated in any organism, but several mech-
anisms for production of 50-truncated tRNA species
provide potential substrates for the 50-end repair activity.
50-processing of tRNAs typically generates mature tRNAs
initiating at the+1 position [with the notable exception of
tRNAHis from certain bacteria and organelles (6,7,11,35)],
since removal of the precursor tRNA 50-leader sequence
catalyzed by RNase P occurs for the most part with high
fidelity. Nonetheless, miscleavage events occur with sig-
nificant frequency in bacteria, generating aberrent tRNA
50-ends, including those that lack one or more nucleotides
from the 50-end (36,37). TLP-catalyzed 50-end repair of
such mis-processed tRNA species would rescue a pool of
tRNAs that would otherwise be unusable for translation.
In this respect, the 50-end repair function we propose may
be similar to the well-known mechanisms for repair of
tRNA 30-ends catalyzed by the CCA-adding enzyme,
which functions to add the 30-CCA to tRNAs for which
this sequence is not genomically encoded, but also func-
tions to repair 30-ends of tRNA species damaged by
cellular nucleases (38,39).

50-truncated tRNA species could also be generated by
the action of 50–30 exonucleases that act on tRNA; 50–30

exonucleolytic degradation of tRNA has been recently
identified in yeast, where the XRN1/RAT1 enzymes act
to degrade several hypomodified tRNA species via the
rapid tRNA decay pathway (27,40). XRN1/RAT1 family
members with unknown functions are widely distributed
throughout the bacterial and archaeal domains, including
organisms that contain TLPs, and moreover a role for
some of these family enzymes in tRNA or rRNA process-
ing or degradation has been proposed (41). Finally, in
Archaea, a growing number of alternative tRNA process-
ing/generation pathways have been identified, including
production of at least some tRNA species as leaderless
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Figure 8. Expression of BtTLP in yeast complements the growth defect of the yeast thg1D strain. Plasmid shuffle assays were performed with a yeast
thg1� strain (9) transformed with CEN LEU2 plasmids containing either BtTLP [BtTLP] or yeast Thg1 [yTHG1], or no Thg1 [V1]. The top three
panels also contained a second CEN HIS3 plasmid encoding [A73- tRNAHis], [C73-tRNAHis] or no tRNA [V2], as indicated. Positive transformants
were grown overnight in selective media, diluted to OD600=1 and used to make 10-fold serial dilutions; 2 ml of each dilution was spotted to media
(as indicated) and images were taken after 3–4 days of growth at 30�C.
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transcripts, where it remains unclear how uniformity of
50-ends is accomplished (42). It is an important future dir-
ection to determine the essentiality of TLPs in archaea and
bacteria. However, such tests might face the same caveats
encountered with tRNA 30-end repair pathways, which are
not inherently essential for viability, but may be particu-
larly required under conditions of stress (39).

Interestingly, the tRNA 50-end repair reaction identified
here is not the first biochemical process proposed to use
30–50 nt addition to restore a fully base-paired aminoacyl
acceptor stem in tRNA. Previously, a 50-tRNA editing
activity was identified that occurs in the mitochondria of
lower eukaryotes, including organisms such as S.
punctatus, A. castellani and P. polycephalum
(17,19,21,25), and which requires as one of its components
an analogous tRNA 50-end repair activity to the activity
described here. 50-tRNA editing exists to correct
genomically encoded mismatches present at the 50-end of
certain mitochondrial tRNAs by first excising the incor-
rect nucleotides, and then using a 30–50 nt addition activity
to add the correct nucleotides to the 50-truncated tRNA,
thus creating a fully base paired aminoacyl acceptor stem
(17,25). The identity of the protein(s) that catalyze either
the nuclease or 50-end repair components of this activity
are not known. The archaeal/bacterial TLP 50-end repair
activity is not likely to function in 50-tRNA editing in vivo,
since sequenced archaeal/bacterial tRNA genes do not
contain 50-mismatched nucleotides that would require
editing to generate a functional tRNA. Nonetheless, the
existence of the protozoan 50-tRNA editing activity re-
inforces the idea that pathways exist for generation of
the type of 50-truncated tRNA substrates that we have
associated with bacterial and archaeal TLP function.

The ability of BtTLP to complement the growth defect
of the yeast thg1D strain was somewhat surprising, given
the lack of complementation observed with archaeal TLPs
tested previously (9), all of which exhibit similar biochem-
ical activities to BtTLP, including the kinetic preference
for 50-end repair activities over N�1 addition reactions.
Interestingly, the reproducibly weaker growth observed
in the BtTLP-complemented strain compared to the
yeast THG1 control strain (Figure 8) is unlikely to be
directly limited by the slower kinetics of G�1 addition to
A73-tRNAHis catalyzed by BtTLP, since providing the
C73-tRNAHis that is the kinetically preferred substrate
for BtTLP activity (Table 1) did not enhance growth
(Figure 8). This suggests the interesting possibility that
the weaker growth of the BtTLP-complemented strain
may reflect alternative activities catalyzed by BtTLP
when it is expressed in yeast, perhaps related to the
ability of the enzyme to use other substrates for 30–50 nt
addition (Figure 7).

Alternative 50-end repair activities of bacterial and
archaeal TLPs would resolve the mystery surrounding
the presence of TLPs in many organisms that do not in-
herently require post-transcriptional addition of G�1 to
tRNAHis. Nonetheless, these data do not preclude add-
itional roles for bacterial or archaeal TLPs in addition
of G�1 to tRNAHis, even in organisms that already
contain a genomically encoded G�1. This activity would
be required if the encoded G�1 is removed by RNase

P-catalyzed processing (11), or by 50-end degradation
pathways such as those described above. A recent inde-
pendent report of G�1-addition activity catalyzed by two
bacterial TLPs (including BtTLP) (16) is consistent with
this possibility, and with the various N�1 addition
activities demonstrated with tRNAHis substrates in this
work (Figures 1 and 2). Moreover, TLPs derived from
Archaea that lack a genomically encoded G�1 and thus
predictably function in tRNAHis maturation (9), such as
M. thermoautotrophicus, also catalyze 50-end repair with
the tRNA substrates tested here (data not shown). Thus
prokaryotic TLPs may catalyze both tRNAHis-specific
G�1 addition and tRNA 50-end repair reactions, and
further study of these enzymes may yield important
insights into the evolution of 30–50 addition activities and
their varied uses in biology.
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