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A risk-scoring model based on endobronchial
ultrasound multimodal imaging for predicting
metastatic lymph nodes in lung cancer patients
Zhihong Huang1,2,3, Lei Wang4, Junxiang Chen1,2,3, Xinxin Zhi1,2,3, Jiayuan Sun1,2,3,*

ABSTRACT
Background andObjectives: Endobronchial ultrasound (EBUS) imaging is a valuable tool for predicting lymph node (LN) metas-
tasis in lung cancer patients. This study aimed to develop a risk-scoring model based on EBUSmultimodal imaging (grayscale, Doppler
mode, elastography) to predict LN metastasis in lung cancer patients.

Patients and Methods: This retrospective study analyzed 350 metastatic LNs in 314 patients with lung cancer and 124 reactive
LNs in 96 patients with nonspecific inflammation. The sonographic findings were compared with the final pathology results and clinical
follow-up. Univariate and multivariate logistic regression analyses were performed to evaluate the independent risk factors of metastatic
LNs. According to the β coefficients of corresponding indicators in logistic regression analysis, a risk-scoring model was established.
Receiver operating characteristic curve was applied to evaluate the predictive capability of model.

Results:Multivariate analysis showed that short axis >10mm, distinct margin, absence of central hilar structure, presence of necrosis,
nonhilar vascularity, and elastography score 4 to 5were independent predictors ofmetastatic LNs. Both short axis andmarginwere scored
1 point, and the rest of independent predictors were scored 2 points. The combination of 3 EBUS modes had the highest area under the
receiver operating characteristic and accuracy of 0.884 (95% confidence interval, 0.846–0.922) and 87.55%, respectively. The risk strat-
ificationwas as follows: 0 to 2 points, malignancy rate of 11.11%, low suspicion; 3 to 10 points, malignancy rate of 86.77%, high suspicion.

Conclusions: The risk-scoring model based on EBUSmultimodal imaging can effectively evaluate metastatic LNs in lung cancer pa-
tients to support clinical decision making.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality
worldwide.[1,2] Correctly staging lung cancer is of great importance
because the treatment strategies and outcomes differ significantly by
stage.[3,4] Endobronchial ultrasound–guided transbronchial aspira-
tion (EBUS-TBNA) is recommended as a first-line investigation for
intrathoracic nodal staging in lung cancer owing to itsminimally inva-
sive nature and high sensitivity.[5] However, EBUS-TBNA has an av-
erage false-negative rate of 24% (ranging from 1% to 37%) in lung
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cancer patients.[6] The false-negative EBUS-TBNA findings are caused
by inadequate specimens in the lymph nodes (LNs).[7] This indicates
that proper interpretation of EBUS imaging and a suitable choice
of target LNs are essential to increase the diagnostic rate and re-
duce false negatives.

EBUS imaging can reflect the characteristics of LNs, and it has been
demonstrated in several studies that certain EBUS features can be
used to distinguish between benign and malignant intrathoracic LNs
during EBUS-TBNA.[8–10] However, ultrasonic characteristics of
LNs are different between various malignant diseases, which may af-
fect the judgment to predict metastatic LNs.[11] Previous studies have
individually demonstrated that grayscale feature, Doppler mode, and
elastography may assist clinicians to predict LN metastasis during
EBUS-TBNA.[12–16] To our knowledge, there is still a lack of research
on a combination of 3 EBUS modes.

This study aimed to construct a risk-scoring model to predict met-
astatic intrathoracic LNs in lung cancer patients based on EBUS
multimodal imaging. Furthermore, a risk stratification method is
proposed to facilitate clinical decision making in the background
of nondiagnostic EBUS-TBNA.
MATERIALS AND METHODS

Patients and LNs

This retrospective study was approved by the Ethics Committee of
Shanghai ChestHospital (KS1946). The need for informed consent
was waived because of the retrospective nature of the study.
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Consecutive patients with intrathoracic lymphadenopathy who
underwent EBUS-TBNA with multimodal videos (grayscale, Dopp-
ler, and elastography) in our hospital from September 2019 to June
2020 were analyzed. EBUS-TBNA was performed in patients meet-
ing the following criteria: (1) enlargedmediastinal/hilar LNs (at least
1 node >1 cm in the short axis) based on computed tomography
(CT) or positive intrathoracic LNs/lesions detected (defined as stan-
dardized uptake value >2.5) by positron emission tomography–
computed tomography (PET/CT); (2) pathological confirmation
was clinically required, and EBUS-TBNA examination was feasible;
and (3) no contraindication to the procedure. All patients signed an
informed consent form for EBUS-TBNA examination. Patients who
were confirmedwith lung cancer or nonspecific inflammation by pa-
thology and clinical follow-up were finally included in this study.
The flowchart of patients and LNs is shown in Figure 1.

LN stationswere defined by the TNMclassification.[17] The diagnosis
of metastatic LNs was based on the malignant cytologic or histologic
results of EBUS-TBNA or on surgical-pathologic confirmation. The
diagnosis of reactive LNs was established when pathologic findings
demonstrated lymphocytes or inflammatory cells, and LN size was
stable or diminished with antibiotic treatment during the follow-up.
EBUS-TBNA samples were classified as “true-positive” if malignant
cells were found and “true-negative” if nonmalignant diagnoses were
confirmed at a clinical follow-up (eg, further tests and CT).[18] To
avoid false-negative results of EBUS-TBNA, reactive LNs were only
selected from patients with nonspecific inflammation and with at
least 24 months of clinical follow-up.[14]

Measurement of CT and PET/CT parameters

The measurement of CT and PET/CT was performed according to
a one-to-one correlation between CT or PET/CT images of LNs
and the EBUS-TBNA region by the same groups of LNs. Short diam-
eter was measured at the maximum cross section of the target LN on
themediastinalwindowsettings (windowwidth, 350Hounsfield unit;
window level, 50 Hounsfield unit). The short diameter >10 mm on
axial CT was suspected malignancy. The maximum standardized
Figure 1. Flow diagram of patient and lymph node enrollment. EBUS-
TBNA: endobronchial ultrasound–guided transbronchial needle aspiration.
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uptake value (SUVmax) was obtained by drawing regions of interest
on attenuation-corrected fluorodeoxyglucose-PET fusion images
around the involved LN group.[19] SUVmax >2.5 was used to pre-
dict malignant LNs. The time interval between CT or PET/CT and
EBUS-TBNA was less than 1 month.

EBUS-TBNA procedure

The targeted LNs and peripheral vessels were examined using a con-
vex probe ultrasound bronchoscopy (BF-UC260FW; Olympus,
Tokyo, Japan) with the scanning frequency of 10MHz. The gray-
scale features, vascular patterns, and elastography were recorded
by ultrasound processor (EU-ME2; Olympus). A grayscale image
was frozen at the maximal cross sections to measure the diameter
of targeted LN. To guarantee optimum sensitivity and prevent artifac-
tual color noise caused by the breathing and heartbeats, color gain
was increased until background noise arose, and then lowered until
the noise was controlled.[14] Before observing EBUS elastography,
the region of interestwas set to include the targetedLNandperipheral
tissue except the vessels. The satisfactory EBUS elastographywas usu-
ally generated by internal compression from the heart and blood
vessel movement. If the image is not ideal, an up-down angle lever
of the bronchoscope will be used at a frequency of 3 to 5 times per
second.[15,20] After the operation, bronchoscopists saved the following
videos: a 10-second grayscale video, a 20-second blood flowDoppler
video, and two 20-second elastography videos.

Finally, operators used a 22-gauge needle to puncture the targeted
LNunder the guidance of real-time EBUS. Three needle aspirations
were recommended for each LN. If an obvious histology specimen
was obtained, however, 2 aspirations were acceptable. Rapid on-site
evaluation was not performed for all LNs.

EBUS image features of LNs

EBUS modes were categorized as grayscale mode, Doppler mode,
and elastography mode. The representative sonographic features
corresponding EBUS modes are shown in Figure 2. Grayscale fea-
tures included short axis (>10 or ≤10 mm), shape (round or oval),
margin (distinct or indistinct), echogenicity (heterogeneous or ho-
mogeneous), central hilar structure (CHS; present or absent), ne-
crosis (present or absent), matting (present or absent), and calcifi-
cation (present or absent).[14,21] The long axis was the maximum
diameter of the largest section of the LN in grayscale images, and
the short axis was the largest diameter perpendicular to the long axis.
When the ratio of the long axis and short axis was greater than 1.5, it
was defined as oval.Whenmore than half of themargin (the boundary
between the LN and surrounding soft tissues) was clearly visualized
with a high echoic border, it was defined as a distinct margin.
Echogenicity of the LNs is considered heterogeneous if the echoes show
a nonuniform pattern. When a continuous linear and hyperechoic re-
gion was found in the center of the LN, CHS was considered present.
Necrosis sign is an abnormal echoic area within the LNwithout blood
flow, and it may appear as an anechoic area (cystic necrosis) or an
echogenic area (coagulation necrosis). The nodes were considered mat-
ted when the LNs were in confluence and no normal soft tissues inter-
vened between them. Calcification was commonly characterized by a
hyperechoic structure of various shapes with an acoustic shadow.

Vascular distribution patterns were evaluated using Doppler mode[14]:
(1) avascular, the absence of vascular signals within the LNs; (2) hi-
lar, flow of signal that branches radially from the hilus, regardless of
whether the signals originated from the central region or from the
eccentric; and (3) nonhilar, which includes central, capsular, and
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Figure 2. Representative sonographic features used for classifying metastatic and reactive lymph nodes.
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mixed (≥2 typesmixed from the hilar, central, and capsular). Central
pattern appears as a scattering of patches or segments of vascular
signal within the node (deformed radial, aberrant multifocal). Cap-
sular (or peripheral) pattern is characterized by the flow of signals
along the LNs’ periphery with branches penetrating the node’s pe-
riphery and not originating from the hilar arteries.

In elastography mode, a qualitative 5-score method was used to
identify the hardness of LNs[15]: score 1 represents a heterogeneous
soft pattern (mixed green-yellow-red), score 2 represents a homoge-
neous soft pattern (predominantly green), score 3 represents an inter-
mediate hardness pattern (mixed blue-green-yellow-red), score 4 rep-
resents a heterogeneous hard pattern (mixed blued-green), and score
5 represents a homogeneous hard pattern (predominantly blue).

The followingmanifestations were consideredmetastatic LNs based
on our previous studies[14,15,20]: short axis >10 mm, round shape,
distinctmargin, heterogeneity, absence of CHS, presence of necrosis,
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presence of matting, presence of calcification, nonhilar vascularity,
and elastography score of 4 to 5. These sonographic features, CT
short diameter, and SUVmax on PET/CT were compared with the
final pathology outcomes to calculate the diagnostic accuracies.
Intraobserver and interobserver agreement of EBUS image features

In this study, 3 experienced doctors independently evaluated the
aforementioned sonographic features twice independently blind to
the final diagnosis of the LNs and the clinical data of patients,
and then intraobserver agreement was calculated. To determine
the interobserver agreement among the 3 doctors, each doctor pro-
vided a final value for the different outcomes of the 2 assessments.
The 3 doctors’ divergent opinions were discussed together to reach
a consensus that was then applied to subsequent analysis. κ Values
ranging from 0.81 to 1.00 were considered as almost perfect; 0.61
to 0.80, substantial; 0.41 to 0.60, moderate; 0.21 to 0.40, fair; and
0.00 to 0.20, slight agreement.[22]
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Table 1

Characteristics of patients and lymph nodes

Characteristics Cases

Patients, n 410
Sex (male/female) 304/106
Age, median (range), y 64 (23–84)
Diagnosis of patients, n (%)
Lung cancer 314 (76.59)
Adenocarcinoma 137 (33.41)
Squamous carcinoma 45 (10.98)
Small cell lung cancer 81 (19.76)
Others 51 (12.43)
Nonspecific inflammation 96 (23.41)

Lymph nodes, n 474
Long axis on EBUS, mm 21.36 ± 7.52
Short axis on EBUS, mm 16.80 ± 6.87
Short diameter on CT, mm 16.61 ± 7.43
SUVmax on PET, n (%)
>2.5 121 (25.53)
≤2.5 6 (1.26)
Not evaluated 347 (73.21)

Diagnosis of lymph nodes, n (%)
Metastatic lymph nodes 350 (73.84)
Reactive lymph nodes 124 (26.16)
Station, n (%)
2R, 4R, 4 L 190 (40.08)
7 163 (34.39)
10R, 10 L 13 (2.74)
11 L, 11Rs, 11Ri 108 (22.78)

EBUS: endobronchial ultrasound; CT: computed tomography; PET: positron emission tomography;
SUVmax: maximum standardized uptake value.

Table 2

Intraobserver and interobserver agreement of sonographic
features

Sonographic
Features

κ

Intraobserver
Agreement

Interobserver
Agreement

Margin 0.959 0.808
Echogenicity 0.965 0.835
CHS 0.957 0.881
Necrosis 0.895 0.778
Matting 0.924 0.885
Calcification 0.980 0.883
Hilar vascularity 0.932 0.849
Elastography 0.956 0.917

CHS: central hilar structure.
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Statistical analysis

All features were classified into 2 categories. Cohen κ method was
used to analyze intraobserver and interobserver agreement. The χ2

test or Fisher exact test by univariate analysis was used for each
sonographic feature. The features selected by univariate analysis
were then further assessed using the binary logistic regression
method, and the risk score of each feature was determined accord-
ing to the β coefficients obtained from the logistic regression
method.[23] The largest β coefficient (βmax) was selected to estab-
lish the highest score of the feature. The points of each feature were
calculated by Points = 2β/βmax, and the points were rounded to the
nearest integer.

A receiver operating characteristic (ROC) curve and the area under
the ROC curve (AUC) were performed to identify predictive capabil-
ity of model. Delong test was used to compare the 2 ROC curves. For
missing data, we performed statistical analysis based on pairwise dele-
tion method.[24] The sensitivity, specificity, positive predictive value,
negative predictive value, and diagnostic accuracy rate were calcu-
lated according to standard definitions. To perform internal valida-
tion of the risk-scoring model, 1000 bootstrap samples from the orig-
inal sample were used.[25] Hosmer-Lemeshow test was used to evalu-
ate themodel’s predictive accuracy. All statistical tests were 2-sided. A
P value of less than 0.05 was deemed statistically significant. The sta-
tistical analyses were performed with R (version 4.0.4; R Foundation
for Statistical Computing) and STATA 16 (Stata Corp, College
Station, TX).
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Results

Patients and LNs

Four hundred ten patients were eligible and analyzed in this study.
Of them, 314 were diagnosed with lung cancer, and 96 had nonspe-
cific inflammation. The pathology types of lung cancer were adeno-
carcinoma in 137, squamous carcinoma in 45, small cell lung cancer
in 81, and others in 51 (5 pulmonary sarcomatoid carcinoma, 22
non–small cell lung cancer, 9 neuroendocrine tumor, and 15 un-
known type of lung cancer). The median age was 64 (range, 23–84)
years. A total of 474 LNs from 410 patients were analyzed, including
350 metastatic LNs and 124 reactive LNs. The largest proportion of
biopsied stationswas 7 (34.39%), followed by 4R (30.38%) and11L
(8.44%). The characteristics of the patients and LNs are illustrated in
Table 1. Chest CT results were not available for 11 patients with 12
LNs because they underwent CT examinations at other hospitals.
The short diameter on CT was 379 LNs >10 mm and 83 LNs
≤10 mm. The mean short diameter on CT was 16.61 ± 7.43 mm.
PET/CT results were evaluated for 127 LNs (26.79%), amongwhich
121 LNs (25.53%) had SUVmax >2.5. A pairwise deletion method
was performed to handle the missing data for CT and PET/CT.

Relationship between sonographic features and metastatic LNs

All features, except necrosis, had a perfect intraobserver and inter-
observer agreement [Table 2]. In univariate analysis, all sono-
graphic features, except calcification, were considered significant
predictors of metastatic LNs with P < 0.05 [Table 3]. These predic-
tors were included in the multivariate logistic regression analysis.
The results of multivariate analysis are shown in Table 4. The fol-
lowing 6 features were independent predictors of metastatic LNs
(P < 0.05): short axis >10 mm, distinct margin, absence of CHS,
presence of necrosis, nonhilar vascular pattern, and elastography
score 4 to 5. According to β acquired from multivariate analysis,
both short axis andmarginwere scored 1 point, and the rest of inde-
pendent predictors were scored 2 points.

Construction and validation of a risk-scoring model

The ROC curves of different EBUSmodalities were established based
on the aforementioned points of corresponding features. The ROC
curves of all modalities are shown in Figure 3. The diagnostic perfor-
mance for each mode, as well as for combinations of different EBUS
modes, is provided inTable 5.Cutoff values of eachmodalitywere de-
termined by the points with the highest accuracy. The grayscale fea-
tures combined with vascularity distribution and elasticity showed

http://www.eusjournal.com


Table 3

Univariate analysis of sonographic features for predicting metastatic lymph nodes

Sonographic Features SE, % SP, % PPV, % NPV, % ACC, % P

Short axis >10 mm 77.89 47.37 88.57 29.03 73.00 <0.001
Round shape 76.29 33.87 76.50 33.60 65.19 0.027
Distinct margin 76.86 33.87 76.64 34.15 65.61 0.019
Heterogeneity 72.00 65.32 85.42 45.25 70.25 <0.001
Absence of CHS 89.43 70.16 89.43 70.16 84.39 <0.001
Presence of necrosis 31.14 95.97 95.61 33.06 48.10 <0.001
Presence of matting 26.57 95.97 94.90 31.65 44.73 <0.001
Calcification 15.43 88.71 79.41 27.09 34.60 0.259
Nonhilar vascularity 89.71 71.77 89.97 71.20 85.02 <0.001
Elastography 4–5 80.29 70.16 88.36 55.77 77.64 <0.001

ACC: accuracy; CHS: central hilar structure; NPV: negative predictive value; PPV: positive predictive value; SE: sensitivity; SP: specificity.
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good predictive accuracy with the highest AUC of 0.884 (95% confi-
dence interval, 0.846–0.922) and accuracy of 87.55%. Meanwhile,
the sensitivity, specificity, positive predict value, and negative predict
value were 96.57%, 62.10%, 87.79%, and 86.52%, respectively.
Then, the risk-scoring model was produced from the combination
of 3 EBUSmodes, which significantly outperformed CT short diam-
eter and SUVmax parameters (Delong test, both P < 0.001).

The malignant rate ranged from 0% to 100% in the order of calcu-
lated risk scores [Table 6], and then the total score was divided into
2 groups depending on malignancy rate [Table 7]: 0 to 2 points, with
the malignancy rate of 11.11%, related to low suspicion; 3 to 10
points, with themalignancy rate of 86.77%, related to high suspicion.
For internal validation, the risk-scoringmodel indicated good fit using
Hosmer-Lemeshow test with P = 0.665. The corrected AUC (0.885)
was also high in bootstrap validation.

DISCUSSION

The evaluation of intrathoracic LNs is a crucial procedure for lung
cancer patients because it involves the prognosis of patients and
choice of treatment. Ultrasonographic features were suggested to pre-
dict benignormalignant LNs in patients undergoing EBUS-TBNA.[26]

As the elastography mode has been developed, it can be used with
grayscale andDopplermode,whichmakes the predictionsmore accu-
rate. In this study, a risk-scoring model was constructed by 3 EBUS
modes (grayscale, Doppler mode, and elasticity) and had the highest
AUC value as well as the highest accuracy. For clinical practice, the
risk stratification of ourmodel was categorized as low and high suspi-
cion according to the malignant rate.

This study revealed that short axis >10mm, distinct margin, presence
of necrosis, absence ofCHS, nonhilar vascularity, and elastography of
Table 4

β Coefficients for the selected sonographic features by multiva

Variable P β Coefficients

Short axis >10 mm 0.016 0.89
Distinct margin 0.003 1.00
Absence of CHS 0.003 1.25
Presence of necrosis 0.014 1.28
Nonhilar vascularity <0.001 1.59
Elastography 4–5 <0.001 1.20

CHS: central hilar structure; OR: odd ratio.
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score 4 to 5 were independent risk factors on EBUS. For size, a short
axis of >10 mm was considered as an independent risk predictor,
consistent with most studies.[20,21,27] An increase in nodal size may
suggest metastatic involvement in patients with a known primary
lung cancer. However, reactive LNs can be as large as metastatic
LNs, whereas malignancy can be found in small nodes.[28] Hence,
it could not be used as an absolute criterion. For margin, distinct
border seen in malignant nodes may result from nodal infiltration
by tumor cells replacing the normal tissue, which caused an increased
difference in acoustic impedance.[29] In our previous study, sarcoid
nodes had distinct borders (97.9%),[30] so sarcoid nodes should be ex-
cluded to avoid affecting the judgment of the difference between met-
astatic and reactive LNs. Necrosis was caused by excessive tumor
growth and insufficient blood supply.[29] However, it was often
seen in tuberculous nodes (83.8%),[30] which were also excluded.
The absence of CHS had the highest sensitivity of 89.43% and diag-
nostic accuracy of 84.39% in grayscale features. Metastatic LNs
usually tend tomanifest as no hilum or eccentric hilum caused by in-
filtration and compression of tumor tissue or necrotic tissue.[21] Lin
et al.[31] found that CHSmight still be preserved in the early stage of
metastasis. A systematic review included 29 articles and found that
the absence of CHS was seen by 16 studies and had the highest
pooled sensitivity of 0.91 (95% confidence interval, 0.90–0.92).[29]

ForDoppler mode, our results showed that vascularity distribution
had the highest accuracy of 85.02% in all sonographic features.Other
studies that used blood flow grade instead of vascular distribution to
predict metastasis found that it was not significant independent pre-
dictors of LNs metastasis.[21,32] This reason might be that blood flow
gradewasmore affected by external factors, such as pulsation of great
vessels and respiratorymovement.[14] The elastography had the accu-
racy of 77.64%, which was a useful EBUS modality to detect the tis-
sue stiffness.[16,33] However, previous studies also found that some
riate analysis and corresponding weighting

OR 95% Confidence Interval Allocated Score

2.433 1.181–5.014 1
2.706 1.412–5.188 1
3.484 1.525–7.959 2
3.604 1.291–10.061 2
4.884 2.129–11.204 2
3.314 1.829–6.002 2
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Figure 3. Receiver operating characteristic curves of different predictive
models for predicting metastatic lymph nodes in lung cancer. A combination
of 3 EBUS modes (G + E + D), 2-combined-mode model (G + E, G + D,
and E + D). D: Doppler mode; E, elastography; EBUS: endobronchial
ultrasound; G: grayscale feature.

Table 6

Predictive total scores andmalignancy rates of lymphnodes
based on the risk-scoring model

Score No. Malignant (n = 350) No. LNs (n = 474) Malignancy Rate, %

0 0 5 0.00
1 4 41 9.76
2 5 35 14.29
3 3 8 37.50
4 20 35 57.14
5 12 16 75.00
6 43 49 87.76
7 54 65 83.08
8 125 132 94.70
9 26 29 89.66
10 58 59 98.31

LNs: lymph nodes.

Huang et al. � Volume 13 � Issue 2 � 2024 www.eusjournal.com
false-positive cases might be caused by patients with nonspecific in-
flammation, which had areas of hard fibrotic or anthracotic tis-
sues.[15] To sum up, each sonographic feature had 2 sides and should
not be the sole criterion in assessment of intrathoracic LNs in lung
cancer, so a combination of each feature was suggested.

Comparing with a single EBUS mode, the combination of multiple
EBUS modes not only obtained higher accuracy but also reflected
more comprehensive characteristics of LNs. In addition, different
sonographic features of LNs have different β value, which implies
the different weight ofmalignancy. Hylton and associates[27] devel-
oped the Canada LN score based on the weighting of different risk
predictors and showed satisfactory capability of predicting malignant
LNs (AUC, 0.719), but their model just used grayscale features alone.
Morishita et al.[32] found that their model, 4 grayscale features
combining with elastography mode, had a higher AUC value than
the Canada LN score (AUC, 0.894 vs. 0.756; P < 0.001). Zhi et al.[20]
Table 5

Diagnostic performances of different predictive models and th

Model Cutoff SE, % SP, % PPV, %

G + D + E ≥4 96.57 62.10 87.79
G ≥3 89.71 70.97 89.71
D ≥2 89.71 71.77 89.97
E ≥2 80.29 70.16 88.36
G + D ≥3 93.71 68.55 89.37
G + E ≥3 96.00 61.29 87.50
E + D ≥2 96.29 60.48 87.31
CT short diameter >10 mm ≥1 86.76 31.15 77.84
SUVmax >2.5 ≥1 95.83 6.45 76.03

ACC: accuracy; AUC: areas under curve; CI: confidence interval; CT: computed tomography; D: Doppler mode;
absence of central hilar structure); PET: positron emission tomography; NPV: negative predictive value; PPV:
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included all patients who underwent EBUS-TBNA and found that
grayscale combining with elastography had the best performance,
and the accuracy in validation group was 84.1% when at least 2 of
the 3 features (absence of CHS, heterogeneity, and qualitative
elastography score 4–5). Schmid-Bindert and associates[34] established
a sum score prediction model for malignancy based on 6 EBUS fea-
tures (short axis, echogenicity, shape, margin, CHS, and blood flow),
and found that LNwas considered as high risk of malignancy if more
than 2 positive EBUS features were present. There were 2 differences
between these studies andours as follows: on the onehand, these stud-
ies used the calculating number of EBUS features to establish a predic-
tive model, which ignored the risk weight of each EBUS features; on
the other hand, they included various types of LNs rather thanmetasta-
tic LNs of lung cancer and reactive LNs, whichmay affect the diagnos-
tic accuracy of model for predicting metastatic LNs in lung cancer.

In this study, according to β value obtained by logistic regression
analysis, we assigned weights to statistically significant features in-
stead of arbitrary weights, which could reflect the risk of different fea-
turesmore accurately. Among any combinationof 3EBUSmodes, the
3 combined models obtained the highest AUC value of 0.884 and
then was used to construct the risk-scoring model for clinical applica-
tion. For internal validation, we corroborated the validation with
1000 samples and obtained a satisfactory corrected AUC value of
0.885, which indicated that this model has good stability. This model
outperformed any single EBUS mode as well as the combination of
eir corresponding cutoff values

NPV, % ACC, % AUC (95% CI)
Compared With
G + D + E Model

86.52 87.55 0.884 (0.846–0.922) —

70.97 84.81 0.863 (0.824–0.901) P = 0.041
71.20 85.02 0.807 (0.765–0.850) P < 0.001
55.77 77.64 0.752 (0.707–0.798) P < 0.001
79.44 87.13 0.873 (0.835–0.911) P = 0.178
84.44 86.92 0.877 (0.840–0.915) P = 0.111
85.23 86.92 0.840 (0.797–0.833) P < 0.001
45.78 72.08 0.590 (0.545–0.635) P < 0.001
33.33 74.02 0.511 (0.463–0.560) P < 0.001

E: elastography mode; G: grayscale feature (short axis >10 mm, distinct margin, presence of necrosis, and
positive predictive value; SE: sensitivity; SP: specificity; SUVmax: maximum standardized uptake value.
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Table 7

Risk stratification based on the risk-scoring model

Score

Total (n = 474)

Risk
Stratification

No.
Malignant

No.
LNs

Malignancy
Rate, %

0–2 9 81 11.11 Low suspicion
≥3 341 393 86.77 High suspicion

EBUS-TBNA: endobronchial ultrasound–guided transbronchial needle aspiration; LNs: lymph nodes.
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elasticity and vascularity distribution (allP<0.05). The differences be-
tween the 3-combined-modemodel and the rest of 2-combined-mode
model were not statistically significant. Our results showed that 36
metastatic LNs (10.3%) were considered as benign by using the
vascularity distribution, whereas 26 of them were considered as
malignant by using the elasticity. Adversely, 37 reactive LNs (29.8%)
were deemed as malignant by the elasticity, whereas 14 of them were
deemed as benign by using the vascularity distribution. This implied
that elasticity and vascularity distribution might be mutually comple-
mentary. Therefore, it was essential to diagnose metastatic LNs in lung
cancer by using EBUSmultimodal imaging. In addition, the cutoff of
3-combined-mode model also had the highest accuracy of 87.55%.

Themost used CT-based diagnostic criterion for intrathoracic LNs
is a maximal short diameter >10 mm.[35] In this study, the sensitivity
and specificity of the size criteria were 86.76% and 31.15%, respec-
tively, similar to a previous study.[19] The number of PET/CT per-
formed on reactive LNs was only 31, of which 29 LNs were diag-
nosed as malignant based on SUVmax >2.5; thus, the specificity of
SUVmax was low at 6.45%, but the sensitivity was 95.83%. Com-
pared with CT and PET/CT, our EBUS multimodal imaging had a
higher diagnostic accuracy.Nevertheless, the diagnostic performance
of CT or PET/CT should be reflected by a variety of parameters but
not only CT short diameter or SUVmax. A further multimodal med-
ical image study should be performed to address this problem.

For the convenience of clinical applications, we classified the
risk-scoring model based on the distribution of the total score and
the malignancy rate. The following suggestions were given. For 0
to 2 points, according to the total malignancy rate of 11.11%, it
was classified as low suspicious malignancy. The follow-up was rec-
ommended first instead of the further invasivemethodswhen the pa-
thology of EBUS-TBNA was negative with qualified specimens. For
3 to 4 points, it was difficult to differentiate reactive frommetastatic
LNs with a moderate malignancy rate of 53.5% (23 of 43), and we
classified it into highly suspicious malignancy to be on the safe side.
The overall malignancy rate of 3 points ormorewas 86.77%,which
was highly suspicious malignancy. Based on the mentioned sono-
graphic features, the operator can choose the appropriate puncture
sites during EBUS-TBNA to reduce the number of invalid punctures
and to improve diagnostic yield. When the risk-scoring model re-
veals metastasis, but pathology is negative, repeat EBUS-TBNA or
other further surgical procedures are recommended. Notably, EBUS
imaging can provide important additional diagnostic information
for differentiating metastatic LNs in lung cancer when lesion sam-
pling is inconclusive.

This study still has some limitations. First, the purpose of our study
was to predict LNmetastasis in patients with suspected lung cancer
by using EBUSmultimodal imaging. Only reactive LNs from patients
with nonspecific intrathoracic lymphadenitis were included in this
study, because they were more common in lung cancer patients
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than other benign nodes (eg, tuberculosis, sarcoidosis). Using our
risk-scoringmodel for stages of lung cancer would be different from
the actuality. Therefore, our risk-scoring model was more suitable for
differentiating benign and malignant LNs rather than stages of lung
cancer. Second, this study was a single-center retrospective study. Al-
though our risk-scoring model had good discrimination and stability
in bootstrap validation, a validation cohort frommulticenter prospec-
tive trials is recommended to confirm its utility. Third, detection bias
was inevitable because of the subjective interpretation of the EBUS re-
sults. To decrease the risk of bias, all raters were blinded to the final
diagnosis of each LN and the clinical data of patients. On the other
hand, we obtained good results of intraobserver and interobserver
agreement by using the Cohen κ method.

In conclusion, our newly established risk-scoring model based on
EBUS multimodal imaging can effectively evaluate metastatic LNs in
lung cancer patients. Incorporating the risk-scoring model into EBUS
imaging interpretation workflows may help clinicians to select an
appropriate management approach for individual patients.
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