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Abstract: Campylobacter spp. are a leading and increasing cause of gastrointestinal infections world-
wide. Source attribution, which apportions human infection cases to different animal species and
food reservoirs, has been instrumental in control- and evidence-based intervention efforts. The rapid
increase in whole-genome sequencing data provides an opportunity for higher-resolution source
attribution models. Important challenges, including the high dimension and complex structure of
WGS data, have inspired concerted research efforts to develop new models. We propose network
analysis models as an accurate, high-resolution source attribution approach for the sources of hu-
man campylobacteriosis. A weighted network analysis approach was used in this study for source
attribution comparing different WGS data inputs. The compared model inputs consisted of cgMLST
and wgMLST distance matrices from 717 human and 717 animal isolates from cattle, chickens, dogs,
ducks, pigs and turkeys. SNP distance matrices from 720 human and 720 animal isolates were also
used. The data were collected from 2015 to 2017 in Denmark, with the animal sources consisting of
domestic and imports from 7 European countries. Clusters consisted of network nodes representing
respective genomes and links representing distances between genomes. Based on the results, animal
sources were the main driving factor for cluster formation, followed by type of species and sampling
year. The coherence source clustering (CSC) values based on animal sources were 78%, 81% and
78% for cgMLST, wgMLST and SNP, respectively. The CSC values based on Campylobacter species
were 78%, 79% and 69% for cgMLST, wgMLST and SNP, respectively. Including human isolates
in the network resulted in 88%, 77% and 88% of the total human isolates being clustered with the
different animal sources for cgMLST, wgMLST and SNP, respectively. Between 12% and 23% of
human isolates were not attributed to any animal source. Most of the human genomes were attributed
to chickens from Denmark, with an average attribution percentage of 52.8%, 52.2% and 51.2% for
cgMLST, wgMLST and SNP distance matrices respectively, while ducks from Denmark showed the
least attribution of 0% for all three distance matrices. The best-performing model was the one using
wgMLST distance matrix as input data, which had a CSC value of 81%. Results from our study show
that the weighted network-based approach for source attribution is reliable and can be used as an
alternative method for source attribution considering the high performance of the model. The model
is also robust across the different Campylobacter species, animal sources and WGS data types used
as input.

Keywords: source attribution; Campylobacter; campylobacteriosis; network analysis; whole-genome
sequencing; coherence source clustering

Pathogens 2022, 11, 645. https:/ /doi.org/10.3390/pathogens11060645

https://www.mdpi.com/journal /pathogens


https://doi.org/10.3390/pathogens11060645
https://doi.org/10.3390/pathogens11060645
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-8060-4634
https://orcid.org/0000-0002-3648-2828
https://orcid.org/0000-0003-3185-7456
https://doi.org/10.3390/pathogens11060645
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens11060645?type=check_update&version=1

Pathogens 2022, 11, 645

20f15

1. Introduction

Human campylobacteriosis is among the most common zoonotic diseases, caused
mainly by the bacteria Campylobacter jejuni and Campylobacter coli. Campylobacteriosis
continues to be a major problem worldwide, including Denmark, which has seen the
number of cases rising from 4547 in 2018 to 5389 in 2019. The increase in cases in Denmark
was attributed to a large outbreak in chicken meat [1,2]. The main sources of human
infection have been attributed to contaminated meat, poultry, water, milk and contact
with farm animals [3]. Considering that many human campylobacteriosis cases have been
attributed to various animal sources, there is a need to determine the relative contribution
of the different exposures from animals to the total number of human cases [4].

Source attribution, which apportions human infection cases to different animal species
and food reservoirs, has been instrumental in control- and evidence-based intervention
efforts. Several methods for source attribution are available, including the microbial sub-
typing approach and comparative exposure assessment approach. Microbial subtyping
involves characterizing isolates of specific pathogens by phenotypic and genotypic subtyp-
ing methods. The principle for this approach involves comparing isolates from different
food and animal sources with those from humans. The comparative exposure assessment
approach, on the other hand, determines the relative importance of the known transmission
routes by estimating the human exposure to the pathogen through each route [5].

The microbial subtyping attribution approach has been proven to be a valuable source
attribution method as it assumes that the distribution of subtypes in the collection of
microbial isolates for each source used in the attribution exercise is similar to the true
distribution of subtypes in each source. There are two main types of microbial subtyping
attribution models: the frequency-matched attribution model, which compares human
strain types in the sources and population genetic models based on modeling the organism’s
evolutionary history [6,7]. Previous studies have reported several applications of the
microbial subtyping approach including source attribution of human salmonellosis which
was developed in Denmark [4,5,8]. The use of multilocus sequence typing (MLST) is
another common example of the microbial subtyping approach, which has been used
to identify lineages in bacterial populations by indexing the variation present in seven
housekeeping genes located in various parts of the chromosome [9]. MLST data have been
previously utilized to attribute the sources of human C. jejuni infections in New Zealand,
as well as Salmonella in Denmark, using the Danish Salmonella source account model and
the ClonalFrame algorithm [4,9].

Whole-genome sequencing (WGS) has been proven to be the most informative approach
for the characterization of bacterial isolates and has been used to analyze multiple bacterial
outbreaks, such as tuberculosis, listeriosis and salmonellosis, among others [10-12]. WGS data
sets have become increasingly available. However, one of the limitations of WGS data is
the complexity in data analysis due to variable gene content and difficulties interpreting
obtained results [13]. Despite this, many studies have suggested approaches to overcome
the limited discriminatory power of MLST by exploiting WGS data. These approaches
can be grouped into methods based on the core genome or whole genome multilocus,
termed gene-by-gene approaches and single-nucleotide polymorphism (SNP) detection,
which segregate by host [14]. The gene-by-gene approaches assess the diversity of isolates
based on alleles found for all wgMLST or cgMLST genes of the species of interest [15]
while SNP-based methods distinguish isolates based on SNPs present in the entire genome,
including the intergenic regions, potentially offering a higher resolution [16,17].

Different approaches have been used for source attribution using WGS data sets,
including machine learning which has previously been applied in source attribution for
Salmonella enterica, Escherichia coli and C. jejuni [13,18-20] and to predict the severity or
outcome of microbial infections [21-25]. The machine learning approach involves train-
ing different algorithms and obtaining the best-performing model while obtaining the
attribution probabilities of human isolates to different sources. Network analysis, on the
other hand, has recently been demonstrated as an accurate approach for the source at-
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tribution of human salmonellosis [4]. Network analysis is based on weighted networks
theory, where pairwise distance matrices from source attribution can be visualized as fully
connected networks. Nodes in this theory correspond to Campylobacter isolates and links
correspond to genetic distances. Weaker links imply greater genetic distance between
isolates. Network analysis is useful in extracting network communities corresponding to
different animal sources, where network communities correspond to groups of vertices
with a higher probability of being connected to each other than other members of that
group [26].

The probability of a human isolate to be associated with an animal source is computed
as the function of the number of links that the human isolate has with other animal isolates.
A specific animal source to which human genomes of Campylobacter are attributed can
also be extracted from the network analysis. Using the network approach, we can identify
which structural features of a data set play a fundamental role in determining the internal
coherence of clusters [4], such as animal sources, species type and year of origin, etc.
We demonstrated the potential of weighted networks for source attribution of human
campylobacteriosis using whole-genome sequencing data. We compared the effect of
different types of WGS data inputs namely cgMLST, wgMLST and SNP on the accuracy of
the weighted network-based source attribution models.

2. Materials and Methods
2.1. Data Set

The data used in this study were collected between May 2015 and March 2017 from
Campylobacter monitoring projects in Denmark. The data set was composed of 283 C. jejuni
isolates and 434 other unknown Campylobacter species isolated from chickens, cattle, pigs,
dogs, ducks and turkeys. The test material used were intestinal content (swabs, stools or
appendices) and meat from various products collected either in a slaughterhouse or in the
retail trade, originating from Danish or foreign production as well as the production envi-
ronment. The Campylobacter isolates’ metadata were obtained from the Danish Food and
Veterinary Administration (foedevarestyrelsen) and the sequenced genomes were extracted
from the Center for Genetic Epidemiology (Food Institute Section of Computerome). The
following information from the databases was used: sample ID, year of collection, country
of origin and source (host of the Campylobacter isolate).

The human cases data set consisted of isolates received from Statens Serum Institute’s
surveillance from January 2015 to December 2017. Isolates from humans with known travel
history were not included in the data set. Data cleaning was performed to remove dupli-
cates and isolates with incomplete metadata. The input data set for the network analysis
consisted of cgMLST and wgMLST distance matrices from 717 food and 717 human isolates
and SNPs from 720 food and 720 human isolates. The SNP distance matrix contained more
isolates than cgMLST and wgMLST due to more matching isolate identification codes
between the SNP data and the source metadata. The population structure was obtained
from the phylogenetic analysis, as shown in Figure 1. This indicated that human isolates
intermixed with other food and animal isolates, indicating that human Campylobacter strains
were more likely to have originated from the sources described. Furthermore, sources
were also genetically well distributed within the tree. Seawater and vegetables were omit-
ted from the final input data used for network analysis since they were few and would
have resulted in unreliable source attribution of human Campylobacter cases. All isolates
used can be found under the bioproject number set up by the Statens Serum Institute,
PRJEB31119 [27].
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Figure 1. Phylogenetic tree from SNP distance matrix.

2.2. Bioinformatics Analysis
2.2.1. Assemblies

The raw reads were de novo assembled. The procedure was done using the Food QC
& Assembly pipeline, which includes assembler SPAdes version 3.9 [28]. The quality of the
assembly was assessed using the number of contigs, N50, and the total size of the assembly.
Assemblies were scaffold assemblies; genome assemblies with less than 500 contigs were
kept in the data set. Eventually, the total size of the assembly was checked to match the
expected size for a C. jejuni genome, which is between 1.6 to 1.7 million base pairs (Mbp).

2.2.2. cgMLST and wgMLST

Core genome multilocus sequence typing (cgMLST) compares allelic profiles of several
loci. CgMLST includes the core genome of Campylobacter and contains 1343 genes, as
defined by Cody et al. in 2017 [29]. We performed core genome multilocus sequence typing
(cgMLST) using the scheme developed by Cody et al. [29] available from the Center for
Genomic Epidemiology pipeline [30]. Similarly, the wgMLST scheme used in this work

includes 1643 genes from the re-annotation of the genome sequence of reference C. jejuni
genome NCTC 11,168 [31].

2.2.3. SNP

The SNP matrix was built using the CSI phylogeny pipeline accessible from the Center
for Genomic Epidemiology [30,32]. The paired-end reads were mapped to the reference
genomes using Burrows-Wheeler Aligner (BWA) [33]. The SNP analysis was performed
using the reference genome: C. jejuni subsp. jejuni NCTC 11168 = ATCC 700819 (accession
NC 002163.1). SNPs were determined using mpileup commands from SAMTools version
0.1.18 [34,35]. The SNPs were filtered according to five parameters: a minimum distance
of 10 bps between each SNP, a minimum of 10x depth and 10 percent of the breadth
coverage, the mapping quality was above 30, the SNP quality was higher than 20 and all
indels were excluded [28,29,32-34]. For each genome, SNPs were concatenated to a single
alignment corresponding to the positions of the reference genome. ItoL version 6 was used
for the visualization of the phylogenetic tree, where the number of SNPs between isolates
is equivalent to the distance in the tree [36].

All bioinformatic analysis were performed using Danish National Supercomputer for
Life Sciences, Computerome 2.0, a local server for a Linux-based command-line system [37].

2.3. Network Analysis

The weighted network approach was used in this study, where the pairwise distance
matrix was represented as a network with nodes corresponding to human Campylobacter
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isolates and links as a function of the pairwise distance. This pairwise distance was
calculated as the number of different MLST alleles or SNPs between two isolated sequences.
The assumption is that genomes coming from the same source show smaller distances. A
fully connected weighted network, with weight calculated as 1/distance assigned to each
link, was built in MATLAB [38]. A threshold was applied such that, in the resulting binary
network, nodes were connected by an edge if the weight was greater than the threshold.
The threshold was applied to remove weaker links with larger genetic distances, and it was
chosen to maximize the internal coherence of clusters and minimize the number of isolated
nodes. In the resulting binarized network, nodes were linked with an edge only if their
weight was greater than the threshold value and clusters identified using the thresholding
procedure [4].

The best threshold values were obtained using a 70/30 cross-validation procedure on
the animal source data and were chosen in order to maximize the internal coherence of
clusters (CSC, Equation (1) [4]) and minimize the number of isolated nodes. The 70/30
cross-validation procedure involved randomly selecting a network training set consisting
of 70% of animal origin samples and using this set to obtain a best threshold value. This
threshold value was applied to the network constructed using the test set composed of
the remaining 30% of the animal samples for the calculation of the CSC as shown in
Equation (1). This procedure was repeated 100 times and the most frequent threshold
value was selected as the best overall threshold for further use in source clustering. The
best threshold was then applied to the full pairwise distance matrix consisting of both
animal and human isolates such that the human sources could be attributed to specific
animal sources [4]. The best threshold was used to maximize the score function on distance
matrices, as shown in Equation (2) [4]. The graphical visualizations of the network were
obtained using the MATLAB ‘Plot’ function with the force-directed graph layout [39].

N,
Ne TP,
CSC = #wo 1)
Zizcl T;
Score = (1 _ Niso )csc )
TOT

Nror is the total number of nodes in the network, while N;gp is the number of isolated
nodes that do not have any links to other nodes. CSC is the coherent source clustering,
which measures the algorithm’s clustering performance, where TP; is the number of true
positives in the i cluster (majority of isolates from the same source in the same cluster)
and T; is the total number of nodes inside the i" cluster [4].

3. Results and Discussion

We compared results obtained using cgMLST, wgMLST and SNP distance matrices
from the network analysis. Figure 2 shows the distribution of input data which corre-
sponded to Figure 3 indicating the mean percentage attribution probability for the three
distance matrices. We observed that chickens from Denmark were the main sources of
human campylobacteriosis cases, with a percentage of attribution of 52.84%, 52.17% and
51.22% for cgMLST, wgMLST and SNP, respectively, while ducks from Denmark were the
least probable source of infection. These results are in harmony with previous reports
showing chicken meat as the main source of campylobacteriosis in Denmark [3]. The
best threshold values obtained from the cross-validation were 0.1141, 0.0105 and 1715 for
cgMLST, wgMLST and SNP distance matrices, respectively (Table 1). These values were
used to maximize the score function from 100 runs of cross-validation.

The network-based method achieved 78%, 81% and 78% coherent source clustering for
cgMLST, wgMLST and SNP distance matrices, respectively (Table 1). The results indicated
that animal sources were the main factors driving the clustering, followed by type of
Campylobacter species and finally year of origin (Table 2). Table 3 shows results from adding
human isolates to the network, where 88%, 77% and 88% were clustered within the existing
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animal network for cgMLST, wgMLST and SNP, respectively, while the remaining isolates
were not to linked to Campylobacter genomes from any of the animal sources. The algorithm
performed reasonably well in source attribution. However, some isolates were wrongly
classified. For example, 43 chicken isolates were classified as cattle isolates Table 4. This
misclassification is also apparent in Figure 4, where different sources in the main clusters
1,4 and 5 from network analysis using cgMLST distance matrix as input data cannot be
clearly distinguished. A consideration of the country of origin of animal sources showed
that regionality affects cluster formation, as seen in Figures 5-7, where most isolates are
clustered according to origin.

We noted that despite the class imbalance in the input data (Figure 2), the less abundant
sources, such as dogs from Denmark, still had 100% human isolates linked to the sources,
as shown in Figures 4, 8 and 9. This is an indication that sample imbalance does not affect
source attribution using the network analysis method [4] and that the most consumed
animal sources are most likely to cause the majority of Campylobacter infections. Class
imbalances in other models lead to important patterns in the predictors being associated
with the larger classes which results in less predictions for classes with less samples [40].
The best-performing model was the one with the wgMLST distance matrix as the input
data, which had a CSC value of 81%. We calculated the confusion matrix for the cgMLST,
wgMLST and SNP distance matrices’ clustering results (Tables 4-6). The weighted network
analysis approach provided quite good results considering the model performance in
comparison to other source attribution models [13,18-20] and microbial infection severity
and outcome prediction models such as machine learning [21-25].

Distribution of Animal Sources

m CGMLST

mWGMLST

mSNP
||| III H N III III | Il |

Chicken
domestic

Cattle domestic Chicken foreign Dog domestic Turkey foreign  Duck foreign Pigdomestic  Duck domestic

Sources

Figure 2. Distribution of animal sources used as input data for network analysis.
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Figure 3. Mean probability (in percentage) of a human isolate to be attributed to a source, calculated
for each of the considered pairwise distance matrices (cgMLST, wgMLST and SNP).

Table 1. Best threshold based on the animal of origin for networks based on SNP, cgMLST, and
wgMLST distance matrices.

Performance cgMLST wgMLST SNP
Best threshold 0.1141 0.0105 1715

Table 2. Coherent source clustering (CSC) according to country of origin, type of campylobacter and
year of origin for networks based on SNP, cgMLST and wgMLST distance matrices.

CSC cgMLST wgMLST SNP
Species 78% 79% 69%
Year 61% 64% 67%

Table 3. Number of attributed and not attributed human isolates.

Human Isolates cgMLST wgMLST SNP
Attributed 632 558 633
Not attributed 85 159 86

Table 4. Confusion matrix obtained from source clustering results for cgMLST distance matrix.

True /Pred  Cattle.dk Chkn.dk Chkn.for Dog.dk Duck.dk Duck.for Pig.dk Turkey.for
Cattle.dk 151 32 1 2 0 1 1 4
Chkn.dk 43 259 30 13 0 4 2 0
Chkn.for 2 20 87 0 0 1 0 2

Dog.dk 0 0 0 5 0 0 0 0
Duck.dk 0 0 0 0 7 0 0 0
Duck.for 0 0 0 0 0 17 0 0
Pig.dk 0 0 0 0 0 0 29 0
Turkey.for 0 0 0 0 0 0 0 4

True—true isolates of the same source; Pred - predicted isolates; Cattle.dk—cattle from Denmark; Chkn.dk—
chickens from Denmark; Chkn.for—chickens from foreign countries; Dog.dk—dogs from Denmark; Duck.dk—
ducks from Denmark; Duck.for—ducks from foreign countries; Pig.dk—pigs from Denmark; Turkey.for—turkeys

from foreign countries.
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Table 5. Confusion matrix obtained from source clustering results for wgMLST distance matrix.

True/Pred  Cattle.dk Chkn.dk Chkn.for Dog.dk Duck.dk Duck.for Pig.dk Turkey.for
Cattle.dk 157 31 2 2 0 1 1 2
Chkn.dk 37 263 24 9 0 2 1 0
Chkn.for 2 14 92 0 0 2 0 2

Dog.dk 0 0 0 9 0 0 0 0
Duck.dk 0 0 0 0 7 0 0 0
Duck.for 0 0 0 0 0 19 0 0
Pig.dk 1 0 0 0 0 0 28 0
Turkey.for 2 1 0 1 0 0 0 5

True—true isolates of the same source; Pred—predicted isolates; Cattle.dk—cattle from Denmark; Chkn.dk—
chickens from Denmark; Chkn.for—chickens from foreign countries; Dog.dk—dogs from Denmark; Duck.dk—
ducks from Denmark; Duck.for—ducks from foreign countries; Pig.dk—pigs from Denmark; Turkey.for—turkeys
from foreign countries.

Table 6. Confusion matrix obtained from source clustering results for SNP distance matrix.

True/Pred  Cattle.dk Chkn.dk Chkn.for Dog.dk Duck.dk Duck.for Pig.dk Turkey.for
Cattle.dk 158 36 4 4 0 2 1 4
Chkn.dk 39 253 27 13 0 3 1 0
Chkn.for 2 20 89 0 0 1 0 2

Dog.dk 0 0 0 5 0 0 0 0
Duck.dk 0 0 0 0 7 0 0 0
Duck.for 0 0 0 0 0 18 0 0
Pig.dk 1 0 0 0 0 0 28 0
Turkey.for 0 0 0 0 0 0 0 3

True—true isolates of the same source; Pred—predicted isolates; Cattle.dk—cattle from Denmark; Chkn.dk—
chickens from Denmark; Chkn.for—chickens from foreign countries; Dog.dk—dogs from Denmark; Duck.dk—
ducks from Denmark; Duck.for—ducks from foreign countries; Pig.dk—pigs from Denmark; Turkey.for—turkeys
from foreign countries.

The F1 scores calculated from the confusion matrices above were: 75.96%, 79.94% and
74.93% for cgMLST, wgMLST and SNP, respectively. The best-performing model from the
F1 score was based on wgMLST distance matrix as input data which is also in agreement to
the model’s high CSC value of 81%.
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Figure 4. Source clustering results (force-directed graph drawing algorithm) obtained using cgMLST dis-
tance matrix as model input. Nodes represent different animal isolates. Cluster number 1-7 (misclassification
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of isolates within the cluster), 8-10 (correct classification of isolates within the cluster). Legend: red—
cattle from Denmark ; green—chickens from Denmark; magenta—chickens from foreign countries;
black—dogs from Denmark ; dark blue—turkeys from foreign countries; yellow—pigs from Denmark;
cyan—ducks from foreign countries ; light brown—ducks from Denmark; blue crosses—Human
isolates. Foreign (Germany, Netherlands, Italy, France, Poland, UK, Hungary).

S8 EEe

Figure 5. Clustering results (force-directed graph drawing algorithm) obtained using cgMLST
distance matrix as model input. Nodes represent country of origin for different animal isolates.
Legend: red—Denmark; yellow—Poland; magenta—France; green—Germany; blue—Netherlands;
cyan—Italy; black—UK; brown—Hungary.
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Figure 6. Clustering results (force-directed graph drawing algorithm) obtained using wgMLST
distance matrix as model input. Nodes represent country of origin for different animal isolates.
Legend: red—Denmark; yellow—Poland; magenta—France; green—Germany; blue—Netherlands;
cyan—Italy; black—UK; brown—Hungary.
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Figure 7. Clustering results (force-directed graph drawing algorithm) obtained using SNP distance
matrix as model input. Nodes represent country of origin for different animal isolates. Legend: red—
Denmark; yellow—Poland; magenta—France; green—Germany; blue—Netherlands; cyan—Italy;
black—UK; brown—Hungary.
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Figure 8. Source clustering results (force-directed graph drawing algorithm) obtained using wgMLST
distance matrix as model input. Nodes represent different animal isolates. Cluster number 1-3, 5-6
(misclassification of isolates within the cluster) 4 and 7 (correct classification of isolates within the clus-
ter). Legend: red—cattle from Denmark; green—chickens from Denmark; magenta—chickens from
foreign countries; black—dogs from Denmark; dark blue—turkeys from foreign countries; yellow—
pigs from Denmark; cyan—ducks from foreign countries; light brown—ducks from Denmark; blue
crosses—Human isolates.
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Figure 9. Source clustering results (force-directed graph drawing algorithm) obtained using SNP
distance matrix as model input. Nodes represent different animal isolates. Cluster number 1, 2,4, 5
(misclassification of isolates within the cluster), 3 and 6 (correct classification of isolates within the
cluster). Legend: red—cattle from Denmark; yellow—chickens from Denmark; magenta—chickens
from foreign countries; green—dogs from Denmark; cyan—turkeys from foreign countries; black—
pigs from Denmark ; blue—ducks from foreign countries; light brown—ducks from Denmark ; blue
crosses—Human isolates.

Similar clustering results were observed from the network analysis approach as ob-
served above. Figure 8 indicates some confusion in distinguishing between different
sources. For example, in cluster 2, there is no proper separation between chickens and
cattle from Denmark, which is also observed in Figure 9 (clusters 1, 2, 4). However, a
high proportion of the food sources where less isolates were available such as pigs, were
attributed to human cases as observed in cluster 6 in Figure 8. The results from the wgMLST
distance matrix input data show that the network-based algorithm performs best in cluster-
ing considering the high CSC value of 81%. The results in Figures 6 and 7 show that the
region of origin of the animal sources has an influence on cluster formation. Considering
that most of the animal isolates are from Denmark, the main clusters are dominated by
Danish isolates, with some clusters consisting of less abundant isolates such as imports
from Poland, as observed in Figures 5-7.

The weighted network-based approach showed high specificity due to the number of links
between each human sample and each animal source in all three networks (cgMLST, wgMLST
and SNP), as observed in Figures 10-12. We also observed 100% attribution of some human
samples to less abundant sources, such as dogs from Denmark (Figures 10-12), an indication
that the algorithm used was not influenced by the sample size. Results from the network
analysis comparing the three distance matrices as inputs suggested that the model is robust
to the changes in the form of WGS used as model input (Figures 4, 8, 9 and Tables 4-6). In
addition, since there was a class imbalance between isolates from Denmark and imported
isolates, the finding that country of origin influenced cluster formation in this analysis
should be further investigated using isolates from different countries or regions.
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4. Conclusions

This study aimed at attributing human Campylobacter cases to different animal sources
using a weighted network-based approach to exploit the potential of WGS data in con-
ducting higher-resolution source attribution. We demonstrated that despite the high intra-
species genetic diversity in Campylobacter [41], which would result in low discriminatory
power in differentiating the different sources [4], the network analysis approach showed
good discriminatory power, maximized cluster coherence and reduced the number of
human isolates not attributed. The results obtained were robust to the different subtyping
data used. However, the wgMLST distance matrix as input data may provide more accurate
inputs than cgMLST and SNP, although this results in more human isolates not attributed
to any sources. Chickens were the main cause of human Campylobacter infections. The
analysis based on the country of origin of animal sources indicated that regionality affects
cluster formation. Further studies are therefore recommended using data sets from different
countries and different potential sources to confirm the reliability of the network-based
approach as an alternative for source attribution.
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