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A B S T R A C T   

Background: Multiple neuroimaging and clinical biomarkers have been identified to predict cognitive decline and 
clinical progression to mild cognitive impairment (MCI) or dementia. However, early biomarkers associated with 
transition to and reversion from cognitive impairment (cognitive migration) require further understanding. We 
investigated the impacts of baseline neuroimaging and clinical biomarkers on cognitive migration in a 
community-dwelling older cohort. 
Methods: We studied 391 participants from the Wake Forest Alzheimer’s Disease Research Center Clinical Core 
cohort who underwent neuropsychological assessment and magnetic resonance imaging (MRI). At baseline, each 
participant was categorized to a functional/cognitive state using global Clinical Dementia Rating (CDR) score: 
CDR = 0 indicates normal cognitive function; CDR = 0.5 is minimal cognitive impairment. The primary outcome 
was cognitive migration status determined by CDR change between baseline and follow-up (mean difference =
13.9 months): CDR-0 Stables (no migration; maintained CDR = 0), CDR-0.5 Stables (no migration; maintained 
CDR = 0.5), Migrants− (negative migration; CDR 0 to CDR 0.5), and Reverters+ (positive migration; CDR 0.5 to 
CDR 0). Baseline T1-weighted MRI was analyzed for gray matter (GM) volume using voxel-based morphometry 
(VBM). For VBM, we used a two-sample t-test controlling for age, sex, education years and intracranial volume 
for group comparisons: CDR-0 Stables vs CDR-0.5 Stables, CDR-0 Stables vs Migrants− , CDR-0.5 Stables vs 
Reverters+ and Migrants− vs Reverters+ (thresholded at k = 30 voxels, p <.01 uncorrected). Oral Glucose 
Tolerance Testing (OGTT-2h) assessed blood glucose 120-minute post challenge. Multinomial logistic regression 
estimated average predicted probabilities of cognitive migration status using OGTT-2h and age range (55–65, 
65–75 and 75+) as predictors. 
Results: VBM analyses revealed lower GM volume in inferior and middle temporal gyri, hippocampus, para-
hippocampal gyrus, and superior and inferior frontal regions in Migrants− and CDR-0.5 Stables. Predicted 
probabilities indicated that individuals aged 55–65 with normal OGTT-2h levels were more likely to have better 
cognitive migration status (e.g., CDR-0 Stables or Reverters+) than those aged 75+ with high OGTT-2h. 
Conclusions: Lower GM volumes and high OGTT-2h glucose levels may predict worse cognitive migration status 
in early stages of disease. The opposite is true for better cognitive migration. Validating these biomarkers may 
guide clinical diagnosis and treatments.   

1. Introduction 

Alzheimer’s disease (AD), the most common form of dementia, is 
characterized by worsened brain structural and functional integrity and 

cognition over time (Karantzoulis and Galvin, 2011; Masters, 2015). 
Abnormal buildups of modified (misfolded) amyloid beta (Aβ) and tau 
proteins in the brain are pathological hallmarks of AD dementia, 
implicated in neurodegeneration, functional impairment, and cognitive 
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decline. Aging is the greatest risk factor for AD (Guerreiro and Bras, 
2015; Hersi, 2017). By 2050, twice as many Americans age 65 and older 
are projected to have AD dementia Alzheimer’s disease facts and figures 
(2021). Biomarkers are crucial to detection and diagnosis of early stages 
of AD and important targets in drug discovery (Karlawish, 2017). 

Neuroimaging and fluid biomarkers are widely used for detecting 
and monitoring AD (Perrin et al., 2009; Sperling, 2011). Research in 
cognitively normal older adults has identified extensive clinical char-
acteristics and neuroimaging biomarkers that predict cognitive decline 
and clinical shift to mild cognitive impairment (MCI) or AD dementia 
(Sperling, 2018; Jack, 2018; Sperling, 2019; Lim, 2013; Jack, 2017). 
These include the pathological accumulations of Aβ and tau, and brain 
glucose hypometabolism measured by Positron Emission Tomography 
(PET); reduced cortical thickness and brain volume, increased white 
matter hyperintensities (WMH), and altered structural and functional 
connectivity measured by Magnetic Resonance Imaging (MRI); genetic 
predisposition such as carrying one or two Apolipoprotein E (ApoE) ε4 
alleles; and subtle changes in cognitive performance, especially in 
memory and executive function domains. As indicated in the AD con-
tinuum/biomarker cascade (Jack, 2013), high Aβ burden and elevated 
tau as well as some brain volume loss appear in the preclinical and 
prodromal stages of AD. Therefore, even in the earliest stages of pre-
clinical AD, long before cognitive impairment and dementia are present, 
biomarkers may provide crucial evidence allowing for prediction of the 
incidence and the development of AD. 

Measurements of glucose tolerance have been found to predict 
cognitive decline and the risk of AD (Toppala, 2021; Hanson, 2016). 
Impaired glucose tolerance (IGT) may be associated with MCI, and thus 
may present a risk factor for impaired cognitive function in early stages 
of AD dementia (Thambisetty, 2013). Glucose levels measured during an 
oral glucose tolerance test (OGTT), a sensitive screening tool, can inform 
metabolic function and glucose homeostasis and detect IGT (Nathan, 
2007). We examined this measure as a potential independent predictor 
of cognitive migration status. 

In the current study, we defined cognitive migration as a spectrum/ 
flow rather than a binary outcome to better understand not only the age- 
related shift from normal cognition (NC) to a relatively worse cognitive 
state (i.e., MCI), but also reversion from impaired cognition to NC. Early 
in disease progression, individuals with NC may migrate to MCI; the 
opposite can occur, as some individuals with MCI may revert to a rela-
tively better cognitive state (i.e., NC) (Hampel and Lista, 2016; Ange-
vaare, 2021). Notably, imaging biomarkers of disease (e.g., amyloid and 
tau PET) and neurodegeneration may track and predict such migrations. 
Additional factors such as age, genetics and lifestyle may also contribute 
to cognitive migration in early stages of disease. However, our knowl-
edge of biomarkers related to cognitive migration in AD is limited, as 
most previous studies have explored only monotonic disease progres-
sion, from NC to MCI and dementia. The study of cognitive migration 
flow may help us understand not only the risks for cognitive impairment 
and disease progression but also elucidate markers for cognitive 
improvement in older individuals. Therefore, further research is needed 
to better understand how clinical and imaging measures may predict 
cognitive migrations –the potential for both decline and improvement– 
in early stages of disease. 

Our study aimed to identify clinical characteristics and neuro-
imaging biomarkers that may impact cognitive migration over one year. 
We investigated baseline neuroimaging and clinical measures in par-
ticipants aged 55 and older from the Healthy Brain Study (HBS) of the 
Wake Forest Alzheimer’s Disease Research Center (ADRC). We used 
global clinical dementia rating (CDR) (Morris, 1993), a widely used 
clinical staging tool, at baseline and one-year follow-up to determine 
cognitive migration status. We hypothesized that baseline clinical and 
neuroimaging measures would predict cognitive migration at one year. 

2. Materials and methods 

2.1. Participants 

664 participants aged 55 and older enrolled into the ongoing, lon-
gitudinal HBS between 2016 and 2021. Exclusion criteria included: 
large vessel stroke; neurologic diseases that might affect cognition other 
than AD; evidence of organ failure, active cancer, uncontrolled clinical 
depression, psychiatric illness, current use of insulin, history of sub-
stance abuse or heavy alcohol consumption within previous 10 years. 
HBS was approved by the Wake Forest Institutional Review Board; 
written informed consent was obtained for all participants and/or their 
legally authorized representatives. The initial visit (IV1) included clin-
ical evaluation, physical examination, brain MRI, OGTT (Metter, 2008) 
and extensive cognitive testing using the Uniform Dataset version 3 
(UDS3) (Weintraub, 2018). In this current study, we considered par-
ticipants with global CDR scores of 0 (normal or no impairment) and 0.5 
(minimal impairment) at two time points for evaluation of cognitive 
migration status and to understand cognitive migration in the earliest 
stages of disease. Cognitive Migrator groups were defined based on 
global CDR change between IV1 and 1-year follow-up (FU1). Of 664, 
391 participants completed both in-person IV1 and either in-person or 
telephone FU1 visits, and had available baseline MRI, clinical and 
cognitive data. Those who did not migrate and maintained a CDR score 
of either 0 or 0.5 at both IV1 and FU1 visits were classified as CDR- 
0 Stables (n = 195) and CDR-0.5 Stables (n = 111), respectively. 
Those who migrated negatively from 0 to 0.5 were classified as 
Migrants− (n = 35), and those who positively migrated to 0 from 0.5 
were classified as Reverters+ (n = 50). 

2.2. Neuroimaging, clinical and cognitive assessments 

All IV1 measures and biomarkers included in this study are 

Table 1 
Participant demographic and clinical measures by cognitive migration status.  

Baseline Demographic and Clinical Characteristics 

VARIABLES: CDR- 
0 Stables 
(n = 195) 

Migrants−

(n = 35) 
CDR-0.5 
Stables 
(n =
111) 

Reverters+

(n = 50) 
p 

Age, mean 
(SD) 

68.6 (7.7) 72.8 (8.4) 73.9 
(7.0) 

69.6 (8.7) <0.001 

Sex, N 
females 
(%)* 

141 (72.3) 28 (80) 64 (57.7) 33 (66) 0.023 

Education, 
mean (SD) 

16.3 (2.5) 14.8 (2.3) 15.2 
(2.6) 

16.1 (2.3) <0.001 

ApoE ε4, N of 
carriers 
(%)* 

58 (30.4) 4 (12.1) 42 (39.6) 14 (28.6) 0.025 

BMI (kg/m2), 
mean (SD) 

27.8 (5.8) 27.1 (5.5) 26.9 
(4.5) 

28.8 (5.4) 0.213 

OGTT-2h 
(mg/dL), 
mean (SD) 

133.5 
(41.9) 

152.9 
(55.6) 

148.4 
(43.8) 

133.5 
(35.4) 

0.010 

MoCA 
(0–30), 
mean (SD) 

26.3 (2.6) 24.1 (2.9) 21.8 
(3.6) 

24.2 (3.4) <0.001 

PACC5 (z 
score), 
mean (SD) 

0.076 
(0.7) 

− 0.424 
(0.6) 

− 1.282 
(0.9) 

− 0.514 
(0.7) 

<0.001 

The p-values are determined by One-Way ANOVA, except Sex and ApoE ε4. 
*Pearson’s chi-square test. ApoE ε4 available data = 379. 
OGTT-2h available data = 351. MoCA available data = 390. PACC5 available 
data = 389. 
ApoE: Apolipoprotein E; BMI: Body Mass Index; MoCA: Montreal Cognitive 
Assessment; OGTT-2h: Oral Glucose Tolerance Test at 120 min; PACC5: Pre-
clinical Alzheimer’s Cognitive Composite. 
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summarized in Tables 1 and 2. Participants underwent brain MRI, 
including T1-weighted (T1w) and T2-Fluid Attenuated Inversion Re-
covery (FLAIR) images, and comprehensive clinical and cognitive as-
sessments. Anatomical T1w and FLAIR images were acquired on a 3T 
Siemens Skyra scanner using a 3D volumetric magnetization prepared 
rapid gradient echo (MPRAGE) sequence with a resolution of 1 mm × 1 
mm × 1 mm (TR = 2300 ms; TE = 2.98 ms; TI = 900 ms; flip angle = 9◦; 
FOV = 240×256). T1w images were processed with FreeSurfer 5.3 
(http://surfer.nmr.mgh.harvard.edu) (Fischl, 2012; Dale et al., 1999; 
Fischl et al., 1999; Fischl and Dale, 2000; Fischl, 2004) for brain regional 
volume and thickness measurements and Statistical Parametric Mapping 
(SPM) version 12 (https://www.fil.ion.ucl.ac.uk/spm/) (Ashburner, 
2012) for voxel-based analysis. Neuroimaging markers generated using 
FreeSurfer were areas affected earliest and most profoundly by the 
disease, as follows: a cortical thickness measure of temporal lobe meta 
region of interest (Temporal Meta ROI) which includes bilateral regions 
of entorhinal cortex, fusiform gyri, inferior temporal gyri, and middle 
temporal gyri; a measure of head size, total intracranial volume (ICV), 
and hippocampal volume (HCV) expressed as % of total ICV. Temporal 
Meta ROI thickness was not scaled to total ICV, as described (Schwarz, 
2016). Additionally, we examined WMH volume expressed as % of total 
ICV and log transformed. WMHs were extracted from FLAIR images by 
the lesion growth algorithm (Schmidt, 2012) using a Lesion Segmenta-
tion Tool version 3.0.0 (https://www.applied-statistics.de/lst.html) for 
SPM. 

The OGTT was administered to participants with no history of dia-
betes. Fasting (12 h) participants underwent OGTT by first completing a 
glucose measurement (OGTT-0 min) prior to glucose challenge 
(ingesting a 75-gram mixture of dextrose dissolved in water), followed 
by serial blood draws for additional blood glucose measurements at 15-, 
30-, and 120-minutes post-challenge using the Hemocue whole blood 
glucose analyzer. The 120-minute OGTT (OGTT-2h) is a sensitive mea-
sure of glucose tolerance (Association, 2020). OGTT-2h > 140 mg/dL 
indicates impaired glucose tolerance (IGT). Fasting blood was also 
drawn to measure glycated hemoglobin A1c (HbA1c). HbA1c levels ≥
5.7 % was considered impaired glucose metabolism and insulin resis-
tance (Abid et al., 2016). However, we did not include data for fasting 
glucose (OGTT-0 min) and HbA1c measures in our statistical analyses. 

The global CDR change between IV1 and FU1 (mean difference =
13.9 months) was used to define the primary clinical outcome, cognitive 
migration status: CDR-0 Stables (no migration; maintained CDR = 0), 
CDR-0.5 Stables (no migration; maintained CDR = 0.5), Migrants−

(negative migration; CDR 0 to CDR 0.5), and Reverters+ (positive 
migration; CDR 0.5 to CDR 0). The CDR was administered to participants 
by trained raters, and was evaluated independently from all other 
cognitive measures and biomarkers. 

Neuropsychological battery scores were obtained using the UDS3, 
including Montreal Cognitive Assessment (MoCA), Craft Story, Benson 
Figure, Number Span, Verbal Fluency (letters CFL), Category Fluency 
(CATFLU: Animals and Vegetables), Trail Making Test, and the Multi-
lingual Naming Test. In addition, supplemental tests to assess partici-
pants’ current and past cognitive performance were administered, 
including: Mini-Mental State Exam (MMSE), American National Adult 
Reading Test, Digit Symbol Substitution Test (DSST), Free and Cued 
Selective Reminding Test (FCSRT), and the Rey Auditory Verbal 
Learning Test (RAVLT). Cognitive measures evaluated in the current 
study included total MoCA scores and the preclinical Alzheimer’s 
cognitive composite (PACC5) (Donohue, 2014; Papp, et al., 2017) z- 
score. PACC5, sensitive to preclinical changes in cognitive performance, 
was calculated using FCSRT total, DSST total, CATFLU, Craft Story 
Delayed Recall, and MMSE total scores using 230 participants with CDR 
= 0 at IV1 as a reference group. Lower PACC5 values indicate worse 
cognition (Mayblyum, 2021). APOE carrier status was defined as the 
presence of one or more APOE ε4 alleles (most common gene variant for 
AD risk). 

2.3. Statistical analyses 

All statistical analyses for demographic comparisons, cognitive 
measures and neuroimaging biomarkers were performed in SPSS 26 
(www.ibm.com/analytics/spss-statistics-software). Image processing, 
and statistical models and mapping were performed using cat12 toolbox 
in SPM12 run in MATLAB (R2020a; www.mathworks.com) (Ashburner, 
2012; Ashburner, 2009; Gaser and Dahnke, 2016). A primary focus of 
this work was voxel-based morphometry (VBM) (Ashburner, 2009; 
Ashburner and Friston, 2000; Chételat, 2005), the most widely used 
method for computational anatomy, using SPM12 for exploratory gray 
matter (GM) volume analysis. We used Automated Anatomical Labelling 
Atlas 3 (AAL3) for SPM12 overlaid on significant voxel-wise findings in 
template space to provide information on spatial location of results and 
to define brain areas that are associated with cognitive migration (Rolls, 
2020). 1 Migrant− was excluded from VBM analyses due to bad GM 
segmentation during image processing. In our primary VBM analyses, 
we performed whole-brain exploratory analysis using a two-sample t- 
test controlled for age, sex, education years and total ICV, thresholded at 
a less-stringent p <.01 (uncorrected) with a cluster size (k) of 30 voxels 
for group comparisons: CDR-0 Stables vs CDR-0.5 Stables, CDR-0 Stables 
vs Migrants− , CDR-0.5 Stables vs Reverters+ and Migrants− vs 
Reverters+. Additionally, we applied family-wise error (FWE) at p <.05 
and false discovery rate (FDR) correction to our analyses. Finally, we 
repeated our primary analyses correcting for time difference between 
baseline and follow-up visits. As results did not differ (data not shown), 
we present results without controlling for time differences. 

Violin plot with box-plot distributions for OGTT-2h and multinomial 
logistic regression (MLR) were performed in R (R Core Team, 2020; 
www.R-project.org/) using the ggplot2 package and the multinom func-
tion from the nnet package to estimate an MLR model (Wickham, 2016; 
Venables, 2002). In this model, cognitive migration status was the cat-
egorical primary outcome variable, and OGTT-2h and age range (a 
three-level categorical variable: 55–65, 65–75 and 75+) were predictor 
variables. We first calculated the relative risk ratios for a unit change in 
the predictor variables. Next, we generated predicted probabilities for 
each of our outcome levels (CDR-0 Stables, Migrants− , CDR-0.5 Stables 
and Reverters+) to better understand the model. 

3. Results 

Table 1 lists the baseline demographic and clinical characteristics 
among groups. A majority were female. CDR-0.5 Stables and Migrants−

were older, on average 73 years old, and had lower education years and 
higher OGTT-2h values. Interestingly, Migrants− had very few copies of 
ApoE ε4 compared to other groups. A post hoc Tukey test revealed that 

Table 2 
Baseline differences in neuroimaging markers by cognitive migration status.  

MARKERS: CDR- 
0 Stables 
(n = 195) 

Migrants−

(n = 35) 
CDR-0.5 
Stables 
(n =
111) 

Reverters+

(n = 50) 
p 

Temporal 
Meta ROI 
(mm), 
mean (SD) 

2.82 
(0.13) 

2.76 (0.13) 2.71 
(0.17) 

2.77 (0.13) <0.001 

ICV (L), 
mean (SD) 

1.49 
(0.15) 

1.47 (0.16) 1.48 
(0.18) 

1.50 (0.18) 0.705 

HCV (% of 
ICV), mean 
(SD) 

0.51 
(0.07) 

0.50 (0.09) 0.45 
(0.08) 

0.49 (0.08) <0.001 

LogWMH, 
mean (SD) 

0.85 
(1.10) 

1.48 (1.08) 1.66 
(1.04) 

1.18 (1.17) <0.001 

The p-values are determined by One-Way ANOVA. ROI: Region of Interest; ICV: 
Intracranial Volume; HCV: Hippocampal Volume; LogWMH: Log Transformed 
White Matter Hyperintensities. 
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CDR-0.5 Stables, Reverters+, and Migrants− had significantly worse 
MoCA and PACC5 scores than CDR-0 Stables (p <.05). 

Table 2 presents baseline MRI measures previously identified as early 
markers of disease (Schwarz, 2016; Jack, 2017). CDR-0.5 Stables had 
significantly lower Temporal Meta ROI thickness than CDR-0 Stables 
and Reverters+ and lower HCV than CDR-0 Stables, Reverters+, and 
Migrants− (Tukey p <.05). LogWMH volumes were significantly higher 
in CDR-0.5 Stables vs CDR-0 Stables and Migrants− vs CDR-0 Stables 
(Tukey p <.05) and marginally in CDR-0.5 Stables vs Reverters+ (Tukey 
p =.055). VBM analysis for whole-brain explorations (p <.01 uncor-
rected, k = 30 voxels) revealed significant GM volume differences in 
group comparisons. Migrants− had lower volumes in left middle tem-
poral (Fig. 1a, T = 3.02) and superior frontal gyri (Fig. 1b, T = 4.17) than 
CDR-0 Stables and Reverters+, respectively. CDR-0.5 Stables had lower 
left inferior temporal gyrus (Fig. 1c, T = 5.16) and hippocampus (Fig. 1c, 
T = 4.22; Fig. 1d, T = 3.46), and right parahippocampal (Fig. 1c, T =

5.10), middle temporal (Fig. 1c, T = 4.05) and inferior (Fig. 1c, T = 4.16) 
and superior frontal (Fig. 1c, T = 3.73) gyri and hippocampus (Fig. 1c, T 
= 4.76; Fig. 1d, T = 3.61) than CDR-0 Stables and Reverters+, respec-
tively. Detailed results on significant findings from Fig. 1 are presented 
in Supplementary Table S1. Maps using FWE-corrected p <.05 showed 
significant associations with temporal regions only in CDR-0.5 Stables <
CDR-0 Stables (Supplementary Fig. S1). Other contrasts did not survive 
with a more stringent threshold (data not shown). 

Glucose levels during OGTT-2h by each cognitive migrator group are 
in Fig. 2. CDR-0 Stables and Reverters+ had the lowest and Migrants−

the highest mean OGTT-2h. Pair-wise comparisons revealed statistically 
significant differences between CDR-0 Stables and CDR-0.5 Stables 
(Tukey p = 0.032) and marginal differences between CDR-0 Stables and 
Migrants− (Tukey p = 0.087). Fig. 3 illustrates our MLR results as the 
averaged predicted probabilities of each cognitive migration level for 
different values of OGTT-2h glucose levels, our continuous predictor 

Fig. 1. VBM results are shown as statistical t maps thresholded at k = 30 voxels, p <.01 (uncorrected) for GM volume differences in t-contrasts of interest: a) CDR- 
0 Stables vs Migrants− , b) Reverters+ vs Migrants− c) CDR-0.5 Stables vs CDR-0 Stables, and d) CDR-0.5 Stables vs Reverters+. Colorbars indicate t values for 
each contrast. 
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Fig. 2. Available OGTT-2h glucose levels for each group, shown as a violin plot with box-plot distributions. Dotted line at 140 mg/dL indicates the threshold for IGT 
status (≥140). 

Fig. 3. Predicted probabilities for different cognitive migration levels across OGTT-2h by each age range. Dotted line at 140 mg/dL indicates the threshold for IGT 
status (≥140). Note that at any given OGTT-2h level and age group, each cognitive migration level complements each other (e.g., adds up to 1). 
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variable, within each level of age range. As the OGTT-2h levels increase, 
the probabilities for being CDR-0 Stables or Reverters+ decrease; the 
opposite pattern is seen for Migrants− and CDR-0.5 Stables. For 
example, while the averaged probability of being a CDR-0 Stable is 0.67 
for individuals aged 55–65 with normal OGTT-2h levels (<140), it is 
lower (<0.1) for being a Migrant− with normal OGTT-2h levels in the 
lower age range (55–65). Higher OGTT-2h levels, indicative of IGT, are 
associated with higher probabilities for being a Migrant− (0.22) and a 
CDR-0.5 Stable (0.50) over age 75 +. For Reverters+, the averaged 
probability over normal OGTT-2h levels for all age range groups is 
consistently low (0.14) and decreases even more as OGTT-2h levels in-
crease (<0.1). 

4. Discussion 

The goal of this study was to identify imaging biomarkers and clin-
ical characteristics that are associated with cognitive migration in the 
earliest stages of AD. We assessed baseline MRI, metabolic and cognitive 
markers of older adults who maintained their cognitive status or 
migrated to a different status over one year of follow-up. Our results 
showed that Migrants− and CDR-0.5 Stables had lower baseline GM 
volume than CDR-0 Stables and Reverters+. As expected, lower volumes 
were seen in signature brain regions susceptible to AD. In addition, IGT 
as measured by OGTT-2h was associated with greater probability of 
migrating to a worse cognitive migration level. These data indicate that 
lower GM volume and IGT may predict worse cognitive migration in the 
development of cognitive impairment. 

Our MRI findings are in agreement with a recent study (Rabin, 2020) 
that found reduced entorhinal thickness and smaller hippocampal vol-
ume predicted conversion to MCI within 5 years. However, we distin-
guished baseline differences in these markers in a shorter time interval 
(within a year). It is crucial to validate how such biomarkers may predict 
cognitive migration over shorter time intervals, as this may allow earlier 
and better prediction of cognitive impairment and dementia. For 
example, reversion to NC (Reverters+) has been shown in MCI (Hampel 
and Lista, 2016). However, our knowledge of neuroimage-derived and 
clinical features related to this cognitive reversion is limited. Therefore, 
the contributions of the present study are significant because it is the 
first study to investigate the cognitive migration spectrum over a one- 
year period with multiple biomarkers contributing to multidirectional 
disease progression including reversion. Reversion may inform brain 
and cognitive reserve (Iraniparast, 2022). We focused on markers that 
may predict one-year CDR change as it exists in real life and poses a 
great importance in the field of MCI. 

In our VBM analyses, we found the strongest cluster- and peak-level 
effects on temporal and frontal regions in CDR-0.5 Stables < CDR- 
0 Stables (Fig. 1c; Supplementary Table S1; Supplementary Fig. S1) with 
uncorrected p <.01 and FWE-corrected p <.05, as expected. The 
remaining contrasts showed significant peak-level effects on GM vol-
umes only with uncorrected thresholds. This suggests that negative 
(Migrants− ) and positive (Reverters+) migrations over a year are asso-
ciated with small isolated regions rather than broadly clustered regions. 
We also note the sample size for Migrants− (n = 35) and Reverters+ (n =
50) to be too small to observe larger effects. 

Another recent study showed that higher OGTT-2h as a predictor of 
cognitive decline was associated with episodic memory worsening over 
10 years (Toppala, 2021). In the present study, glucose levels during the 
OGTT-2h showed a promising effect on cognitive migration status, with 
better levels for better migration and worse levels with worse migration. 
Furthermore, we modeled OGTT-2h levels and three age groups (55–65, 
65–75 and 75+) to predict the probabilities of different cognitive 
migration levels. As expected, CDR-0 Stables and CDR-0.5 Stables had 
the opposite predicted probabilities for worse migration status as the 
OGTT-2h levels increase at any given age group. Note that at any given 
OGTT-2h level and age group, each cognitive migration level comple-
ments each other (e.g., adds up to 1). For example, one’s predicted 

probability for being a CDR-0.5 Stable at 140 mg/dL for an older age 
(75+) is higher (0.418) than being a CDR-0 Stable (0.333) or being a 
Migrant− (0.135) or a Reverter+ (0.114). 

Research on AD progression has primarily focused on biomarkers 
related to cognitive decline and conversion to MCI and dementia. This 
limits the understanding of important predictors of reversion in the 
context of cognitive migration. The present study shows that Reverters+

have greater baseline GM volume than Migrants− and CDR-0.5 Stables. 
In addition, normal glucose tolerance was only seen in Reverters+ and 
CDR-0 Stables. This suggests that better metabolic and brain health may 
predict cognitive reversion despite worse baseline cognitive status. 

Our findings on OGTT-2h in non-diabetic participants and GM vol-
ume for cognitive reversion may be important especially as the field of 
AD begins to develop therapies such as multidomain lifestyle in-
terventions that may target metabolic risks for neurodegeneration and 
cognitive decline (Shimada, 2019; Dhana, 2020; Kanaya, 2004; Kalmijn, 
1995; Watts, 2013; Liu, 2015; Neergaard, 2017). MRI is more commonly 
used and available at clinical settings than other imaging assessments 
such as PET. Therefore, using MRI markers with other clinical assess-
ments such as OGTT-2h can inform one’s chances of cognitive migration 
(decline or reversion). However, more research is needed to understand 
the interaction between modifiable lifestyle factors and known AD 
biomarkers on cognitive migration in preclinical AD. 

Several strengths and limitations of our work are worth noting. The 
major strength of our study is our multidirectional cognitive migration 
approach to investigate predictive markers for cognitive transitions 
within one year. Reversion to NC (CDR-0.5 to CDR-0) and negative 
migration (CDR-0 to CDR-0.5) are existing crucial cognitive fluctuations 
to understand biomarker characteristics and modifiable risk factors 
within shorter time intervals. Increasing knowledge of markers indi-
cated in cognitive migration within one year will help screen older 
adults with higher chance of worse migration or reversion. Reversion is 
especially important at clinical settings to target markers for delays in 
cognitive impairment trajectories. An inherent limitation of such an 
approach is that all observations made here need to be further replicated 
in the general population. 

Interestingly, we found that our Migrants− group had very few ApoE 
ε4 carriers compared to other groups. Noting the sample size for this 
group (n = 35), it is difficult to draw conclusions for the effect of ApoE ε4 
noncarriers on their worse cognitive migration within one-year. We also 
note sample size limitations in our Reverters+ groups and lack of AD 
biomarker data availability such as PET and CSF of amyloid and tau in 
our cohort. Another limitation to our VBM analysis is that it is an 
exploratory examination of whole brain, not a specific ROI. Using a less- 
stringent visualization voxel-wise threshold limits our interpretation for 
our VBM findings. From our data alone it is unlikely to reliably draw 
conclusions about changes in GM volume and cognitive migration over 
time. Longitudinal studies investigating more follow-up data on neuro-
imaging markers and clinical characteristics in a wider spectrum of 
cognitive migration are warranted. Additionally, a comprehensive 
exploration of OGTT data and other metabolic measures such as insulin 
resistance with respect to brain imaging data including GM analyses is 
warranted. Finally, a future direction of this work examining PET or CSF 
AD biomarkers of Aβ and tau and additional MRI analysis including 
functional connectivity will confirm our findings in a larger sample data 
when available. 

5. Conclusion 

In this study, we focused on specific MRI markers and a metabolic 
measure, glucose levels during OGTT-2h, for tracking cognitive migra-
tion. Our goal was to better understand the baseline markers which may 
predict one-year cognitive status change. We found an association be-
tween lower GM volume and worse cognitive migration (CDR-0.5 Sta-
bles and Migrants− ). High glucose levels during OGTT-2h were also 
associated with worse cognitive migration status. Our work provides an 
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understanding of the relationship between GM integrity and glycemic 
health and cognitive migration in the cognitive aging-MCI spectrum. 
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