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Abstract

Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted
particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from
26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and
22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox
cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect
phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects.
Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate
and species radiation success with insects showing the highest rate of homeobox sequence evolution.
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Introduction

Antp-class genes code for homeodomain-containing transcrip-

tion factors that function in cell fate determination and embryonic

development [1,2–4]. In Bilateria up to 100 Antp-class genes

(including paralogs) can be divided into 30 gene families belonging

to four major groups: HOX/PARAHOX genes (45 genes, four

gene families), HOX-related genes (nine genes, five gene families),

NK genes (16 genes, seven gene families), and NK-related genes

(28 genes, 18 pseudogenes, 14 gene families). From the simplest

Bilateria, the Platyhelmintha, 15 Antp-class genes are known and

from the Arthropoda 37 (34 in Insecta). These genes have been of

outstanding importance for metazoan radiation and provided deep

insights into both, the phylogenetic patterns and the genetic

mechanisms of animal bauplan development [5,6–11]. Particularly

Hox genes have attracted much attention since they define the

identities of bauplan units (e.g. segments) along the anterior-

posterior axis of the embryo [5,12,13]. Hox genes have been

known from all Bilateria and Hox-like genes also from diploblastic

metazoans, including Placozoa and Cnidaria [14,15,16].

Despite the importance of insects as the largest animal group on

earth, and Hox genes as the most influential gene class in EvoDevo

research, Hox genes have been isolated from only 8 out of some 35

insect orders yet. The full repertoire of Antennapedia genes has so

far only been reported for Folsomia candida, Tribolium castaneum and

Drosophila melanogaster. The majority of all sequences derive from

two orders only, the Hymenoptera and the Diptera. In Drosophila

melanogaster the Hox-Cluster is organized in two separate units: (a)

the Antennapedia complex consisting of the Hox genes labial (lab),

proboscipedia (pb), Hox3 (z2, zen, bcd), fushi tarazu (ftz), Deformed (Dfd),

Sex combs reduced (Scr) and Antennapedia (Antp), and (b) the Bithorax

complex which includes Ultrabithorax (Ubx), abdominal-A (abd-A) and

Abdominal-B (abd-B) [17,18,19]. This split is likely an aut-

apomorphy of the Diptera since all of the above mentioned genes

may be linked in a single cluster in other insects, e.g. Coleoptera

[8,20–24].

It is highly unfortunate that very little is known about Antp genes

in basal insects and that the origin and radiation of Hox genes in

insects remains widely unresolved. Marden et al. [25] highlight the

crucial importance of isolating Hox genes particularly from basal

Pterygota in order to reveal intermediate stages of evolution of

appendages and shed some light on the early evolution of flying

insects. We here report on the successful isolation of 37 new

homeobox fragments from six insect orders of crucial phylogenetic

position, the apterygote Diplura and Archaeognatha, and the

pterygote orders Ephemeroptera, Odonata, Plecoptera, and

Dermaptera. We furthermore show that the rate of homeobox

sequence evolution in the fastest radiating animal group, the

insects, has been faster than in non-insects.

Materials and Methods

Animal Material and DNA Extraction
Specimens of Campodea fragilis (Diplura) and Lepismachilis y-signata

(Archaeognatha) were kindly supplied by Karen Meusemann

(ZFMK Bonn, Germany). Sympetrum sanguineum, Ischnura elegans

(both Odonata) and Baetis sp. (Ephemeroptera) were collected at a

small pond close to our institute in Hannover. The Nemoura cinerea
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(Plecoptera) sample was kindly supplied by the National Museum

Prague (Czechia) and Forficula auricularia (Dermaptera) was found

in Hannover in a private garden. Tissue samples (legs of S.

sanguineum or else whole animals) were preserved in ethanol (80%)

and stored at 4uC. Whole genomic DNA was extracted according

to Hadrys et al. [26,27]. (No specific permits were required for the

described field studies. The locations are not privately-owned or

protected in any way and the field studies did not involve

endangered or protected species.).

PCR Amplification
Partial homeobox sequences of the genes Deformed (Dfd), Sex

combs reduced (Scr), Ultrabithorax (Ubx) and abdominal-A (abd-A) were

amplified by PCR with degenerate primers. We designed ‘‘insect

specific’’ degenerate primers, which specifically amplify partial

homeobox sequences of between 120 and 164 bp of the target

genes (Table 1). In addition, homeobox sequences were amplified

by various combinations of four degenerated forward primers and

five degenerated reverse primers reported in Cook et al. [28].

‘‘Insect specific’’ degenerate Primer PCR. Reactions

were carried out in a total volume of 30 ml containing 40 pmol

of each primer pair, 3.3 mmol of dNTP mix, and 1.5 U of Taq-

Polymerase (Invitrogen). PCR started with an initial denaturation

(93uC for 2 min) followed by 45 amplification cycles: denaturing at

92uC for 30 sec, annealing at 55 to 75uC (optimized for each

primer pair and organism) for 35 sec, elongation at 72uC for

30 sec. All PCRs finished with a final elongation at 72uC for

5 min. PCR products were purified with Montage PCR Centrif-

ugal Filter Devices (Millipore).

Degenerate Primer PCR [28]. The 50 ml reaction mix

contained: 16 amplification buffer, 4 mM MgCl2, 0.2 mM

dNTPs, 10 pM each primer and 0.04 U Taq DNA polymerase

(Bioline). The ramp up PCR started with an initial denaturation

(95uC for 5 min) followed by 6 amplification cycles: denaturing at

94uC for 45 sec, annealing started at 48uC for 10 sec followed by a

ramp to 56uC (0.1uC/sec) and a ramp to 72uC (0.2uC/sec),

elongation at 72uC for 10 sec, and subsequent 30 amplification

cycles: denaturing at 94uC for 30 sec, annealing started at 53uC
for 10 sec followed by a ramp to 62uC (0.1uC/sec), elongation at

72uC for 30 sec and finished with a final elongation at 72uC for

5 min. PCR products of the expected length (,70 – ,100 bp)

were cut out of the gel and purified through ethanol precipitation.

Cloning and Sequencing
The purified products were A-tailed and inserted into the

pGEM-T plasmid vector (Promega) and cloned into E. coli

(Invitrogen) following the manufacturer’s instructions. Clones

were sequenced in both directions on an ABI PRISM 310 Genetic

Analyzer (Applied Biosystems) using BigDyeH Terminator Cycle

Sequencing Kit (v.1.1, Applied Biosystems). Sequences were

analyzed and aligned using SeqMan II 5.03 (DNAStar, Lasergene)

and ClustalW [29].

Calculating Divergence Rates
To infer rates of molecular evolution of insect Hox genes p-

distances within groups were calculated using MEGA5 [30].

These divergence rates of insect Hox genes were compared to

calculated divergence rates of other arthropod classes and

Mammalia (see Table S1 for their GenBank accession numbers).

Information from fossil records was used to estimate the absolute

rates (in % per million years) at which the different lineages have

accumulated mutations in their homeobox sequences.

Results and Discussion

In this study we have isolated the first homeobox sequences of

Hox cluster genes from six insect orders: Diplura (lab, Dfd, Scr,

Antp, ftz, abd-A, Abd-B), Archaeognatha (Dfd, Scr, Antp, Ubx, abd-A,

Abd-B), Ephemeroptera (Dfd, Scr, Antp, Ubx, abd-A, Abd-B), Odonata

(lab, pb, Hox3, Dfd, Scr, Antp, Ubx, abd-A, Abd-B), Plecoptera (Dfd,

Scr, Antp, ftz, Ubx, Abd-B), and Dermaptera (Dfd, Scr) (amino acid

alignments are shown in Fig. 1). These 37 new sequences (Table

S1) fill in crucial gaps both at the base of insects as well as at the

base of Pterygota (Table 2). The new data raise the number of

insect orders with reported Hox cluster gene sequences from 8 to

14 and the number of known gene sequences in the matrix from

67 to 101. In these numbers we include sequences from the 8 Hox

genes (lab, pb, Dfd, Scr, Antp, Ubx, abd-A, abd-B) as well as from the

two homeotic genes, Hox3 (bicoid) and ftz, which are integrated in

the insect Hox cluster (or clusters in the case of Diptera).

Homology Assignment and Database Extension
Homolog identification of the isolated Hox genes is widely, but

not completely non-problematic. All assignments shown in

Table 2 are the immediate assignments according to BLAST

searches. As it has been shown that caution should be taken

when using the best BLAST hit to infer gene homology [31–33],

we performed phylogenetic analyses to further test the assign-

ments of the newly isolated Hox genes. In these analyses

(Neighbor-Joining, NJ) with published homeobox sequences the

new homeobox sequences for lab, pb, Dfd, Ubx, abd-A, Abd-B

group into the expected clades. The genes Scr, ftz, and Antp are

generally problematic. Even their full length homeodomain

sequences do not allow an unambiguous assignment in a

standard distance analysis (Fig. S1). A Neighbour Joining analysis

of only the six potentially unambiguous new homeobox

sequences (lab, pb, Dfd, Ubx, Abd-B) groups all new fragments

into the expected clades of homologs from other insects and thus

confirms the results of NCBI Blast (Fig. 2), except for abd-A

which appears paraphyletic. Based on the partial homeobox

sequences we cannot unambiguously distinguish between Scr and

Antp homeobox fragments in Diplura, Archaeognatha, Ephemer-

optera, Odonata, Plecoptera and Dermaptera. The isolated

homeobox fragments differ between orders, but no amino acid

substitutions are found in the short fragment spanning homeo-

domain positions 20 to 45 (Fig. 3). For these gene fragments

more sequence information is required to distinguish between the

Table 1. New ‘‘insect specific’’ degenerate primers designed
for the amplification of large homeobox fragments of Dfd, Scr,
Ubx, and abd-A Hox genes.

Name Sequence (59 –39)

AT

(6C) Fragment (bp)

Dfd1fw CAAGCGGCAGCGGACNCSNTAYAC 58 160

Dfd1rev TCTTCCTCCGCACGTTCTTNGTRTTNGG 57

Scr1fw GCAGCGGACCTCCTACACCMGNTAYCARAC 62 128

Scr1rev TCATGGTGGCCATCTTGTGYTCYTTYTTCC 57

Ubx3fw GCCGGCAGACCTACACCMGNTAYCARAC 61 145

Ubx3rev CTCCTGCTCGTTCAGCTCYTTDATNGC 57

abdAfw CGGCGGCGGGGNMGNCARAC 59 164

abdArev GGGCCTGCTCGTTGATCTCYTTNACNGC 60

Given are the primer sequences (forward = fw, reverse = rev), optimal annealing
temperatures (AT) and expected fragment length of PCR products.
doi:10.1371/journal.pone.0034682.t001
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two alternatives, since amino acid substitutions have been known

to occur at positions 1, 4, 6, 7 and 60 only (Fig. 3). We believe

that we have amplified both genes (different homeobox

sequences) but we are reluctant to suggest an assignment to the

Scr or Antp gene family in the absence of unambiguous differences

in the homeodomain. For odonates we have verified the correct

assignment of the new gene fragments to their Scr, Antp, and Ubx

gene families also by RACE-PCR, amplifying full length

homeobox sequences for developmental studies (data will be

reported elsewhere).

The only Hox gene sequences previously isolated from

Apterygota were from two orders, Thysanura and Collembola.

The addition of 13 new sequences from Archaeognatha and

Diplura doubles the number of apterygote insect orders with

known Hox gene sequences. The Archaeognatha Hox gene

sequences possibly present the best available roots for Hox genes

in Hexapoda, allowing a reference point for estimations on the

speed of sequence evolution of Hox genes in insects [34]. In

general, the new data provide a starting point for phylogenetic and

developmental studies investigating the apterygote-pterygote

transition.

In the Pterygota Hox gene sequences have previously been

known from the derived Hemiptera, Diptera, Hymenoptera,

Orthoptera, Coleoptera (complete cluster) and Lepidoptera

[21,35,36]. With 24 new sequences from Ephemeroptera,

Odonata, Plecoptera, and Dermaptera we here add new

sequences particularly from phylogenetically more basal insect

orders (Table S1). These data are crucial for addressing the origin

of pterygote insects, i.e. the invention and radiation of an insect

bauplan armed with wings. Most recent molecular phylogenetic

analyses suggest a basal position for Odonata within the Pterygota

[37], making odonates particularly important for unraveling the

evolutionary and developmental origin of insect wings [11,19,38].

We could isolate all 8 Hox genes for odonates as well as the

homeotic gene Hox3 (bicoid). Only one other homeotic, but non-

Hox gene, ftz, escaped our survey. Although we increased the

number of pterygote insect orders with known Hox gene

sequences from 6 to 10, there is still some 19 insect orders left

for which no information on Hox gene sequences are available (see

Table 2).

The main goal of our study was to add as many new Hox

cluster gene sequences from phylogenetically particularly impor-

tant insect orders to the database as possible. The primer pairs

used in this study proved to be successful for all 10 Hox cluster

genes, but they did not amplify all homeobox fragments from all

insect orders investigated in this study. Filling these gaps will

Figure 1. Alignment of 37 new hexapod Hox gene homeodomains. The newly isolated sequences of lab, pb, Dfd, Scr, ftz, Antp, Ubx, abd-A and
abd-B from the dipluran Campodea fragilis (C.f.), the archaeognath Lepismachilis y-signata (L.y.), the odonates Ischnura elegans (I.e.) and Sympetrum
sanguineum (S.s.), the ephemeropteran Baetis sp. (B.sp.), the plecopteran Nemoura cinerea (N.c.) and the dermapteran Forficula auricularia (F.a.) are
aligned to their Drosophila melanogaster (D.m.) homolog. Dots indicate identical position.
doi:10.1371/journal.pone.0034682.g001

Table 2. Hox genes known from the different insect orders.

Order (Infraclass) lab pb Hox3 Dfd Scr ftz Antp Ubx abd-A Abd-B

Diplura here – – here here here here – here here

Collembola 1 1 1 1 1 1 1 1 1 1

Protura – – – – – – – – – –

Archaeognatha – – – here here 1 here here here here

Thysanura 1 1 1 1 1 1 1 – 1 1

Ephemeroptera – – – here here – here here here here

Odonata here here here here here – here here here here

Plecoptera – – – here here here here here – here

Dermaptera – – – here here 1 here – – –

Orthoptera 1 – 1 1 2 – 2 2 2 1

Blattodea – – – – 1 – – – – –

Hemiptera 1 26 1 1 34 – 2 3 31 1

Hymenoptera 2 3 1 1 2 2 2 .100 .100 4

Diptera 8 4 4 9 9 13 6 14 9 8

Coleoptera 1 1 1 1 1 1 1 1 1 1

Lepidoptera 1 1 1 2 2 - 3 5 3 1

Embioptera, Notoptera, Mantodea,
Mantophasmatodea, Isoptera, Phasmatodea,
Zoraptera, Psocoptera, Phthiraptera,
Thysanoptera, (Hemimetabola) Megaloptera,
Raphidioptera, Neuroptera, Trichoptera,
Mecoptera, Siphonaptera, Strepsiptera
(Holometabola)

No data available No data available

*an unambiguous distinction between Scr and Antp based on short sequence fragment is not possible (see text).
The full complement of Hox cluster genes has so far been known from Collembola, Diptera, and Coleoptera only. Partial information now includes 15 insect orders, and
no information is available from at least 19 orders. Here = this study.
doi:10.1371/journal.pone.0034682.t002
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require a different approach and possibly different primer sets. In

contrast to previously used degenerate Hox primers our newly

designed ‘‘insect specific’’ primers amplify significantly larger

fragments (to almost full length homeoboxes), 120–164 instead of

some 80 bp [39,40]. With respect to preparing the grounds for

comparative studies on the evolution of the winged insect

bauplan the genes Scr, Antp and Ubx are of immediate

importance [5,19,41,42,43]. We have isolated fragments from

all three genes from Archaeognatha, Ephemeroptera, Odonata,

and Plecoptera. If Odonata should represent the most basal

pterygote insects (see above) the new sequences from odonates

will become indispensable for comparative studies on the

evolution of Pterygota (Fig. 4 and Table S1).

Insects Hox genes in Development and Evolution
From the very beginning of embryogenesis Hox genes control

axes formation and the resulting body structuring in Bilateria (for

controversial discussion on non-bilaterian animals see Kamm et al.

[44]; Ryan et al. [45]; Schierwater et al. [16]; Schierwater and

Kamm, [46] and refs. therein). Studies on model systems offered

tremendous insights into the genetic principles of bilaterian

development. Current EvoDevo research is urgently seeking

comparative data from non-model animal systems, since most of

Figure 2. Neighbor-Joining tree of the 25 new Hox gene sequences (lab, pb, Dfd, Ubx, abd-A, Abd-B) and known orthologs from other
insects (GenBank accession numbers: Folsomia candida AF361326, AF361327, AF361329, AF361333, AF361334, AF361335;
Drosophila melanogaster; NM_057265, X63728, X05136, X76210, X54453, X16134; Tribolium castaneum AF231104, AF187068,
U81039, AF146649, AF017415, AF227923). Sequences from this study are in bold. Note that all new sequences group to expected homologs.
doi:10.1371/journal.pone.0034682.g002

Figure 3. Alignment of Scr and Antp homeodomain fragments. Shown is the alignment to Tribolium castaneum (AF228509, AF227628) and
Drosophila melanogaster (M20705, X05228) sequences. The six new and short Scr and Antp fragments differ in their homeobox sequence but are
identical at the amino acid level. Amino acid substitutions between Scr and Antp are shown in green and yellow, respectively.
doi:10.1371/journal.pone.0034682.g003
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Figure 4. Phylogeny of insect orders. The phylogeny is based on information and figures in [56,57,58,59]. Macro-evolutionary events in insect
evolution, which are cited as being major Bauplan transitions, are mapped on the phylogeny. Pictures are modified after [60].
doi:10.1371/journal.pone.0034682.g004
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Table 3. Divergence rates of Hox genes.

average P
distance

Fossil
calibration

Divergence
rates

group of taxa
nos. of
taxa

nos. of
sites (%)

(million
years)

(% per 106

years) Fossil record Reference

lab (Hox1)

Gastropoda 5 75 32 528 0.061 Oelandiella (Latouchella) korobkovi Khomentovsky&Karlova, 1993

Cephalopoda 3 75 12 520 0.023 Plectronoceras Dzik, 1981

Bivalvia 5 75 30.7 510 0.060 Fordilla troyensis Pojeta et al., 1973

Crustacea 5 75 23.6 510 0.046 Canadaspis sp. Briggs, 1978

Insecta 9 75 26 396 0.066 Rhyniognatha hirsti Engel&Grimaldi, 2004

Mammalia Hox-A 6 75 15.3 195 0.078 Hadrocodium wui Luo et al., 2001

Mammalia Hox-B 6 75 6.1 195 0.031 Hadrocodium wui Luo et al., 2001

Mammalia Hox-D 5 75 9.5 195 0.049 Hadrocodium wui Luo et al., 2001

pb(Hox2)

Gastropoda 4 75 38.8 528 0.073 Oelandiella (Latouchella) korobkovi Khomentovsky&Karlova, 1993

Bivalvia 3 75 29.3 510 0.057 Fordilla troyensis Pojeta et al., 1973

Crustacea 6 75 27.1 510 0.053 Canadaspis sp. Briggs, 1978

Insecta 7 75 27.4 396 0.069 Rhyniognatha hirsti Engel&Grimaldi, 2004

Mammalia Hox-A 6 75 4.3 195 0.022 Hadrocodium wui Luo et al., 2001

Mammalia Hox-B 6 75 7 195 0.036 Hadrocodium wui Luo et al., 2001

Dfd(Hox4)

Gastropoda 4 72 34.7 528 0.066 Oelandiella (Latouchella) korobkovi Khomentovsky&Karlova, 1993

Bivalvia 3 72 26.1 510 0.051 Fordilla troyensis Pojeta et al., 1973

Crustacea 7 72 26.9 510 0.053 Canadaspis sp. Briggs, 1978

Insecta 14 72 28 396 0.071 Rhyniognatha hirsti Engel&Grimaldi, 2004

Mammalia Hox-A 5 72 4.4 195 0.023 Hadrocodium wui Luo et al., 2001

Mammalia Hox-B 6 72 4.6 195 0.024 Hadrocodium wui Luo et al., 2001

Mammalia Hox-C 5 72 1 195 0.005 Hadrocodium wui Luo et al., 2001

Mammalia Hox-D 5 72 3.7 195 0.019 Hadrocodium wui Luo et al., 2001

Scr(Hox5)

Gastropoda 3 76 23.1 528 0.044 Oelandiella (Latouchella) korobkovi Khomentovsky&Karlova, 1993

Cephalopoda 4 76 25.1 520 0.048 Plectronoceras Dzik, 1981

Bivalvia 3 76 21.8 510 0.043 Fordilla troyensis Pojeta et al., 1973

Crustacea 6 76 28.2 510 0.055 Canadaspis sp. Briggs, 1978

Insecta 15 76 24.5 396 0.062 Rhyniognatha hirsti Engel&Grimaldi, 2004

Mammalia Hox-A 6 76 6.7 195 0.034 Hadrocodium wui Luo et al., 2001

Mammalia Hox-B 5 76 1 195 0.005 Hadrocodium wui Luo et al., 2001

Mammalia Hox-C 6 76 5.1 195 0.026 Hadrocodium wui Luo et al., 2001

Antp(Hox6)

Gastropoda 3 76 25 528 0.047 Oelandiella (Latouchella) korobkovi Khomentovsky&Karlova, 1993

Cephalopoda 3 76 20 520 0.038 Plectronoceras Dzik, 1981

Bivalvia 4 76 19.4 510 0.038 Fordilla troyensis Pojeta et al., 1973

Crustacea 6 76 20 510 0.039 Canadaspis sp. Briggs, 1978

Insecta 16 76 19.7 396 0.050 Rhyniognatha hirsti Engel&Grimaldi, 2004

Mammalia Hox-A 4 76 8.3 195 0.043 Hadrocodium wui Luo et al., 2001

Mammalia Hox-B 4 76 5.9 195 0.030 Hadrocodium wui Luo et al., 2001

Mammalia Hox-C 4 76 11.1 195 0.057 Hadrocodium wui Luo et al., 2001

Ubx(Hox7)

Gastropoda 3 76 26.9 528 0.051 Oelandiella (Latouchella) korobkovi Khomentovsky&Karlova, 1993

Cephalopoda 2 76 1.2 520 0.002 Plectronoceras Dzik, 1981

Bivalvia 2 76 14 510 0.027 Fordilla troyensis Pojeta et al., 1973

Isolation of Hox Cluster Genes from Insects
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the established model systems are phylogenetically quite derived. If

one wants to unravel the invention of wings in insects for example,

a key bauplan change that has fueled the unchallenged radiation

success of pterygote insects, comparative data from the base of

Pterygota are indispensable (Fig. 4). From higher pterygote insects

we know that Scr and Ubx play key roles for the development of

wings [19,35,42,43,47–49]. In the absence of comparative data

from more basal pterygote insect orders, however, no conclusions

on the role of Scr and Ubx for evolutionary origin of the insect wing

can be drawn. The new sequences from several crucial insect

orders provide a first step towards obtaining the missing data.

To what degree Hox genes can also directly contribute to

phylogenetic analyses has been controversially discussed [28]. The

genomic organization of Hox genes has supported several

important clades at higher taxonomic levels [50,51,52]. At the

sequence level of the homeobox or homeodomain one may also

find phylogenetic signals at lower taxonomic levels [34,53]. The

main limitation though relates to the shortness of the sequence

while the main strength arises from the unproblematic alignment

[54].

Insects Homeoboxes have Radiated Faster than Non-
insect Homeobox Sequences

The addition of 37 new insect homeobox sequences allows to

test the hypothesis that an increased radiation success correlates to

an increased rate of sequence evolution in the regulatory Hox

genes.

In 1965 Zuckerkandl and Pauling [55] suggested that mutations

accumulate over time and that therefore the genetic divergence

could be used to estimate the time of split between clades – the

idea of the molecular clock was originated. We calculate the

absolute rate of sequence evolution in the regulatory Hox genes.

As fossils are the best estimates for the minimal age of a specific

group, we have used the fossil records to estimate the sequence

evolution rate (in % per million years) at which the different

lineages have accumulated mutations in their Hox genes.

Comparison of p-distances within and between groups revealed

a significant faster sequence evolution in the insects compared to

other arthropods and mammals (Table 3). Average sequence

evolution rate of Hox gene homeoboxes in insects is estimated as

0.06+/20.003% per million years (mean +/2 SE) and signifi-

cantly higher than in non-insects (0.04+/20.02; p,0.001 U-test,

2-sided).

To interpret these sequence evolution rates we have to keep in

mind two important aspects. First, the Hox gene homeobox

sequences available for the different groups do not necessarily

reflect the overall diversity in this group. For Bivalvia, sequences

are available from 5 out of the 10 recognized orders, for

Cephalopda from 3 out of 11, for Gastropoda from 4 out of 23,

for Maxillipoda from 5 out of 14 and for Insecta from 11 out of 32.

In addition homeobox sequences are not always complete which

can lead to an underestimation of the overall p-distance. Secondly,

p-distances do not take substitution rate biases, differences in

evolutionary rates among sites or multiple substitutions at the same

Table 3. Cont.

average P
distance

Fossil
calibration

Divergence
rates

group of taxa
nos. of
taxa

nos. of
sites (%)

(million
years)

(% per 106

years) Fossil record Reference

Crustacea 8 76 26.1 510 0.051 Canadaspis sp. Briggs, 1978

Insecta 14 76 23.4 396 0.059 Rhyniognatha hirsti Engel&Grimaldi, 2004

Mammalia Hox-A 5 76 5.3 195 0.027 Hadrocodium wui Luo et al., 2001

Mammalia Hox-B 5 76 4.4 195 0.023 Hadrocodium wui Luo et al., 2001

abdA(Hox8)

Gastropoda 3 75 25.6 528 0.048 Oelandiella (Latouchella) korobkovi Khomentovsky&Karlova, 1993

Cephalopoda 3 75 25.8 520 0.050 Plectronoceras Dzik, 1981

Bivalvia 3 75 33.6 510 0.066 Fordilla troyensis Pojeta et al., 1973

Crustacea 5 75 23.2 510 0.045 Canadaspis sp. Briggs, 1978

Insecta 14 75 23.8 396 0.060 Rhyniognatha hirsti Engel&Grimaldi, 2004

Mammalia Hox-B 5 75 4.5 195 0.023 Hadrocodium wui Luo et al., 2002

Mammalia Hox-C 4 75 6.8 195 0.035 Hadrocodium wui Luo et al., 2001

Mammalia Hox-D 4 75 8 195 0.041 Hadrocodium wui Luo et al., 2001

abdB(Hox11)

Gastropoda 2 75 28.6 528 0.054 Oelandiella (Latouchella) korobkovi Khomentovsky&Karlova, 1993

Cephalopoda 2 75 15.9 520 0.031 Plectronoceras Dzik, 1981

Crustacea 5 75 23.6 510 0.046 Canadaspis sp. Briggs, 1978

Insecta 10 75 18.8 396 0.047 Rhyniognatha hirsti Engel&Grimaldi, 2004

Mammalia Hox-A 4 75 7.5 195 0.038 Hadrocodium wui Luo et al., 2001

Mammalia Hox-C 5 75 2.4 195 0.012 Hadrocodium wui Luo et al., 2001

Mammalia Hox-D 5 75 3.3 195 0.017 Hadrocodium wui Luo et al., 2001

doi:10.1371/journal.pone.0034682.t003
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site into account. All of the above can lead to an underestimation

of sequence evolution rates. Nevertheless, the outstanding high

sequence evolution rate in insects supports the hypothesis that the

unchallenged radiation success of insects, and particularly flying

insects, coincides with an increased sequence evolution rate in the

most important regulatory genes for the a-p bauplan setup, i.e. the

Hox genes. Based on former experiences with short homeobox

fragments the probability for misclassification should be low

[39,40] and the latter should not contribute significantly to the

observed high rates of sequence evolution in insects.

Supporting Information

Figure S1 Neighbor-Joining tree of all previously known
Scr, ftz, and Antp sequences from those insect orders for
which the complete set of Hox gene homeobox sequences
is known: Folsomia candida (Colle), Drosophila melano-
gaster (Dipt) and Tribolium castaneum (Coleo). Even the

full length homeobox sequences allow no unambiguous grouping

(see text).

(TIFF)
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and new generated sequences from this study.
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