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Multistate Markov regression models used for quantifying the effect size of state‐

specific covariates pertaining to the dynamics ofmultistate outcomes have gained

popularity. However, the measurements of multistate outcome are prone to the

errors of classification, particularly when a population‐based survey/research is

involved with proxy measurements of outcome due to cost consideration. Such

a misclassification may affect the effect size of relevant covariates such as odds

ratio used in the field of epidemiology. We proposed a Bayesian measurement‐

error‐driven hidden Markov regression model for calibrating these biased esti-

mates with and without a 2‐stage validation design. A simulation algorithm was

developed to assess various scenarios of underestimation and overestimation

given nondifferential misclassification (independent of covariates) and differen-

tial misclassification (dependent on covariates).We applied our proposedmethod

to the community‐based survey of androgenetic alopecia and found that the effect

size of the majority of covariate was inflated after calibration regardless of which

type of misclassification. Our proposed Bayesian measurement‐error‐driven

hidden Markov regression model is practicable and effective in calibrating the

effects of covariates onmultistate outcome, but the prior distribution onmeasure-

ment errors accrued from 2‐stage validation design is strongly recommended.
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1 | INTRODUCTION

Markov regression models have been extensively used in identifying the effects of significant state‐specific covariates on tran-
sitions betweenmultiple states of disease processwith specific applications including cancer,1,2 diabetesmellitus,3 Alzheimer's
disease,4 and stroke.5 More importantly, elucidating state‐specific covariates accounting for the dynamics of multistate out-
come plays an important role in recently proposed concept of precision medicine for prevention, surveillance, treatment,
and therapy of disease in question,6,7 which is equivalent to the concept of N‐of‐1 trials for individually tailored therapy.8
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While those models are very useful, one of complications is that the classification of multistate outcomes may be
prone to measurement errors, particularly when the multistate outcomes are defined by imperfect diagnostic tools in
population‐based researches. Such measurement errors may lead to the biased effect size of covariate in association with
step‐by‐step multistate transitions, which have been scarcely addressed before 2000.

It is noteworthy that these measurement errors can be viewed as the discrepancy between observed state and hidden
(true) state under the context of hidden Markov process. The classical application of hidden Markov model (HMM) to
handling the misclassification of true states in previous studies have recourse to the mixed HMM.9-12 Zhang and
Berhane9 developed a Bayesian‐mixed HMM to calibrate the effect of covariates on each state transition on the basis
of the observed outcomes of asthma measured by self‐reported questionnaire with multilevel data structure by using
the generalized model underpinning that consists of 3 parts: prevalence of asthma, transition probability between true
states, and the misclassification probability. The results demonstrated that the use of mixed HMM is more accurate than
the traditional logistic regression model. Dunson10 and Miglioretti11 proposed the latent transition models coupled with
the generalized linear framework to deal with multiple outcome measurements, which could be a mixture of count, cat-
egorical, and continuous observed response, given the latent transitions of true states. Altman12 applied such a kind of
mixed HMMs to capture the overdispersed and autocorrelated count data resulting from extra‐Poisson process given the
unobserved true disease status. All these approaches to estimating error probabilities are based on the mixed HMM
coupled with the framework of generalized linear model whereby the relevant covariates can be incorporated.

To estimate the parameters of the mixed HMM, Bayesian Markov chain Monte Carlo (MCMC) method has been
widely used over the past 2 decades. However, the so‐called label‐switching problem due to the symmetry of likelihood
function has been encountered when it comes to Bayesian MCMC method because posterior distribution of the mixed
HMM is invariant when the label‐switching method is used. To solve this problem, several methods have been pro-
posed, including the artificial identifiability constraints of the parameters on mixture distribution or those on compo-
nent, relabeling algorithms coupled with decision theoretic approach with Bayesian MCMC or expectation‐
maximization algorithm, and probabilistic relabeling algorithm.13,14 It could be argued that such an issue still remains
when estimating component‐specific parameters and interpreting marginal posterior densities are of great interest.
Moreover, over‐parameterization would not be avoided and the label‐switching problem would become complicated
if the number of hidden state increases due to biological property.

Furthermore, while the mixed HMM is applied to dealing with measurement errors, interests still center on how
measurement errors affect regression coefficients of relevant covariates but not on the evolution of dynamic disease pro-
cess. Chen et al15 and Jackson et al16 studies applied the HMM to the disease natural history of cancer with the consid-
eration of measurement errors resulting from inaccuracy of population‐based screening data. However, both of HMMs
were targeted to the transition of natural history, but their models were not focused on how these measurement errors
affect the effects of covariates on the multistate outcomes of disease natural history.

Instead of using themixed HMM, the alternative proposedmethod here is the use of forward‐backward or Viterbi algo-
rithm of HMM to treat the probability of measurement error as the emitting probability and the transition probability as
the probability of transition between true states. Doing so enables one tomodel the transition of disease progression in con-
tinuous‐timeMarkov process and also to calibrate the effect size of relevant covariate making allowance for measurement
errors. Themost advantage of using forward‐backward algorithm or Viterbi algorithm is that it enables one to estimate the
most possible dynamic latent true health state and the sequence of health state for any individual.

To be commensurate with the expedient use of Bayesian approach but not to resort to using artificial identifiability con-
straints and determined or probabilistic relabeling algorithm,17 an alternative approach is to use a 2‐stage validation design
with a small sample of the pilot study to calibrate these errors.18 This further justifies the use of the Bayesian approach to
incorporate prior information obtained from the pilot validation study into data on themain study to calibrate the estimates
of regression coefficients with adjustment for these measurement errors. In the language of epidemiology, the biased effect
resulting frommisclassification is often quantified by differential (covariate dependent) or nondifferential misclassification
(covariate independent) to reflect the direction of effect size before and after correcting thesemeasurement errors. However,
little is known about how the differential and nondifferential misclassification affects the multistate disease process.

The remaining section of this paper is organized as follows. Section 2 delineates the multistate measurement‐error‐
driven hidden Markov regression model for the effect of state‐specific covariates on the multistep disease progression.
We developed a new recursive relationship of conditional probabilities between observed state, true state, and measure-
ment error with hidden Markov underpinning given repeated observed data. Section 3 shows a 2‐stage validation design
with Bayesian underpinning. The informative prior on the measurement errors of multistate outcomes were derived in
the first stage and were combined with the empirical data that forms the likelihood to build up the posterior distribution
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in the second stage. The BayesianMCMC simulation with Gibbs sampling schemewas applied so as to estimate the param-
eters for statistical inference. Section 4 presents how these measurements errors affect the effect of covariates of interest on
the transitions of multiple states given differential and nondifferential misclassifications and provide the simulation algo-
rithm and the results for assessing the magnitudes of underestimation and overestimation given various scenarios of mis-
classification. Section 5 illustrates the application of the proposed Bayesian measurement‐error‐driven hidden Markov
regressionmodel to data from a community‐based survey on androgenetic alopecia (AGA)with a 2‐stage validation design.
We also specified how the information of classification errors of AGA from the first stage with gold standard involved has
been incorporated into the stochastic process built for the large‐scale community‐based survey in the second stage of main
study. Finally, Section 6 gives the discussion on methodological thoughts, the biases caused by differential and
nondifferential misclassification in 3‐state HMM, and the empirical findings of AGA example.
2 | MODEL SPECIFICATION

2.1 | Multistate Markov model for k‐state progressive disease

Suppose we have a k‐state Markov model for the progression of disease from state 1 to state k with state space Ω = {1, 2,
…, k} realized by the random variable Y(t) to represent the state occupied at time t. Such a progressive model is a phase‐
type distribution, which assumes the disease is progressive from state 1 to state k. To estimate a series of successive tran-
sitions, discrete‐time or continuous‐time Markov model can be considered.19,20

With the continuous‐timeMarkov process, following the notation of Kalbfleisch and Lawless,21 the instantaneous tran-
sition rates were specified between states. The transition from state i to state j is denoted by qijwith the following definition:

qij tð Þ ¼ limΔt→0
P Y t þ Δtð Þ ¼ jjY tð Þ ¼ ið Þ

Δt
i ¼ 1; 2;…; k; and j ¼ 1; 2;…; k; (1)

which is the ith row and jth column element in the instantaneous transition k × kmatrixQ. It should be noted that the ith

diagonal element qii tð Þ ¼ −∑k
j¼1qij tð Þ. An absorbing state has a zero row vector in Q matrix. Accordingly, the transition

probability matrix, say P, can be derived as

P′ tð Þ ¼ P tð ÞQ; (2)

subject to the initial condition, P(0) = 1.
With a discrete‐time Markov model, we need to describe the disease process with 1‐step transition matrix, P. There-

fore, the transition probability in n step can be expressed as Pn.
2.2 | Measurement‐error‐driven HMM

To consider the measurement errors between states, we introduce rab to denote the proportion of misclassifying state b
(true state) as state a (observed state). We start with the first visit and decompose the observed probability of being clas-

sified as state 1, P O 1ð Þ
1

� �
, into k true disease status at the first visit,T 1ð Þ

1 ,T 1ð Þ
2 , …, andT 1ð Þ

k , representing state 1, 2, …, and k,

respectively, which enable us to estimate multiple types of measurement errors as described below. Accordingly, the first
visit for the observed state 1 is decomposed into k components of conditional probabilities for those with true state 1 and
correctly observed as state 1 (r11), denoted by P O 1ð Þ

1 jT 1ð Þ
1

� �
, for those with true state 2 but misclassified as state 1 (r12),

denoted by P O 1ð Þ
1 jT 1ð Þ

2

� �
, …, and for those with true state k but misclassified as state 1 (r1k), denoted by P O 1ð Þ

1 jT 1ð Þ
k

� �
.

In terms of HMM language, γab is regarded as the emitting probability defined as

γab ¼ P OajTbð Þ a; b ¼ 1; 2;…; kð Þ: (3)

The probability of having initial observed value O 1ð Þ
a expressed by γab is written as follows:

P O 1ð Þ
a

� �
¼ ∑

k

b¼1
P T 1ð Þ

b

� �
·P O 1ð Þ

a jT 1ð Þ
b

� �
¼ ∑

k

b¼1
πb Að Þ·γab: (4)

where πb(A) represents true prevalence of state b for those going to the first visit at A years of age.
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To build up a recursive relationship between the observed probability at the second visit and that at the first visit with

time interval t, the conditional probability of observing state 1 at the second visit includes
k· k þ 1ð Þ

2
possibilities from

1. true state 1 T 1ð Þ
1

� �
and observed as state 1 O 1ð Þ

1

� �
at first visit which is further divided into k scenarios following

over time until the second visit; staying in state 1 until the second visit T 2ð Þ
1

� �
, progressing to state 2 T 2ð Þ

2

� �
between

the 2 visits but misclassified as state 1 O 2ð Þ
1

� �
at the second visit, …, and progressing to state k between the 2 visits

but misclassified as state 1 at the second visit and
2. true state 2 T 1ð Þ

2

� �
but misclassified as state 1 O 1ð Þ

1

� �
at first visit which is further divided into k‐1 scenarios given

progressive assumption (ie, the regression to true state 1 is not possible); staying in state 2 T 2ð Þ
2

� �
between the 2

visits but misclassified as state 1 (O 2ð Þ
1 ) at the second visit, …, and progressing to state k (T 2ð Þ

k ) between the 2 visits
but misclassified as state 1 (O 2ð Þ

1 ) at the second visit

k‐1. true state k‐1 T 1ð Þ
k−1

� �
but misclassified as state 1 O 1ð Þ

1

� �
at first visit which is further divided into 2 scenarios; staying

in state k‐1 T 2ð Þ
k−1

� �
between the 2 visits but misclassified as state 1 (O 2ð Þ

1 ) at the second visit, and progressing to state k (T 2ð Þ
k )

between the 2 visits but misclassified as state 1 (O 2ð Þ
1 ) at the second visit; and k.

True state k T 1ð Þ
k

� �
but misclassified as state 1 O 1ð Þ

1

� �
at first visit which stays in state k T 2ð Þ

k

� �
between the 2 visits

but misclassified as state 1 (O 2ð Þ
1 ) at the second visit.

Therefore,

P O 2ð Þ
1 jO 1ð Þ

1

� �
¼ P O 2ð Þ

1 ;T 1ð Þ
1 jO 1ð Þ

1

� �
þ P O 2ð Þ

1 ;T 1ð Þ
2 jO 1ð Þ

1

� �
þ …þ P O 2ð Þ

1 ;T 1ð Þ
k jO 1ð Þ

1

� �
¼ P O 2ð Þ

1 ;T 2ð Þ
1 ;T 1ð Þ

1 ;O 1ð Þ
1

� �
þ …þ P O 2ð Þ

1 ;T 2ð Þ
k ;T 1ð Þ

1 ;O 1ð Þ
1

� �h in
þ P O 2ð Þ

1 ;T 2ð Þ
2 ;T 1ð Þ

2 ;O 1ð Þ
1

� �
þ …þ P O 2ð Þ

1 ;T 2ð Þ
k ;T 1ð Þ

2 ;O 1ð Þ
1

� �h i
þ …þ P O 2ð Þ

1 ;T 2ð Þ
k ;T 1ð Þ

k ;O 1ð Þ
1ð Þg.P O 1ð Þ

1

� �
;

: (5)

which can be generalized as follows:

P O 2ð Þ
1 jO 1ð Þ

1

� �
¼ ∑

k

b¼1
P O 2ð Þ

1 ;T 1ð Þ
b jO 1ð Þ

1

� �
¼ ∑

k

b¼1
∑
k

l¼b

P O 2ð Þ
1 ;T 2ð Þ

l ;T 1ð Þ
b O 1ð Þ

1

� �
P O 1ð Þ

1

� � : (6)

Note that the 2 summation expressions only yield
k· k þ 1ð Þ

2
components because some (like reversible transitions)

are not admissible.

Since P O 2ð Þ
1 ;T 2ð Þ

l ;T 1ð Þ
b ;O 1ð Þ

1

� �

¼ P O 2ð Þ
1 jT 2ð Þ

l ;T 1ð Þ
b ;O 1ð Þ

1

� �
·P T 2ð Þ

l jT 1ð Þ
b ;O 1ð Þ

1

� �
·P O 1ð Þ

1 jT 1ð Þ
b

� �
·P T 1ð Þ

b

� �
¼ P O 2ð Þ

1 jT 2ð Þ
l

� �
·P T 2ð Þ

l jT 1ð Þ
b

� �
·P O 1ð Þ

1 jT 1ð Þ
b

� �
·P T 1ð Þ

b

� �
;

which, following the definition of the emitting probability and the Equation (4), is expressed as

¼ γ1l·Pbl tð Þ·γ1b·πb Að Þ (7)

P O 2ð Þ
1 jO 1ð Þ

1

� �
becomes

∑
k

b¼1
∑
k

l¼b

γ1l·Pbl tð Þ·γ1b·πb Að Þ
P O 1ð Þ

1

� � : (8)

Extending the Equation (8), the general form for the probabilities of observing state v in the next time tν given
observing state u in the previous time tu to accommodate irregular interval between 2 visits can be expressed as
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P O tνð Þ
v jO tuð Þ

u

� �
¼ ∑

k

b¼1
∑
k

l¼b

γvl·Pbl tν−tuð Þ·γub·πb Að Þ
P O tuð Þ

u

� � : (9)

The expression (9) is similar to the forward equation of HMM to derive the conditional prediction of state at tν given
the observed state at tu. The similar argument can be expressed by Viterbi algorithm with the replacement of summation
by maximum function as often stated in the conventional textbook of HMM.22

The above derivation can be decomposed into the detailed observations across true disease status for the first visit
(U) and the transition between the (v − 1)th and the vth visit (Wv) in matrix form as follows.

U ¼ O 1ð Þ
1 ⋯ O 1ð Þ

k

� �
; (10)

in which each element is a vector of length k for the composition of true disease states, O 1ð Þ
1 ¼ π1·γ11;⋯;πk·γ1kð Þ,

O 1ð Þ
2 ¼ π1·γ21;⋯;πk·γ2kð Þ, …, and O 1ð Þ

k ¼ π1·γk1;⋯;πk·γkkð Þ;

Wv ¼
M11 ⋯ M1k

⋮ ⋱ ⋮
Mk1 ⋯ Mkk

0
B@

1
CA; (11)

where the rth row and the cth column element, Mrc, is for the transition for observing state r at the (v − 1)th and state c
at the vth visit. Mrc itself is a k × k square matrix for the transition from true state i to state j between 2 visits with the ith
row and the jth column element as Pij · γcj.

The distribution of final disease status (Z) after first and m subsequent visits can be obtained as follows:

Z ¼ U× Wvð Þm (12)

The summation of the first k elements is the likelihood for the final observed state 1 and so on.
2.3 | Covariates incorporated into HMM

The covariates in the HMM can be considered as a function of either emitting probabilities or transition probabilities.
When the emitting probability with the random component is characterized by a binary outcome, a logit link function
relating the outcome to the covariates that are incorporated into the design matrix, say X, of the systematic component
can be written as follows:

log
π

1−π

� �
¼ Xβ: (13)

While the emitting probabilities are derived from multinomial outcomes or the transition probabilities with k > 2,
the polytomous logistic regression model can be used to model the effects of covariates with the following expression:

log
πh

π1

� �
¼ Xβh: (14)

where h is the number of possible emitting event or number of state (k).
For the continuous‐time model, we applied the proportional hazards regression form to the instantaneous transition

rates (qij) expressed as

qij ¼ qij0· exp Xβqij
� �

: (15)

where i,j = 1, …, k, X is the design matrix for covariates and βqij is the regression coefficient vector corresponding to X.
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3 | DESIGN AND ESTIMATION WITH BAYESIAN UNDERPINNING

3.1 | 2‐stage validation design on measurement errors

We proposed a Bayesian measurement‐error‐driven hidden Markov regression model for calibrating the effects of state‐
specific covariates on multistate outcomes in conjunction with a 2‐stage validation design. In the first stage, participants
are examined by both a gold standard and the proxy‐measuring tool. Let nab denote the number of participants who are
rated as states a and b by the proxy measurement and gold standard, respectively. The array of (n1b, n2b, ⋯nkb) forms
the parameter of Dirichlet distribution, which generates the prior information for measurement errors.

γbeDirichlet n1b;n2b;⋯nkbð Þ; b ¼ 1; 2;…; k; (16)

where k is the possible number of disease states. The special case of binomial distribution for any specific state will be
applied when k is 2.

The prior information is further developed into the posterior distribution in combination with the likelihood func-
tion based on the data on a larger‐scale survey at second stage.
3.2 | Bayesian directed acyclic graphic model

Based on the likelihood functions derived in the previous section, the numbers of subjects classified as state 1, 2, …, and

k at the first visit, denoted by XF ¼ O 1ð Þ
1 ;O 1ð Þ

2 ;…;O 1ð Þ
k

n o
, follows a multinomial distribution with parameters of P O 1ð Þ

1

� �
(see Equation (4)), P O 1ð Þ

2

� �
, …, and P O 1ð Þ

k

� �
, which are expressed in an array of PF. Similarly, numbers of patients in

state 1, 2, …, and k at the second visit given the state a classified in the first visit, denoted by

XSa ¼ O 2ð Þ
1 jO 1ð Þ

a ;O 2ð Þ
2 jO 1ð Þ

a ;…;O 2ð Þ
k jO 1ð Þ

a

n o
, which follows multinomial distributions of parameters of

PSa ¼ P O 2ð Þ
1 jO 1ð Þ

a

� �
;P O 2ð Þ

2 jO 1ð Þ
a

� �
;…;P O 2ð Þ

k jO 1ð Þ
a

� �n o
.

Collectively, the full set of parameters and relevant distributions used in Bayesian MCMC simulation can be
expressed as

XFeMultinomial PF ;NFð Þ; (17)

XSaeMultinomial PSa ;NSað Þ: (18)

The priors of regression coefficients are assigned as noninformative normal distribution as follows.

β′seNormal 0; 106
� �

(19)

The priors of baseline transition rates are assigned as gamma distribution as follows.

q′0eGamma 0:001; 0:001ð Þ (20)

The priors of parameters on misclassifications are specified as Dirichlet distribution;

rbeDirichlet c1b;…; ck;b
� �

; (21)

where cab is the empirical number of subjects who are actually at state b based on gold standard but are classified as
state a by the proxy measurement. Note that we used informative prior for misclassification terms in the light of our
validated results calibrated by a gold standard.
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The full joint probability distribution can then be expressed as

P XF ;XSa ; q
′

0s; β
′s; r′s

� �
∝P XF jq′0s; β′s; r′s

� �
×P XSa jq′0s; β′s; r′s

� �
×P q′0s

� �
×P β′s

� �
×P r′s

� �
: (22)

Bayesian inference using Gibbs sampling (WinBugs) program was used to derive the posterior distribution of param-
eters of interest when MCMC simulation is implemented. The mean values and 95% credible intervals of the proportion
of misclassification, baseline transition rates, regression coefficients, and the percentage of bias can be derived to make
statistical inference.
4 | SIMULATION FOR THE EFFECT OF MISCLASSIFICATION ON
MULTISTATE OUTCOMES

4.1 | Differential and nondifferential misclassification

Differential and nondifferential misclassifications for these multistate outcomes of interest are defined as whether the
impact of misclassifications on the effect size of covariate depends on the status of covariate. To simplify the illustration,
we begin with a binary covariate (such as family history) and k‐state disease model with the discrete‐time hidden Mar-
kov process proposed as above.

Suppose the association between exposure and true disease status (T1, T2, …, Tk) is displayed as follows:
T1 (State 1)
 T2 (State 2)
 ⋯
 Tk (State k)
X = 1
 n11
 n12
 ⋯
 n1k
X = 0
 n01
 n02
 ⋯
 n0k
Take state 1 as the reference group, the estimated regression coefficient of X for state g in equation (14) is

bβg ¼ n1g·n01
n11·n0g

: (23)

In the case of misclassification, the data layout by observed and true state is presented as follows.
O1, T1
 O1, T2
 ⋯
 O1, Tk
 ⋯
 Ok, T1
 Ok, T2
 ⋯
 Ok, Tk
X = 1
 n11 · r11 ∣ X = 1
 n12 · r12 ∣ X = 1
 ⋯
 n1k · r1k ∣ X = 1
 ⋯
 n11 · rk1 ∣ X = 1
 n12 · rk2 ∣ X = 1
 ⋯
 n1k · rkk ∣ X = 1
X = 0
 n11 · r11 ∣ X = 0
 n12 · r12 ∣ X = 0
 ⋯
 n1k · r1k ∣ X = 0
 ⋯
 n11 · rk1 ∣ X = 0
 n12 · rk2 ∣ X = 0
 ⋯
 n1k · rkk ∣ X = 0
The observed data layout aggregated by observed status is expressed as follows.
O1 (T1 + T2 + …Tk)
 O2 (T1 + T2 + …Tk)
 ⋯
 Ok (T1 + T2 + …Tk)
X = 1

∑
k

h¼1
n1h·r1h∣X¼1
 ∑

k

h¼1
n1h·r2h∣X¼1
⋯

∑
k

h¼1
n1h·rkh∣X¼1
X = 0

∑
k

h¼1
n0h·r1h∣X¼0
 ∑

k

h¼1
n0h·r2h∣X¼0
⋯

∑
k

h¼1
n0h·rkh∣X¼0
The observed (uncalibrated) regression coefficient, eβg , is
∑
k

h¼1
n1h·rgh∣X¼1

� �
· ∑

k

h¼1
n0h·r1h∣X¼0

� �

∑
k

h¼1
n1h·r1h∣X¼1

� �
· ∑

k

h¼1
n0h·rgh∣X¼0

� �: (24)

In the case of nondifferential misclassification, the proportion of misclassifying state b as a is independent of the
exposure status, X (rab ∣ X = 1 = rab ∣ X = 0). The nondifferential misclassification often lead to the problem of bias toward

the null in 2‐state progressive model, namely, eβg��� ���< bβg��� ���:23 However, it is complicated whenever the measurement errors
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are involved with multistate outcomes. We therefore performed a series of simulations as shown in the following section
to investigate whether such a nondifferential misclassification leads to underestimated or overestimated effect
(see below).

In the case of differential misclassification, the proportion of misclassifying state b as a is dependent on the exposure
status, X (rab ∣ X = 1 ≠ rab ∣ X = 0). The differential misclassification can result in bias in either direction in the 2‐state
progressive model.23 However, whether differential misclassification leads to overestimation or underestimation in
the misclassification of multistate outcomes is highly subject to the relative effect size of misclassification on the severity
of multistate disease outcome. This will be demonstrated by the following simulated results.

The percentage of the bias due to measurement errors for state g is defined as Pbias ¼
eβg− bβgbβg��� ��� ×100%. For the case of

risk factors, a positive percentage refers to overestimation, and a negative percentage refers to underestimation.
4.2 | Simulation for differential types of misclassification

In this section, we simulated various degrees of misclassifications of disease status in various exposure groups (such as
with or without family history) to investigate how differential and nondifferential misclassification led to underestima-
tion or overestimation of effect size.

We developed a simulated algorithm to elucidate the effect of misclassification on the effect size of the covariate of
interest. For ease of illustration, we begin with a binary risk factor (exposed versus unexposed), say X, and 2‐state out-
come (disease [state 2] versus nondisease [state 1]). The proportion of having the exposure (X = 1) of covariate was 30%.
The prevalence of disease in the exposed and unexposed group was 30% and 20%, respectively, which yielded a true esti-

mated odds ratio of 1.7143 (bβ ¼ 0:5390).
We used the Monte Carlo Markov chain method to obtain the distribution of measurement error. The simulation

procedure for a 2‐state model is described below.

1. For the proportion of misclassification between state 1 and state 2 (r12 and r21), we independently drew random
numbers from uniform distribution (0, 0.5) for the exposed (r12 ∣ X = 1 and r21 ∣ X = 1) and unexposed groups r12 ∣ X = 0

and r21 ∣ X = 0) following the notations indicated above.
2. Following the decomposition methods in the methods section, we estimated the associated observed regression

coefficient and the corresponding percentage of bias.

It should be noted that the procedure mentioned above was for differential misclassification. For nondifferential
misclassification that is independent of the status of covariates, we simply drew random numbers of r21 ∣ X = 1 and
r12 ∣ X = 1 as described in step 1, and assigned r21 ∣ X = 0 = r21 ∣ X = 1 and r12 ∣ X = 0 = r12 ∣ X = 1.

For the 3‐state disease, we used a hypothetical cohort in which the prevalence of state 2 and state 3 disease was 20%
and 10% in the exposed group, respectively, and 15% and 5% in the unexposed group, respectively, for illustration. The

odds ratio (Ω) of exposure for being state 2 and state 3 versus state 1 was Ω21 ¼ 1:5238 cβ21 ¼ 0:4212
� �

, and

Ω32 ¼ 2:2857 cβ32 ¼ 0:8267
� �

, respectively.

The simulated results regarding the relationship between ln
rab∣X¼1=rab∣X¼0

rba∣X¼1=rba∣X¼0

� �
(a, b ∈ 1, 2,and 3) and the percentage

of bias as indicated above are presented for the nondifferential misclassification and the differential misclassification of

2‐state and 3‐state model. Based on the simulated results, the lower and upper bounds of ln
rab∣X¼1=rab∣X¼0

rba∣X¼1=rba∣X¼0

� �
corre-

sponding to 1% to 99% underestimation could be derived.
4.3 | Simulated results

We first present the simulated results for a 2‐state disease process. Given the nondifferential misclassification with 10 000
repeats, all samples led to underestimation (Pbias < 0) (Figure 1A). When the misclassification was differential, 33.11% of
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samples were overestimation. Interestingly, the proportion of overestimation increased when ln
r21∣X¼1=r21∣X¼0

r12∣X¼1=r12∣X¼0

� �
increased (Figure 1B). The proportion of overestimation was 4.78% when ln

r21∣X¼1=r21∣X¼0

r12∣X¼1=r12∣X¼0

� �
was negative, whereas

the corresponding figures increased to 23.78% when ln
r21∣X¼1=r21∣X¼0

r12∣X¼1=r12∣X¼0

� �
was between 0 and β (0.5390) and 76.81% when

http://wileyonlinelibrary.com
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greater than β, respectively. Samples with this index smaller than −0.69 or larger than 1.95 were associated with 1% and
99% overestimation, respectively.

In the scenario of the nondifferential misclassification for a 3‐state disease, underestimation was noted for 98.8% and
87.6% of random samples of β21 and β32, respectively (Figure 1C). Given the differential misclassification, 38.76% of sam-

ples were overestimation for β21, which increased with the elevated value of ln
r21∣X¼1=r21∣X¼0

r12∣X¼1=r12∣X¼0

� �
(Figure 1D). When

ln
r21∣X¼1=r21∣X¼0

r12∣X¼1=r12∣X¼0

� �
was negative, the proportion of overestimation was 13.06%. The corresponding proportions for

ln
r21∣X¼1=r21∣X¼0

r12∣X¼1=r12∣X¼0

� �
between 0 and β21(=0.4212) and greater than β21 were 35.68% and 72.24%, respectively. Samples

with ln
r21∣X¼1=r21∣X¼0

r12∣X¼1=r12∣X¼0

� �
smaller than −1.32 or larger than 2.17 yielded 1% and 99% overestimation, respectively. As

far as β32 is concerned, there were 33.20% sample resulting in overestimation, which also increased when

ln
r32∣X¼1=r32∣X¼0

r23∣X¼1=r23∣X¼0

� �
increased (Figure 1D). The corresponding proportions of overestimation when

ln
r32∣X¼1=r32∣X¼0

r23∣X¼1=r23∣X¼0

� �
less than 0, between zero and β32(=0.8267), and greater than β32 were 24.54%, 32.37%, and

44.26%, respectively. Samples with ln
r32∣X¼1=r32∣X¼0

r23∣X¼1=r23∣X¼0

� �
smaller than −2.67 or larger than 3.32 yielded 1% and 99% over-

estimation, respectively.
In summary, a series of simulation algorithms were developed to assess underestimation and overestimation of effect

size due to the misclassification of multistate outcome. The 95% credible interval for biased direction, particularly over-
estimation, can be obtained given various scenarios.
5 | APPLICATION TO AGA

Androgenetic alopecia is a common health problem. It is a progressive disease with a cascade of multiple‐step progres-
sions by using different classifications. For example, Norwood system classifies AGA into 7 categories from mild to
extremely severe types.24 In the light of this inherent progressive property, it is of great interest to quantify the instan-
taneous rate of progression from free of AGA until severe AGA in the province of dermatology by using a stochastic
process. However, such a natural history of AGA progression has been barely addressed.

In addition to the disease natural history of AGA, it is also interesting to assess risk factors responsible for different
stages of AGA. The AGA has been recently reported to be associated with metabolic syndrome (MetS).25 However,
whether the contribution of MetS to AGA plays a crucial role in the outset of AGA or a promoter for progression to
severe AGA is elusive and worthy of being investigated.

The classification of AGA is prone to misclassification errors when multistate outcomes are measured by
nondermatologist such as public health nurses in a large community‐based survey. Owing to inherent progressive prop-
erty, the role of MetS in association with AGA progression, and classification errors, we applied the proposed measure-
ment‐error‐driven HMM with Bayesian underpinning to estimate transition rates between AGA states. The respective
effects of age, sex, family history and MetS on each transition step were also modeled by considering classification error
rates.

Although there are 2 types of misclassification as mentioned in the simulated section, we feel that nondifferential
misclassification is more likely to be encountered in the current example of AGA than differential misclassification
because the public health nurses had no information on MetS of examinees when they rated the degree of AGA.
5.1 | Model specification of 3‐state AGA

We used a 3‐state continuous‐time Markov model for the progression of grades in AGA with a state space Ω={1, 2, 3},
where 1 represents normal (normal or Norwood type I), 2 for intermediate AGA (Norwood type II‐IV and Ludwig L‐I),
and 3 for severe AGA (Norwood type V‐VII and Ludwig L‐II and L‐III). Figure 2 shows the disease natural history
model for depicting the progression of AGA. In this illustration, all 3 subjects start from normal in hair status at birth
or the first time of survey. Subject 1 stays in the normal state until the time of the first survey or subsequent surveys.
Subject 2 progresses to intermediate AGA at the time between birth and prevalence survey or between the first and
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second survey. Likewise, subject 3 progresses to intermediate and severe AGA before the first survey. Each subject of the
underlying population would follow 1 of 3 pathways. In Figure 2, annual progression rates in the 3‐state model are
denoted by q12 and q23, representing 2 progressions from normal to intermediate and from intermediate to severe
AGA. To incorporate effects of covariates, such as age, sex, family history of AGA, and MetS, we analyzed data with
the proportional hazards regression form following the treatment of continuous‐time Markov model in the methods sec-
tion (Equation (15)). The Bayesian directed acyclic graphic (DAG) model for the 3‐state model considering misclassifi-
cations is illustrated in Figure 3. By using Equation (15), the transition rates for the sth covariate profile, q12[s] and
q23[s], were modeled as functions of covariates (age[s], sex[s], FH[s], and MetS[s]) and their corresponding regression
coefficients, (βq12:age, β

q
12:sex , β

q
12:FH , β

q
12:MetS, β

q
23:age, β

q
23:sex , β

q
23:FH , and βq23:MetS). By using Equations (2) to (15), probabilities

of observing cases of the sth covariate profile in different states in the first (Pf[s, 1:3]) and the second visit (Ps1[s, 1:3],
Ps2[s, 1:3] and Ps3[s, 1:3]) were the function of measurement error (γ12, γ23, γ21, γ32) and transition rates (q12[s] and
q23[s]). Note that the links for the logic function are illustrated with dashed arrow in the DAG model. As far as the sto-
chastic link is concerned, the random variables Xf[s, 1:3], an array with numbers at states 1 to 3 in the first visit, follow a
multinomial distribution with parameters of probabilities (Pf[s, 1:3]) and total number of subjects of the sth covariate
profile (Nf[s]) by using Equation (17) and the link is illustrated with solid arrow. Similarly, the random variables
XS1[s, 1:3]‐XS3[s, 1:3] are linked with their associated parameters according to Equation (18).
5.2 | Study population involved in the 2‐stage validation design

In this study, we conducted a community‐based 2‐stage validation study design for the effect of covariates on AGA con-
sidering measurement errors. In the first stage, a calibration study was conducted with AGA categorized by both a
senior dermatologist (gold standard) and public health nurses on 555 subjects to provide information on measurement
errors because those public health nurses would be responsible for rating the severity of AGA in the main study at sec-
ond stage.

In the main study, the study population was derived from a community‐based integrated screening program in
Tainan County, Taiwan. Two surveys for AGA were conducted between 2005 and 2010. A total of 7960 subjects aged
40 years or older who attended the screening program in 2005 were invited to have the first community‐based AGA sur-
vey. A total of 6817 subjects had complete data on the result of AGA survey and all other screening items. The second
survey was conducted in 2010 for 49 936 subjects attending the screening program. Among them, 42 000 subjects had
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complete data on the survey of AGA and all screening items. There were 1440 subjects participating in both surveys who
are available for estimating the incidence of intermediate AGA and the progression rate from intermediate to severe
AGA and to investigate the effects of covariates of interest on these progression rates.
5.3 | Data collection

Androgenetic alopecia state was classified by public health nurses who had taken the training course by a senior der-
matologist before the survey in the first stage of the study. On the screening site, public health nurses also took the
anthropometric measures (for body height, body weight, and circumferences of waist and hip) and blood pressure read-
ings. Subjects were requested to fast for at least 8 hours before screening for the biochemical examination, including
fasting glucose, lipid profile, liver function, etc. Data on lifestyle, personal disease history, and family history were col-
lected with a structured questionnaire. The written informed consent has been obtained from each participant.

Androgenetic alopecia involving frontal hairline was classified according to the Norwood classification, grading
from type I to VII. Ludwig classification, grading from L‐I to L‐III, was applied if frontal hairline was not involved.26

We used NCEP ATP III criteria to define MetS.27 Briefly, subjects met at least 3 of the following criteria were clas-
sified as having MetS: (1) central obesity (waist circumference larger than or equal to 80 cm for female and 90 cm for
male, in the light of Asian modifications),28 (2) hypertriglyceride (triglyceride higher than or equal to 150 mg/dL), (3)
hypohigh density lipoprotein cholesterol (HDL‐C) (HDL‐C less than 50 mg/dL for female and less than 40 mg/dL for
male), (4) elevated blood pressure (systolic blood pressure is 130 mmHg or above or diastolic blood pressure is 85 mmHg
or above), and (5) hyperglycemia (fasting glucose is 100 mg/dL or above).
5.4 | Estimated results

Table 1 shows the results of calibrating AGA rated by public health nurses compared with the senior dermatologist.
Among the 185 subjects whom the senior dermatologist classified as AGA free, 7.6% (n = 14) were misclassified as inter-
mediate AGA. Among the 222 subjects with intermediate AGA categorized by gold standard, the erroneous rates of
downgrading as AGA free and upgrading as severe AGA were 2.3% (n = 5) and 3.6% (n = 8), respectively. Interestingly,
the misclassification rate was highest in the severe AGA; there were 16.2% (n = 24) misclassification among the 148
severe subjects.



TABLE 1 Comparison of androgenetic alopecia classification rated by public health nurses and the senior dermatologist (gold standard)

Public Health Nurses

TotalGold Standard Normal Intermediate Severe

Normal 171 (92.4%) 14 (7.6%) 0 185

Intermediate 5 (2.3%) 209 (94.1%) 8 (3.6%) 222

Severe 0 24 (16.2%) 124 (83.8%) 148
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Table S1 shows the estimated results of univariate analysis on the effect of each covariate on the occurrence of inter-
mediate AGA and also on subsequent progression to severe AGA with and without considering measurement errors. It
can be clearly seen that age, sex, and family history made contributions not only to the occurrence of intermediate AGA
but also to subsequent progression. It should be noted that considering measurement errors as opposed to the neglect of
measurement errors rendered all 3 estimates inflated, which implies the underestimation of the impacts of all these 3
factors on 2 step‐by‐step progressions without making allowance for the measurement errors. The effects of MetS on
2 transitions were not statistically significant. As far as individual components are concerned, elevated fasting sugar
and hypertension were 2 statistically significant factors responsible for 2 transitions. Like age, sex, and family history,
the effects of these 2 components were also underestimated without considering measurement errors. Three other com-
ponents had various contributions to 2 transitions.

Table 2 shows the estimated regression coefficient of MetS on the occurrence and progression of AGA after adjusting
for age, sex, and family history of AGA before considering measurement errors. The results show that MetS plays a more
significant role in the progression (transition from intermediate to severe state) than the occurrence of AGA (transition
from normal to intermediate state). The magnitude of the effect (relative risk [RR], the exponential transform of
TABLE 2 Estimated baseline transition rates and regression coefficients of metabolic syndrome (MetS) and its individual components after

adjusting for age, sex, and family history

Normal to Intermediate Intermediate to Severe

Estimate SD 95% CI Estimate SD 95% CI

Baseline transition rates 0.0021 0.00004 0.0021‐0.0022 0.0030 0.0002 0.0026‐ 0.0033

MetS

Yes vs no 0.0175 0.0268 −0.0350 to 0.0710 0.1478 0.0585 0.0295‐0.2631

Age

>70 vs ≤70 0.1645 0.0219 0.1233‐0.2071 0.2310 0.0468 0.1384‐0.3255

Sex

Male vs female 1.2660 0.0201 1.2270‐1.2660 0.8491 0.0591 0.7328‐0.9666

Family history

Yes vs no 1.0550 0.0480 0.9586, 1.1480 0.6911 0.0849 0.5275‐0.8569

Models for individual MetS components

High waist circumference

>80 cm (female), >90 cm (male) −0.0162 0.0207 −0.0563 to 0.0250 0.0140 0.0493 −0.0825 to 0.1103

Elevated triglyceride

≥150 mg/dL 0.0060 0.0228 −0.0395 to 0.0501 0.0425 0.0530 −0.0617 to 0.1458

Low level of high density lipoprotein

<50 mg/dL (female), <40 mg/dL (male) 0.0440 0.0280 −0.0113 to 0.0995 0.0492 0.0685 −0.0854 to 0.1813

Elevated fasting glucose

≥110 mg/dL or Diabetes Mellitus (DM) 0.0626 0.0237 0.0162‐0.1088 0.1812 0.0534 0.0730‐0.2836

Hypertension

Yes vs no 0.0429 0.0199 0.0043‐0.0823 0.1519 0.0456 0.0636‐0.2409
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regression coefficients) of MetS was 1.16 (=exp(0.1478)) (95% CI, 1.03‐1.30) for the progression and 1.02 (95% CI, 0.97‐
1.07) for the occurrence of AGA. Table 2 also shows the effect of the individual components of MetS. Elevated fasting
glucose and hypertension relative to 3 other components made significant contributions to occurrence of AGA and sub-
sequent progression from intermediate to severe state. The RRs of elevated fasting glucose on the occurrence and pro-
gression of AGA were 1.06 (95% CI, 1.02‐1.11) and 1.20 (95% CI, 1.08‐1.33), respectively. The corresponding figures for
hypertension were 1.04 (95% CI, 1.00‐1.09) and 1.16 (95% CI, 1.07‐1.27).

Table 3 shows the results with Bayesian approach incorporating informative prior for the measurement errors bor-
rowing from Table 1 given the nondifferential misclassification that may be adequate for this AGA example as indicated
above. The misclassifications were noted more prominent in misclassifying state 2 to state 1 (cγ12 ¼ 19.5%, 95% CI,:
15.6%‐23.6%) and state 3 to state 2 (cγ23 ¼ 14.8%, 95% CI, 10.1%‐20.1%). Misclassifications from lower to higher states
seemed to be less prominent. They were 8.1% (95% CI, 7.2%‐8.9%) and 8.6% (95% CI, 6.3%‐10.9%) for misclassifying state
1 to 2 (cγ21 ) and state 2 to 3 (cγ32 ), respectively. Metabolic syndrome was still statistically significantly associated with the
progression of AGA in the second transitions (RR = 1.23, 95% CI, 1.00‐1.50), but a lacking of significant association with
the occurrence of AGA was found (RR = 1.04, 95% CI, 0.96‐1.13). Similarly, the individual components of elevated
fasting glucose and hypertension still play significant roles in both transitions as shown in the model without
TABLE 3 Estimated measurement errors, baseline transition rates, and regression coefficients of metabolic syndrome (MetS) and its

individual components after adjusting for age, sex, and family history by Bayesian approach with informative prior

Normal to Intermediate Intermediate to Severe

Estimate SD 95% CI Estimate SD 95% CI

Proportion of misclassifications

γ12 19.5% 0.0205 15.6%‐23.6%

γ21 8.1% 0.0042 7.2%‐8.9%

γ23 14.8% 0.0254 10.1%‐20.1%

γ32 8.6% 0.0117 6.3%‐10.9%

Baseline transition rates 0.0009 0.0001 0.0007‐0.0011 0.0043 0.0011 0.0024‐0.0068

MetS

Yes vs no 0.0407 0.0410 −0.0418 to 0.1206 0.2078 0.1034 0.0042‐0.4071

Age

>70 vs ≤70 0.3126 0.0331 0.2478‐0.3787 0.2676 0.0920 0.0957‐0.4609

Sex

Male vs female 2.1320 0.0877 1.9740‐2.3130 0.1332 0.1969 −0.2414 to 0.5158

Family history

Yes vs no 1.4420 0.0771 1.2900‐1.5950 0.8033 0.1404 0.5373‐1.0770

Models for individual MetS components

High waist circumference

>80 cm (female), >90 cm (male) 0.0021 0.0318 −0.0612 to 0.0644 0.0024 0.0880 −0.1698 to 0.1755

Elevated triglyceride

≥150 mg/dL 0.0220 0.0337 −0.0439 to 0.0864 0.0328 0.0913 −0.1501 to 0.2107

Low level of high density lipoprotein

<50 mg/dL (female), <40 mg/dL (male) 0.0403 0.0460 −0.0492 to 0.1282 0.0783 0.1184 −0.1567 to 0.3028

Elevated fasting glucose

≥110 mg/dL or DM 0.0955 0.0368 0.0232‐0.1670 0.2189 0.0881 0.0435‐0.3918

Hypertension

Yes vs no 0.0703 0.0302 0.0110‐0.1300 0.2348 0.0824 0.0772‐0.3998
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considering measurement errors (Table 2). However, the magnitude of the effect was away from null hypothesis further
when measurement errors were taken into account. The RRs of fasting glucose on the occurrence and progression of
AGA became 1.10 (95% CI, 1.02‐1.18) and 1.24 (95% CI, 1.04‐1.48), respectively. The corresponding figures for hyperten-
sion were 1.07 (95% CI, 1.01‐1.14) and 1.26 (95% CI, 1.08‐1.49), respectively. It should be noted that the standard devi-
ation of the posterior distribution was larger in the measurement error model compared with the uncalibrated ones
(Table 2).

The underestimation resulting from the neglect of measurement errors were observed for all covariates on the occur-
rence of AGA as shown in Table 4 and Figure 1C with negative biased percentage for all the variables except HDL. The
percentage of bias was statistically significant for age, sex, and family history but not for MetS or its individual compo-
nents (Table 4). As shown in the right panel of Figure 1C, the underestimation of the regression coefficient (β23) on the
progression of AGA was not so robust as that of the regression coefficient (β12) on the incidence of AGA (left panel of
Figure 1C). The percentage of bias was not significant for all the covariates on the progression of AGA, except an over-
estimation for sex. It should be also noted that the measurement error model with informative prior had better model
performance than the one without considering no misclassification (Table 2). The estimate of Deviance Information
Criterion (DIC) for the latter was 6428, but it was reduced to 3774 for the former calibrated model.

We also tested the measurement error model with noninformative prior (Table 5). The estimates of misclassifying
toward less severe stage were exaggerated (cγ12 = 55.6%, 95% CI, 35.7%‐65.7%; cγ23 = 50.9%, 95% CI, 25.9%‐59.8%) com-
pared with their counterparts in the model with informative prior (Table 3), whereas the estimates of misclassifying
toward severe state were decreased (cγ21 = 4.7%, 95% CI, 2.2%‐7.3%; cγ32 = 4.0%, 95% CI, 2.5%‐6.9%). The standard devi-
ations of the posterior distribution were further enlarged compared with the corresponding figures of the model with
informative prior for measurement error. Together with the fact that the point estimates of the regression coefficients
of MetS on both transitions were shrunk, MetS became an insignificant factor responsible for both occurrence
(RR = 1.02, 95% CI, 0.91‐1.14) and the progression of AGA (RR = 1.16, 95% CI, 0.90‐1.48) (Table 5). We also found that
TABLE 4 Percentage of biases of regression coefficients of metabolic syndrome (MetS) and its individual components due to

misclassification

Normal to Intermediate Intermediate to Severe

Median 95% CI Median 95% CI

MetS

Yes vs no −55 −262 to 953 −30 −87 to 553

Age

>70 vs ≤70 −47 −63 to −27 −13 −60 to 160

Sex

Male vs female −41 −46 to −35 274 87‐845

Family history

Yes vs no −27 −36 to −16 −14 −42 to 36

Models for individual MetS components

High waist circumference

>80 cm (female), >90 cm (male) −108 −1796 to 301 40 −457 to 930

Elevated triglyceride

≥150 mg/dL −61 −540 to 954 21 −249 to 1595

Low level of high density lipoprotein

<50 mg/dL (female), <40 mg/dL (male) 91 −126 to 3494 30 −337 to 1918

Elevated fasting glucose

≥110 mg/dL or DM −35 −84 to 201 −17 −71 to 320

Hypertension

Yes vs no −39 −94 to 301 −35 −77 to 113



TABLE 5 Estimated measurement errors, baseline transition rates, and regression coefficients of metabolic syndrome (MetS) and its

individual components after adjusting for age, sex, and family history by Bayesian approach with noninformative prior

Normal to Intermediate Intermediate to Severe

Estimate SD 95% CI Estimate SD 95% CI

Proportion of misclassifications

γ12 55.6% 0.0749 35.7%‐65.7%

γ21 4.7% 0.0130 2.2%‐7.3%

γ23 50.9% 0.0816 25.9%‐59.8%

γ32 4.0% 0.0112 2.5%‐6.9%

Baseline transition rates 0.0034 0.0011 0.0013‐0.0055 0.0014 0.0008 0.0004‐0.0035

MetS

Yes vs no 0.0187 0.0581 −0.0934 to 0.1339 0.1483 0.1261 −0.1033 to 0.3931

Age

>70 vs ≤70 0.2003 0.0708 0.069‐0.3421 0.4033 0.1106 0.1815‐0.6222

Sex

Male vs female 1.6450 0.1783 1.3450‐2.0380 1.5130 0.5316 0.3881‐2.5260

Family history

Yes vs no 0.8486 0.2277 0.4789‐1.3650 1.8020 0.3315 1.0220‐2.3860

Models for individual MetS components

High waist circumference

>80 cm (female), >90 cm (male) −0.0057 0.0444 −0.092 to 0.0825 −0.0014 0.0980 −0.1936 to 0.1878

Elevated triglyceride

≥150 mg/dL 0.0045 0.0478 −0.0934 to 0.0996 0.0588 0.1026 −0.1382 to 0.2567

Low level of high density lipoprotein

<50 mg/dL (female), <40 mg/dL (male) 0.1291 0.0607 0.0123‐0.2527 −0.1544 0.1332 −0.4228 to 0.1057

Elevated fasting glucose

≥110 mg/dL or DM 0.1118 0.0598 −0.0003 to 0.2347 0.0893 0.1230 −0.1509 to 0.3244

Hypertension

Yes vs no 0.0478 0.0409 −0.0314 to 0.1260 0.2017 0.0970 0.0127‐0.3910
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the effects of individual components on the transitions of AGA may be changed toward or away from null hypothesis or
even be changed in terms of the direction of effect. For example, the effect of abnormal HDL on the progression of AGA
deteriorated using the model with informative prior but ameliorated using the model with noninformative prior.

Without prior information, whether the changes of disease states in different time were due to disease progression of
natural course or misclassification was indistinguishable. The model would encounter the problem of identifiability. In
the current study, the model with noninformative prior resulted in negative estimate of the effective number of param-
eters (pD). The convergence of measurement error terms was much better improved in the model with informative prior
compared with that with noninformative prior (Figure 4).
6 | DISCUSSION

We developed a Bayesian measurement‐error‐driven HMM for assessing the direction of misclassification implicated in
multistate outcomes that may affect the effect of covariates on the transitions between multiple states. Information on
the priors of measurement errors with Bayesian underpinning was obtained from a 2‐stage validation design. There are
several unique and novel statistical thoughts on the methodological development and the application to an example of
AGA.



FIGURE 4 The iterative history of sampling for measurement errors with and without informative prior in the multivariable model for

metabolic syndrome [Colour figure can be viewed at wileyonlinelibrary.com]
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First, the use of HMM is very flexible for modeling the misclassifications of multistate outcomes in epidemiology in
contrast to one of previous specific statistical methods based on the matrix approach under the context of positive pre-
dictive value, which are restricted to the 2‐state outcome and only amendable to irreversible outcome.29 The proposed
recursive relationships between repeated equal or unequal spaced visits with HMM may accommodate different and
multiple types of measurement errors in relation to the evolution of multistate disease process. The proposed HMM
can also accommodate time‐dependent misclassification provided information is sufficient to be observed.

The second advantage of the proposed model that is different from the other HMM approach dealing with the mis-
classification of outcome30 is the further assessment of direction of biased effect size of each covariate attributed to dif-
ferential or nondifferential misclassification of multistate outcomes. The simulated algorithm provides a new insight
into underestimation or overestimation of effect size when different scenarios of misclassification occur. Our simulated
results show the majority of estimated odd ratios (ORs) are underestimated in 2‐state or 3‐state Markov model given a
nondifferential misclassification. When the differential misclassification is implicated, whether state‐specific ORs were
underestimated or overestimated is highly dependent on relative size of measurement error between the exposed group
and the nonexposed group. It is interesting to find that as far as a risk factor is concerned when the misclassification
toward a severe state tends to occur more frequently in the exposed group than the unexposed group (

ln
rab∣X¼1=rab∣X¼0

rba∣X¼1=rba∣X¼0

� �
>0), the estimated effect size would be more likely to be pulled away from the null (overestimation),

which is more commonly seen in previous epidemiological studies. It should be noted that the patterns of overestima-
tion and underestimation are very complicated in the measurement errors implicated in the multistate outcomes by
whether they are subject to downstaging or upstaging measurement error.

Although we reckon differential misclassification may be not possible in the AGA example, we are here to present
the illustration on how the proposed model can be applied to our AGA model. The estimated results of the index for

misclassification as pointed out in Figure 1D show the estimates of ln
r21∣X¼1=r21∣X¼0

r12∣X¼1=r12∣X¼0

� �
for MetS, age group, sex, and

family history were −0.0061, −0.9707, −3.1450, and 0.3200 with the corresponding percentage of bias being −89.7%,
−51.6%, −42.3%, and 35.2%, respectively, which indicated that the uncalibrated effect size for the transition from normal
to intermediate AGA would more likely be underestimated, namely, negative percentage of bias for β21, except for

family history. Similar for β32, the estimates of ln
r32∣X¼1=r32∣X¼0

r23∣X¼1=r23∣X¼0

� �
for MetS, age group, sex, and family history were

http://wileyonlinelibrary.com
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1.1023, 2.1948, −5.8150, and 0.0266 with the corresponding negative percentage of bias being −131.3%, −126%, −79.6%,
and − 57.8%, respectively, which indicated that the uncalibrated effect size, except for sex, would have half chance to be
underestimated. However, the estimation based on differential misclassification was not so stable possibly because our
prior information in the pilot study was not covariate dependent so that it was not included in the main results. Recall
that the nondifferential misclassification is therefore the probable scenario of our AGA example as the public health
nurses were not aware of the status of covariates when they rated the AGA status in the community‐based survey.

Thirdly, we have applied this 3‐state measurement‐error‐driven HMM with Bayesian DAG method to assess the
effect of covariates on multistep natural progression of AGA considering the probable misclassification measured in
the community. After making allowance for the errors of misclassification, it is obvious that the effect of MetS on the
occurrence of intermediate stage of AGA and on the transition from intermediate to severe state has been inflated from
1.02 to 1.04 for the first transition and from 1.16 to 1.23 for the second transition corresponding to the uncalibrated
model and the calibrated model one. The breakthrough of this study is to evaluate the impact of joint influence of such
a misclassification on the multivariate outcome instead of only the univariate outcome. The estimates of multistep pro-
gressive of AGA and the effects of covariates enabled us to elucidate whether the associated risk factors play the role at
onset of AGA or as a promoter for progression to severe AGA. Earlier, Su and Chen25 found that MetS was associated
with a 67% elevated risk of the presence of AGA with a cross‐sectional community‐based survey. In our study, we fur-
ther demonstrate that MetS plays a more important role in a promoter for AGA progression (RR = 1.23, 95% CI, 1.00‐
1.50) than the onset of AGA (RR = 1.04, 95% CI, 0.96‐1.13). Among the individual components of MetS, elevated fasting
glucose and blood pressure were both statistically significant of being initiator and promoter. Such results after the cal-
ibration of measurement errors make great contribution to the identification of significant covariates played in person-
alized medicine of disease progression with multistate outcomes.

The fourth contribution to this theme is the better use of Bayesian approach particularly when a 2‐stage validation
design is applied. It can be found from our application of AGA example that lacking of prior information on measure-
ment errors without using a 2‐stage validation design led to unstable and unreliable estimation of parameters. In our
example of AGA, the prior knowledge on probable misclassification was obtained in an earlier but smaller scale of cal-
ibration with public health nurses who practiced the field survey and a senior dermatologist (who were treated as a gold
standard). The prior information was further incorporated by using the Bayesian approach. The results showed the esti-
mates of measurement error may be affected and the convergence of estimation has become much stable without the
manifestation of autocorrelation when using informative prior.
7 | COMPARISONS WITH ARTIFICIAL CONSTRAINT AND RELABELING
ALGORITHM

The comparisons were made between the results based on our Bayesian 2‐stage method and those of both the artificial
identifiability constraints approach and relabeling algorithms used in the mixed HMM without using a 2‐stage design.
We estimated parameters with all possible permutations of the 4 measurement error terms (γ12, γ21, γ23, and γ32) based
on the main dataset (the detailed estimated results shown online at website http://my2.tmu.edu.tw/blog.php?user=
amyyen&f=blog_doc&bid=136030). The smallest DIC (3647.22) was seen in the model with the following constraint:
γ12>γ23>γ32>γ21, which was very close to the estimated results with noninformative prior (Table 5). However, artificial
identifiability constraint may be inappropriate in our case as it is difficult to know the order of constraint with respect to
4 measurement errors if the pilot study is not conducted or other information is not available. As expected, the parsi-
monious model is therefore the one using the noninformative prior. Interestingly, the constraint order that is the same
as that in the pilot study (γ23>γ21>γ32>γ12) gives rise to the estimates of measurement errors (upper panel of Table 6)
closer to our posterior estimates, except the fact that γ12 was a bit lower compared with other artificial constraints
(Table 3). To further regard the parameters of measurement errors as hierarchical Dirichlet process (DP), we applied
Bayesian hierarchical DP with conjugacy to model the hyperparameters of base measures in relation to 4 measurement
errors given all 24 possible permutations with the iteration of Gibbs sampling scheme.31 We think the results and sta-
tistical thoughts may be similar to those based on a probabilistic relabeling strategy although we have not used the same
way as applied in the previous study.17 It can be demonstrated that the estimated hyperparameters related to the coef-
ficients of MetS using such a Bayesian hierarchical DP with conjugacy were close to those estimated in the main study
with informative prior, which is clearly seen in Figure 5. However, the use of our proposed 2‐stage Bayesian approach
still gets the advantage. A statistically significant effect of MetS on the transition from moderate to severe AGA was

http://my2.tmu.edu.tw/blog.php?user=amyyen&f=blog_doc&bid=136030
http://my2.tmu.edu.tw/blog.php?user=amyyen&f=blog_doc&bid=136030


TABLE 6 Estimated measurement errors, baseline transition rates, and regression coefficients of metabolic syndrome (MetS) adjusting for

age, sex, and family history by using artificial identifiability constraints and Bayesian hierarchical Dirichlet process with conjugacy

Normal to Intermediate Intermediate to Severe

Estimate SD 95% CI Estimate SD 95% CI

Artificial identifiability constraints approach with order the same as pilot study

Proportion of misclassifications

γ12 9.29% 0.38% 8.49%‐9.98%

γ21 9.64% 0.31% 9.03%‐10.24%

γ23 13.99% 3.36% 9.70%‐22.25%

γ32 9.49% 0.33% 8.83%‐10.12%

Baseline transition rates 0.0006 0.0001 0.0005‐0.0007 0.0100 0.0020 0.0068‐0.0148

MetS

Yes vs no 0.0440 0.0416 −0.0392 to 0.1253 0.2044 0.0975 0.0051‐0.3917

Age

>70 vs ≤70 0.3255 0.0323 0.2630‐0.3877 0.2076 0.0774 0.0578‐0.3639

Sex

Male vs female 2.4200 0.0904 2.2510‐2.6020 −0.4751 0.1872 −0.8502 to −0.1156

Family history

Yes vs no 1.4870 0.0694 1.3520‐1.6250 0.6424 0.1277 0.3858‐0.8936

Bayesian hierarchical Dirichlet process with conjugacy

Proportion of misclassifications

γ12 27.08% 1.88% 23.38%‐30.80%

γ21 7.82% 0.35% 7.11%‐8.52%

γ23 15.46% 2.74% 10.48%‐21.10%

γ32 9.90% 0.76% 8.43%‐11.42%

Baseline transition rates 0.0011 0.0001 0.0009‐0.0013 0.0024 0.0008 0.0011‐0.0042

MetS

Yes vs no 0.0431 0.0428 −0.0389 to 0.1275 0.2197 0.1223 −0.0292 to 0.4479

Age

>70 vs ≤70 0.3240 0.0342 0.2590‐0.3940 0.3757 0.1090 0.1718‐0.5997

Sex

Male vs female 2.1080 0.0782 1.9560‐2.2700 0.3800 0.2653 −0.1137 to 0.9516

Family history

Yes vs no 1.4390 0.0842 1.2710‐1.6000 1.0430 0.1598 0.7392‐1.3670
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noted whereas the corresponding point estimate based on the Bayesian hierarchical DP with conjugacy was close but
gave a nonsignificant finding. This is entirely due to the incorporation of information from the pilot study that may
increase statistical power. We believe such a 2‐stage design may provide an alternative approach to tackling the problem
of labeling switch problem commonly seen in the latent class and the mixed HMM. A formal statistical study in the
future may be required to investigate the detailed comparisons between our proposed 2‐stage design and the existing
elegant statistical methods on probabilistic labeling switching algorithm.

There are one concern and one limitation of this study. Our proposed approach may be largely dependent on the
performance of first‐stage pilot study, especially when it was small. We performed a sensitivity analysis to explore the
impact of the size of the pilot study (1/5, 1/2, 2, 5, 10, and 100 times the size of the current study) and the magnitude
of measurement errors (half, double, and triple the measurement errors of the current study) in the pilot stage in our
proposed Bayesian HMM. The results show that both ways may affect the estimated results of measurement errors only
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when the measurement error itself was large (data not shown). However, the small scale of the pilot study may fail to
illustrate the statistical significance for the variable of main interests. In our AGA example, the size of the pilot study
smaller than the current pilot study (100th of the main study) would lead to such a problem.

The major limitation that can be relaxed in a future study is that wemerely investigated the measurement errors on out-
come rather than on the explanatory factors, which may also be possibly subject to misclassification. From the viewpoint of
application, because the covariate of major interests in the current study, MetS, was based on anthropometric measures
(waist circumference and blood pressure) taken onsite by the trained public health nurses and biochemical examination,
it was comparably objective. Except the self‐reported data on family history, we reckoned the neglect of misclassification
on covariates had limited influence on the application to AGA example. However, the methodology of simultaneously cal-
ibrating the measurement errors arising from covariates and also multistate outcome is still worthy of being developed.

In conclusion, we proposed a Bayesian measurement‐error‐driven HMM to deal with measurement errors of multi-
state outcomes specified by a continuous‐time Markov process in order to calibrate the effect of covariates on the tran-
sitions of multiple states by making use of a 2‐stage validation design. The simulation algorithms for assessing the
direction of underestimation and overestimation were also developed to elucidate the underlying mechanisms account-
ing for 2 types (differential and nondifferential) and the possible range of underestimation and overestimation resulting
from the misclassification of multistate outcomes. The proposed model has been applied to a real example of popula-
tion‐based follow‐up study on multistate disease process of AGA.
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